Influence of Miscanthus floridulus on Heavy Metal Distribution and Phytoremediation in Coal Gangue Dump Soils: Implications for Ecological Risk Mitigation
Abstract
:1. Introduction
2. Results
2.1. Spatial Distribution of Heavy Metals (Cd, Pb, Zn, Cu, Cr, Ni) in Soils at Varying Distances from M. floridulus Roots Across Three Coal Gangue Dump Sites
2.2. Assessment of Soil Heavy Metal Contamination and Potential Ecological Risks Across the Three Study Sites
3. Discussion
3.1. Spatial Distribution of Heavy Metals (Cd, Pb, Zn, Cu, Cr, and Ni) in Soils Across the Three Coal Gangue Dump Sites at Different Distances from the Roots of M. floridulus
3.2. Evaluation of Soil Heavy Metal Contamination and Associated Ecological Risks at the Three Study Sites
4. Materials and Methods
4.1. Study Site
4.2. Experimental Design
4.3. Collecting Root Exudates
4.4. Measurement Methods
4.4.1. Qualitative Determination of Root Exudates
4.4.2. Determination of Heavy Metal Content in Soil
4.4.3. Soil Heavy Metal Pollution Assessment Methods
4.5. Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shang, Y.; Sang, N. Pollution Characteristics and Phytotoxicity of Heavy Metals in the Soil Around Coal Gangue Accumulation Area. Environ. Sci. 2022, 43, 3773–3780. [Google Scholar]
- Wuana, R.; Okieimen, F. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecol. 2011, 2011, 402647. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, Y.; Feng, N.; Liu, Y.; Zhang, Y.; Wang, Q.; Liu, J. Risk assessment of heavy metals in the soil of an abandoned coal mine area. J. China Coal Soc. 2024, 49, 3188–3198. [Google Scholar]
- Cao, J.; Liu, Y.; Guo, G. The current situation in comprehensive utilization of gangue. Chin. J. Environ. Eng. 2004, 5, 19–22. [Google Scholar]
- Jia, M. The Current Situation Research on Comprehensive Utilization of Coal Gangue. Conserv. Util. Miner. Resour. 2019, 39, 46–52. [Google Scholar]
- Gao, S.; Zhao, T. Heavy Metal Stress in Coal Gangue Dumps and Plant Adaptations. Sci. Total Environ. 2022, 810, 151372. [Google Scholar]
- Wang, Y. Status and prospect of harmless disposal and resource comprehensive utilization of solid waste of coal gangue. Coal Geol. Explor. 2022, 50, 54–66. [Google Scholar]
- Ghosh, M.; Singh, S. A review on phytoremediation of heavy metals and utilization of its byproducts. Appl. Ecol. Environ. Res. 2005, 3, 18. [Google Scholar] [CrossRef]
- Shah, V.; Dani, P.; Daverey, A. Phytoremediation of heavy metal contaminated soil using Bidens pilosa: Effect of varying concentrations of sophorolipids. Appl. Biochem. Biotechnol. 2024, 196, 2399–2413. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Sajad, M. Phytoremediation of heavy metals—Concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef]
- Zheng, X. System Structure and Fuzzy Evaluation of Sustainable Development in Mining Area. Met. Mine 2004, 33, 59–61+64. [Google Scholar]
- Raskin, I.; Smith, R.; Salt, D. Phytoremediation of metals: Using plants to remove pollutants from the environment. Environ. Sci. Technol. 1994, 28, 271A–277A. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Li, Y.; Ding, C.; Li, B.; Han, H.; Chen, Z. Plant growth-promoting bacteria improve the Cd phytoremediation efficiency of soils contaminated with PE–Cd complex pollution by influencing the rhizosphere microbiome of sorghum. J. Hazard. Mater. 2024, 469, 134085. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.; Sweeney, R. Combining phytoremediation and bioremediation: A promising approach to soil decontamination. Environ. Manag. 2016, 58, 261–270. [Google Scholar]
- Mudgal, V.; Raninga, M.; Patel, D.; Ankoliya, D.; Mudgal, A. A review on Phytoremediation: Sustainable method for removal of heavy metals. Mater. Today Proc. 2023, 77, 201–208. [Google Scholar] [CrossRef]
- Guan, C.; Fu, W.; Zhang, X.; Li, Z.; Zhu, Y.; Chen, F.; Ji, J.; Wang, G.; Gao, X. Enhanced phytoremediation efficiency of PHE-contaminated soil by rape (Brassica napus L.) assisted with PHE-degradable PGPR through modulating rhizobacterial communities. Ind. Crops Prod. 2023, 202, 117057. [Google Scholar] [CrossRef]
- Zhao, F.; Wang, Y.; Zhang, J.; Wang, S. Assessing the impact of phytoremediation on heavy metal accumulation in Miscanthus floridulus. Environ. Monit. Assess 2020, 192, 1–12. [Google Scholar]
- Chen, J.; Chen, Z.; Zhang, W. The role of Miscanthus floridulus in the phytoremediation of heavy metal-contaminated soils. Environ. Sci. Pollut. Res. 2021, 28, 3045–3057. [Google Scholar]
- Salt, D.; Smith, R.; Raskin, I. Phytoremediation. Annu. Rev. Plant Biol. 1998, 49, 643–668. [Google Scholar] [CrossRef]
- Vangronsveld, J.; Herzig, R.; Weyens, N.; Boulet, J.; Adriaensen, K.; Ruttens, A.; Mench, M. Phytoremediation of contaminated soils and groundwater: Lessons from the field. Environ. Sci. Pollut. Res. 2009, 16, 765–794. [Google Scholar] [CrossRef]
- Prasad, S.; Yadav, K.; Kumar, S.; Gupta, N.; Cabral-Pinto, M.; Rezania, S.; Radwan, N.; Alam, J. Chromium contamination and effect on environmental health and its remediation: A sustainable approache. J. Environ. Manag. 2021, 285, 112174. [Google Scholar] [CrossRef]
- Rouhani, A.; Skousen, J.; Tack, F. An overview of soil pollution and remediation strategies in coal mining regions. Minerals 2023, 13, 1064. [Google Scholar] [CrossRef]
- D’Orazio, M.; Campanella, B.; Bramanti, E.; Ghezzi, L.; Onor, M.; Vianello, G.; Vittori-Antisari, L.; Petrini, R. Thallium pollution in water, soils and plants from a past-mining site of Tuscany: Sources, transfer processes and toxicity. J. Geochem. Explor. 2020, 209, 106434. [Google Scholar] [CrossRef]
- Xiao, Y.; Chen, L.; Teng, K.; Ma, J.; Xiang, S.; Jiang, L.; Liu, G.; Yang, B.; Fang, J. Potential roles of the rhizospheric bacterial community in assisting Miscanthus floridulus in remediating multi-metal (loid) s contaminated soils. Environ. Res. 2023, 227, 115749. [Google Scholar] [CrossRef] [PubMed]
- Mocek-Płóciniak, A.; Mencel, J.; Zakrzewski, W.; Roszkowski, S. Phytoremediation as an effective remedy for removing trace elements from ecosystems. Plants 2023, 12, 1653. [Google Scholar] [CrossRef]
- Emurotu, J.; Azike, E.; Emurotu, O.; Umar, Y. Chemical fractionation and mobility of Cd, Mn, Ni, and Pb in farmland soils near a ceramics company. Environ. Geochem. Health 2024, 46, 241. [Google Scholar] [CrossRef]
- Montiel-Rozas, M.; Madejón, E.; Madejón, P. Effect of heavy metals and organic matter on root exudates (low molecular weight organic acids) of herbaceous species: An assessment in sand and soil conditions under different levels of contamination. Environ. Pollut. 2016, 216, 273–281. [Google Scholar] [CrossRef]
- Noreen, S.; Malik, Z.; Luqman, M.; Fatima, I.; Tahir, U.A.; Dar, M.; Rizwan, M. Effect of bacillus strain and Fe-modified biochar on lead (Pb) bioaccumulation and oxidative stress in wheat (Triticum aestivum L.) grown in Pb contaminated soil. S. Afr. J. Bot. 2024, 172, 720–735. [Google Scholar] [CrossRef]
- Bali, A.; Sidhu, G.; Kumar, V. Root exudates ameliorate cadmium tolerance in plants: A review. Environ. Chem. Lett. 2020, 18, 1243–1275. [Google Scholar] [CrossRef]
- Mishra, J.; Singh, R.; Arora, N. Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Front. Microbiol. 2017, 8, 1706. [Google Scholar] [CrossRef]
- Pidlisnyuk, V.; Stefanovska, T.; Lewis, E.; Erickson, L.; Davis, L. Miscanthus as a productive biofuel crop for phytoremediation. Crit. Rev. Plant Sci. 2014, 33, 1–19. [Google Scholar] [CrossRef]
- Wu, B.; Luo, S.; Luo, H.; Huang, H.; Xu, F.; Feng, S.; Xu, H. Improved phytoremediation of heavy metal contaminated soils by Miscanthus floridulus under a varied rhizosphere ecological characteristic. Sci. Total Environ. 2022, 808, 151995. [Google Scholar] [CrossRef]
- Padhye, L.; Srivastava, P.; Jasemizad, T.; Bolan, S.; Hou, D.; Shaheen, S.; Rinklebe, J.; O’Connor, D.; Lamb, D.; Wang, H.; et al. Contaminant containment for sustainable remediation of persistent contaminants in soil and groundwater. J. Hazard. Mater. 2023, 455, 131575. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, S. Plant-assisted metal remediation in mine-degraded land: A scientometric review. Int. J. Environ. Sci. Technol. 2022, 19, 8085–8112. [Google Scholar] [CrossRef]
- Ren, H.; Wang, J.; Cao, H.; Zhou, W.; Zhang, X. Phytoavailable lead in rhizosphere of lettuce. Environ. Sci. 2006, 27, 1659–1664. [Google Scholar]
- Li, M.; Herong, G. Characteristics and Source Identification of Heavy Metals in Subsidence Lake in Zhuxianzhuang Coal Mine in the North of Anhui Province, China. Earth Environ. 2017, 45, 277–282. [Google Scholar]
- Zheng, Y.; Zang, Z.; Yao, D.; Chen, X. Characteristics of temporal-spatial distribution and enrichment of heavy metals in coal mine reclaimed soil. J. China Coal Soc. 2013, 38, 1476–1483. [Google Scholar]
- Palansooriya, K.; Shaheen, S.; Chen, S.; Tsang, D.; Hashimoto, Y.; Hou, D.; Bolan, N.; Rinklebe, J.; Ok, Y. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environ. Int. 2020, 134, 105046. [Google Scholar] [CrossRef] [PubMed]
- Dhal, B.; Thatoi, H.; Das, N.; Pandey, B. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review. J. Hazard. Mater. 2013, 250, 272–291. [Google Scholar] [CrossRef]
- Mohan, A.; Raiput, A.; Singh, A.; Steele, P.; Pittman, C. Modeling and evaluation of chromium remediation from water using low cost biochar, a green adsorbent. J. Hazard. Mater. 2011, 188, 319–333. [Google Scholar] [CrossRef]
- Edelstein, M.; Ben-Hur, M. Heavy metals and metalloids: Sources, risks and strategies to reduce their accumulation in horticultural crops. Sci. Hortic. 2018, 52, 234. [Google Scholar] [CrossRef]
- Wang, J.; Farooq, T.; Aslam, A.; Shakoor, A.; Chen, X.; Yan, W. Non-targeted metabolomics reveal the impact of phenanthrene stress on root exudates of ten urban greening tree species. Environ. Res. 2021, 196, 110370. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Ren, X.; Cai, T. Assessment of Nutrient Content and Heavy Metal Pollution in Gangue Waste Lands with Different Dumping Years. Sci. Silvae Sin. 2011, 47, 162–166. [Google Scholar]
- Liu, F.; Chen, Z.; Liu, Y.; Zhu, J.; Bo, T. Effects of natural vegetation restoration on Fe/Mn leaching and migration in coal gangue yard. Bull. Soil Water Conserv. 2020, 40, 181–186. [Google Scholar]
- Zheng, H.; Chen, J.; Deng, W.; Tan, m. Assessment of soil heavy metals pollution in the chemical industrial areas of Nanjing peri-urban zone. Acta Sci. Circumstantiae 2005, 45, 1182–1188. [Google Scholar]
- Brady, J.; Ayoko, G.; Martens, W.; Goonetilleke, A. Development of a hybrid pollution index for heavy metals in marine and estuarine sediments. Environ. Monit. Assess. 2015, 187, 1–14. [Google Scholar] [CrossRef]
- Guo, W.; Zhang, Z.; Liu, Q.; Yin, H. Research progress of root exudates collection technology. Chin. J. Appl. Ecol. 2019, 30, 3951–3962. [Google Scholar]
- Long, J.; Tan, J.; Wu, Y.; Zhu, Y.; Xu, X. A Comparative Study on the Detection of Heavy Metal in Soil with Different Digestion Methods. Environ. Monit. China 2013, 29, 123–126. [Google Scholar]
- Xu, Z.; Ni, S.; Tuo, X.; Zhang, C. Calculation of Heavy Metals’ Toxicity Coefficient in the Evaluation of Potential Ecological Risk Index. Environ. Sci. Technol. 2008, 48, 112–115. [Google Scholar]
Research Area | Cr | Mn | Ni | Cu | Cd | Pb |
---|---|---|---|---|---|---|
A | 1.238 a | 1.736 a | 2.276 b | 1.472 b | 64.56 a | 2.286 b |
B | 5.17 b | 1.934 a | 1.794 a | 2.302 b | 25.574 c | 2.306 b |
C | 1.166 a | 0.648 b | 2.84 c | 4.32 a | 39.134 b | 11.444 a |
Research Area | Cr | Mn | Ni | Cu | Cd | Pb |
---|---|---|---|---|---|---|
A | 1.41 a | 1.78 a | 2.54 b | 1.52 b | 152.00 a | 2.81 b |
B | 2.27 b | 2.16 a | 1.99 a | 2.45 b | 31.57 c | 2.85 b |
C | 1.37 a | 0.73 b | 3.47 c | 5.81 a | 41.74 b | 16.64 a |
Research Area | Cr | Mn | Ni | Cu | Cd | Pb |
---|---|---|---|---|---|---|
A | 2.48 a | 1.74 a | 11.38 b | 7.36 b | 1936.9 a | 11.43 b |
B | 4.14 b | 1.93 a | 8.98 a | 11.52 b | 767.22 c | 11.53 b |
C | 2.33 a | 0.65 ab | 14.19 c | 21.61 a | 1174 b | 57.2 a |
Study Area | Cr | Mn | Ni | Cu | Cd | Pb |
---|---|---|---|---|---|---|
A | 12.4 a | 8.7 a | 56.9 b | 36.8 b | 9684.5 a | 57.15 b |
B | 20.7 b | 9.65 a | 44.9 a | 57.6 b | 3836.1 c | 57.65 b |
C | 11.65 a | 3.25 b | 70.95 c | 108.05 a | 5870 b | 286 a |
Site | Closure Time | Location | Geographic Coordinates | Dominant Vegetation |
---|---|---|---|---|
A | 0 years | Anyuan Coal Mine gangue dump | 27°36′22″ N, 113°53′55″ E | Sparse M. floridulus |
B | 8 years | Gaokeng Coal Mine gangue dump | 27°36′4″ N, 113°53′50″ E | M. floridulus, X. strumarium |
C | 12 years | Qingshan Coal Mine gangue dump | 27°38′27″ N, 113°47′49″ E | M. floridulus, E. canadensis |
p | p ≤ 1 | 1 < p ≤ 2 | 2 < p ≤ 3 | p > 3 |
---|---|---|---|---|
Pollution Level | Non-Polluted | Light Pollution | Moderate Pollution | Heavy Pollution |
Soil Comprehensive Pollution Level | Soil Comprehensive Pollution Index | Pollution Degree | Pollution Status |
---|---|---|---|
1 | p ≤ 0.7 | Safe | Clean |
2 | 0.7 < p ≤ 1.0 | Warning Line | Relatively clean |
3 | 1.0 < p ≤ 2.0 | Light Pollution | Pollutants exceed initial pollution value, crops begin to be affected |
4 | 2.0 < p ≤ 3.0 | Moderate Pollution | Significant soil and crop pollution |
5 | p > 3.0 | Heavy Pollution | Severe soil and crop pollution |
Eri | Risk Level | RI | Hazard Grade |
---|---|---|---|
<40 | Minor | <150 | Minor |
40 ≤ Eri < 80 | Moderate | 150 ≤ RI < 300 | Moderate |
80 ≤ Eri < 160 | High | 300 ≤ RI < 600 | High |
160 ≤ Eri < 320 | Very High | ≥600 | Very High |
≥320 | Extremely High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Jiang, Y.; Peng, Y.; Chen, X.; Yan, W.; Liang, X.; Wu, Q.; Fang, J. Influence of Miscanthus floridulus on Heavy Metal Distribution and Phytoremediation in Coal Gangue Dump Soils: Implications for Ecological Risk Mitigation. Plants 2025, 14, 836. https://doi.org/10.3390/plants14060836
Wang J, Jiang Y, Peng Y, Chen X, Yan W, Liang X, Wu Q, Fang J. Influence of Miscanthus floridulus on Heavy Metal Distribution and Phytoremediation in Coal Gangue Dump Soils: Implications for Ecological Risk Mitigation. Plants. 2025; 14(6):836. https://doi.org/10.3390/plants14060836
Chicago/Turabian StyleWang, Jiaolong, Yan Jiang, Yuanying Peng, Xiaoyong Chen, Wende Yan, Xiaocui Liang, Qian Wu, and Jingjie Fang. 2025. "Influence of Miscanthus floridulus on Heavy Metal Distribution and Phytoremediation in Coal Gangue Dump Soils: Implications for Ecological Risk Mitigation" Plants 14, no. 6: 836. https://doi.org/10.3390/plants14060836
APA StyleWang, J., Jiang, Y., Peng, Y., Chen, X., Yan, W., Liang, X., Wu, Q., & Fang, J. (2025). Influence of Miscanthus floridulus on Heavy Metal Distribution and Phytoremediation in Coal Gangue Dump Soils: Implications for Ecological Risk Mitigation. Plants, 14(6), 836. https://doi.org/10.3390/plants14060836