Sustainable Weed Management: The Effects of Applying Pre- and Post-Emergence Herbicides to Medicago ruthenica
Abstract
:1. Introduction
2. Results
2.1. Weed Species and Their Density
2.2. Pre-Emergence Herbicide Weed Control Efficiency
2.3. Post-Emergence Herbicide Weed Control Efficiency
2.4. Effects of Herbicides on M. ruthenica Growth and Injury
2.5. Effects of Pre-Emergence Herbicides on Soil Microorganisms
3. Discussion
4. Materials and Methods
4.1. Location and Experimental Soil Properties
4.2. Weed Data Recording
4.3. Plant Materials and Experimental Design
4.4. Effects of Herbicides on Weeds
4.5. Effects of Herbicides on M. ruthenica Growth and Injury
4.6. Effects of Pre-Herbicides on Soil Microbial Communities in M. ruthenica
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balabaev, G. Yellow lucernes of Siberia: Medicago ruthenica (L.) Ledb. and M. platycarpa (L.) Ledb. Bull. App. Bot. Genet. Plant Breed. Serv. 1934, 7, 113–123. [Google Scholar]
- Li, J.; Li, H.; Chi, E.; Huang, F.; Liu, L.; Ding, Z.; Shi, W.; Mi, F.; Li, Z. Development of simple sequence repeat (SSR) markers in Medicago ruthenica and their application for evaluating outcrossing fertility under open-pollination conditions. Mol. Breed. 2018, 38, 1–7. [Google Scholar] [CrossRef]
- Small, E.; Jomphe, M. A synopsis of the genus Medicago (Leguminosae). Can. J. Bot. 1989, 67, 3260–3294. [Google Scholar] [CrossRef]
- Campbell, T.A. Molecular analysis of genetic variation among alfalfa (Medicago sativa L.) and Medicago ruthenica clones. Can. J. Plant Sci. 2000, 80, 773–779. [Google Scholar] [CrossRef]
- Campbell, T.A.; Bao, G.; Xia, Z. Agronomic evaluation of Medicago ruthenica collected in Inner Mongolia. Crop Sci. 1997, 37, 599–604. [Google Scholar] [CrossRef]
- Buhler, D.D. 50th Anniversary—Invited Article: Challenges and opportunities for integrated weed management. Weed Sci. 2002, 50, 273–280. [Google Scholar] [CrossRef]
- Boström, U.; Fogelfors, H. Response of weeds and crop yield to herbicide dose decision-support guidelines. Weed Sci. 2002, 50, 186–195. [Google Scholar] [CrossRef]
- Heap, I. Global perspective of herbicide-resistant weeds. Pest Manage. Sci. 2014, 70, 1306–1315. [Google Scholar] [CrossRef]
- Luo, Q.; Liu, Y. Breeding herbicide-resistant rice (Oryza sativa) using CRISPR/Cas gene editing and other technologies. Plant Commun. 2024, 6, 101172. [Google Scholar] [CrossRef]
- Riaz, S.; Basharat, S.; Ahmad, F.; Hameed, M.; Fatima, S.; Ahmad, M.S.A.; Kaushik, P. Dactyloctenium aegyptium (L.) Willd. (Poaceae) differentially responds to pre- and post-emergence herbicides through micro-structural alterations. Agriculture 2022, 12, 1831. [Google Scholar] [CrossRef]
- Pornprom, T.; Sukcharoenvipharat, W.; Sansiriphun, D. Weed control with pre-emergence herbicides in vegetable soybean (Glycine max L. Merrill). Crop Prot. 2010, 29, 684–690. [Google Scholar] [CrossRef]
- Alptekin, H.; Ozkan, A.; Gurbuz, R.; Kulak, M. Management of weeds in maize by sequential or individual applications of pre-and post-emergence herbicides. Agriculture 2023, 13, 421. [Google Scholar] [CrossRef]
- Bhowmik, P.C. Weed biology: Importance to weed management. Weed Sci. 1997, 45, 349–356. [Google Scholar] [CrossRef]
- Landau, C.A.; Hager, A.G.; Tranel, P.J.; Davis, A.S.; Martin, N.F.; Williams, M.M. Future efficacy of pre-emergence herbicides in corn (Zea mays) is threatened by more variable weather. Pest Manage. Sci. 2021, 77, 2683–2689. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, M.A.; Brink, G.; Ruth, L.; Stout, R. Grass–legume mixtures suppress weeds during establishment better than monocultures. Agron. J. 2012, 104, 36–42. [Google Scholar] [CrossRef]
- Cong, W.F.; Suter, M.; Lüscher, A.; Eriksen, J. Species interactions between forbs and grass-clover contribute to yield gains and weed suppression in forage grassland mixtures. Agric. Ecosyst. Environ. 2018, 268, 154–161. [Google Scholar] [CrossRef]
- Hoy, M.D.; Moore, K.J.; George, J.R.; Brummer, E.C. Alfalfa yield and quality as influenced by establishment method. Agron. J. 2002, 94, 65–71. [Google Scholar] [CrossRef]
- Mesbah, A.O.; Miller, S.D. Canada thistle (Cirsium arvense) control in established alfalfa (Medicago sativa) grown for seed production. Weed Technol. 2005, 19, 1025–1029. [Google Scholar] [CrossRef]
- Moyer, J.R.; Schaalje, G.B.; Bergen, P. Alfalfa (Medicago sativa) seed yield loss due to Canada thistle (Cirsium arvense). Weed Technol. 1991, 5, 723–728. [Google Scholar] [CrossRef]
- Cosgrove, D.R.; Barrett, M. Effects of weed control in established alfalfa (Medicago sativa) on forage yield and quality. Weed Sci. 1987, 35, 564–567. [Google Scholar] [CrossRef]
- Kousta, A.; Katsis, C.; Tsekoura, A.; Chachalis, D. Effectiveness and selectivity of pre-and post-emergence herbicides for weed control in grain legumes. Plants 2024, 13, 211. [Google Scholar] [CrossRef] [PubMed]
- Beck, L.; Marsalis, M.; Lauriault, L.; Serena, M. Efficacy of various herbicides for the control of perennial Plantago spp. and effects on alfalfa damage and yield. Agronomy 2020, 10, 1710. [Google Scholar] [CrossRef]
- Govindasamy, P.; Singh, V.; Palsaniya, D.; Srinivasan, R.; Chaudhary, M.; Kantwa, S. Herbicide effect on weed control, soil health parameters and yield of egyptian clover (Trifolium alexandrinum L.). Crop Prot. 2021, 139, 105389. [Google Scholar] [CrossRef]
- Guo, M.; Li, H.; Zhu, L.; Wu, Z.; Li, J.; Li, Z. Genome-wide identification of microRNAs associated with osmotic stress and elucidation of the role of miR319 in Medicago ruthenica seedlings. Plant Physiol. Biochem. 2021, 168, 53–61. [Google Scholar] [CrossRef]
- Melander, B.; Rasmussen, G. Effects of cultural methods and physical weed control on intrarow weed numbers, manual weeding and marketable yield in direct-sown leek and bulb onion. Weed Res. 2001, 41, 491–508. [Google Scholar] [CrossRef]
- Witcher, A.L.; Poudel, I. Pre-emergence herbicides and mulches for weed control in cutting propagation. Agronomy 2020, 10, 1249. [Google Scholar] [CrossRef]
- Shaw, D.R.; Bennett, A.C.; Grant, D.L. Weed control in soybean (Glycine max) with flumetsulam, cloransulam, and diclosulam. Weed Technol. 1999, 13, 791–798. [Google Scholar] [CrossRef]
- Cantwell, J.R.; Liebl, R.A.; Slife, F.W. Imazethapyr for weed control in soybean (Glycine max). Weed Technol. 1989, 3, 596–601. [Google Scholar] [CrossRef]
- Flessner, M.L.; Burke, I.C.; Dille, J.A.; Everman, W.J.; VanGessel, M.J.; Tidemann, B.; Manuchehri, M.R.; Soltani, N.; Sikkema, P.H. Potential wheat yield loss due to weeds in the United States and Canada. Weed Technol. 2021, 35, 916–923. [Google Scholar] [CrossRef]
- Vasilakoglou, I.; Vlachostergios, D.; Dhima, K.; Lithourgidis, A. Response of Vetch, Lentil, Chickpea and Red Pea to Pre- or Post-Emergence Applied Herbicides. Span. J. Agric. Res. 2013, 11, 1101. [Google Scholar] [CrossRef]
- Hock, S.M.; Knezevic, S.Z.; Martin, A.R.; Lindquist, J.L. Soybean row spacing and weed emergence time influence weed competitiveness and competitive indices. Weed Sci. 2006, 54, 38–46. [Google Scholar] [CrossRef]
- Giannopolitis, C.; Strouthopoulos, T.G. Herbicide tank-mixing for post-emergence weed control in sugar beets. Weed Res. 1979, 19, 213–217. [Google Scholar] [CrossRef]
- Jhala, A.J.; Ramirez, A.H.; Singh, M. Tank mixing saflufenacil, glufosinate, and indaziflam improved burndown and residual weed control. Weed Technol. 2013, 27, 422–429. [Google Scholar] [CrossRef]
- Leal, J.F.L.; Souza, A.D.S.; Ribeiro, S.R.D.S.; Oliveira, G.F.P.B.; Araujo, A.L.S.; Borella, J.; Langaro, A.C.; Machado, A.F.L.; Pinho, C.F. 2,4-Dichlorophenoxyacetic-N-methylmethanamine and haloxyfop-P-methyl interaction: Sequential and interval applications to effectively control sourgrass and fleabane. Agron. J. 2020, 112, 1216–1226. [Google Scholar] [CrossRef]
- Carvalho, G.S.D.; Leal, J.F.L.; Souza, A.D.S.; Oliveira Junior, F.F.D.; Langaro, A.C.; Pinho, C.F.D. Cytochrome P450 enzymes inhibitor in the control of digitaria insularis. Cienc. Agrotecnol. 2021, 45, e024520. [Google Scholar] [CrossRef]
- Poornima, S.; Siva Lakshmi, Y.; Ram Prakash, T.; Srinivas, A.; Venkata Krishnan, L. Nodulation, leghemoglobin content and yield of green gram as influenced by new generation early post emergence herbicide combinations. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2134–2137. [Google Scholar] [CrossRef]
- Bhardwaj, L.; Kumar, D.; Singh, U.P.; Joshi, C.G.; Dubey, S.K. Herbicide application impacted soil microbial community composition and biochemical properties in a flooded rice field. Sci. Total Environ. 2024, 914, 169911. [Google Scholar] [CrossRef]
Treatment | Timing | Crop Injury | 2023 | 2024 | ||
---|---|---|---|---|---|---|
Plant Height (cm) | Dry Matter (g/m2) | Plant Height (cm) | Dry Matter (g/m2) | |||
IML1 | PRE | 3 | 19.17 ± 1.48 bc | 3.42 ± 0.81 c | 20.17 ± 1.59 ab | 3.57 ± 0.65 d |
IML2 | 1 | 20.83 ± 1.69 ab | 6.15 ± 1.4 a | 19.91 ± 2.02 ab | 6.07 ± 1.24 a | |
IML3 | 2 | 18.33 ± 1.2 c | 4.91 ± 0.82 b | 16.33 ± 2.34 c | 4.05 ± 0.52 c | |
FLL1 | PRE | 2 | 19.5 ± 3.18 ab | 3.87 ± 0.64 c | 20.5 ± 2.67 ab | 3.94 ± 0.76 c |
FLL2 | 2 | 17.67 ± 2.19 c | 2.99 ± 1.17 d | 18.75 ± 2.46 b | 3.35 ± 1.36 d | |
FLL3 | 1 | 19.83 ± 2.77 ab | 5.03 ± 1.28 ab | 19.67 ± 1.97 ab | 5.35 ± 0.84 ab | |
ACL1 | PRE | 4 | 6.50 ± 1.50 fg | 0.82 ± 0.38 e | 7.50 ± 1.36 e | 1.25 ± 0.35 f |
ACL2 | 4 | 6.00 ± 1.04 g | 0.60 ± 0.24 ef | 6.45 ± 1.22 e | 0.63 ± 0.27 g | |
ACL3 | 4 | 5.17 ± 0.73 g | 0.37 ± 0.19 f | 6.09 ± 1.73 e | 0.42 ± 0.13 g | |
PEL1 | PRE | 4 | 11.33 ± 0.67 d | 2.11 ± 0.31 d | 12.36 ± 1.67 d | 2.31 ± 0.42 e |
PEL2 | 4 | 7.83 ± 0.44 ef | 1.05 ± 0.37 e | 7.58 ± 1.47 e | 1.00 ± 0.15 f | |
PEL3 | 4 | 8.83 ± 1.17 e | 0.91 ± 0.07 e | 6.22 ± 1.25 c | 0.71 ± 0.07 fg | |
Weed-free | 20.67 ± 0.88 ab | 6.33 ± 0.34 a | 19.73 ± 1.24 ab | 5.97 ± 1.23 a | ||
Weedy | 22.53 ± 1.38 a | 2.43 ± 0.06 d | 21.42 ± 0.96 a | 2.24 ± 0.10 e |
Treatment | Timing | Crop Injury | 2023 | 2024 | ||
---|---|---|---|---|---|---|
Plant Height (cm) | Dry Matter (g/m2) | Plant Height (cm) | Dry Matter (g/m2) | |||
IML1 + HA | POST | 1 | 20.00 ± 0.48 a | 3.45 ± 0.04 ab | 19.58 ± 0.78 bc | 3.27 ± 0.23 b |
IML2 + HA | 1 | 18.00 ± 0.58 b | 3.11 ± 0.50 b | 19.34 ± 0.66 bc | 3.65 ± 0.39 b | |
IML3 + HA | 1 | 19.50 ± 0.87 ab | 3.68 ± 0.09 ab | 18.23 ± 0.57 c | 4.35 ± 0.25 a | |
2,4L1 + HA | POST | 1 | 20.23 ± 1.73 a | 3.78 ± 0.05 ab | 21.23 ± 1.56 a | 3.49 ± 0.21 b |
2,4L2 + HA | 1 | 21.00 ± 2.89 a | 4.16 ± 0.64 a | 22.01 ± 1.95 ab | 4.76 ± 0.37 a | |
2,4L3 + HA | 2 | 15.00 ± 0.65 c | 2.08 ± 0.45 c | 14.00 ± 0.75 d | 2.11 ± 0.22 c | |
IPL1 + HA | POST | 4 | 13.00 ± 0.53 c | 0.48 ± 0.27 f | 14.00 ± 0.65 d | 1.67 ± 0.12 c |
IPL2 + HA | 3 | 14.50 ± 2.60 c | 1.66 ± 0.14 cd | 13.26 ± 1.57 d | 1.25 ± 0.14 d | |
IPL3 + HA | 3 | 12.33 ± 2.17 c | 1.01 ± 0.03 e | 12.83 ± 1.95 d | 1.12 ± 0.13 d | |
OXL1 + HA | POST | 4 | 8.00 ± 2.00 d | 0.86 ± 0.67 e | 7.89 ± 1.37 e | 0.98 ± 0.46 d |
OXL2 + HA | 4 | 6.33 ± 2.13 d | 0.28 ± 0.18 f | 7.24 ± 1.21 e | 0.88 ± 0.34 de | |
OXL3 + HA | 4 | 6.23 ± 0.17 d | 0.36 ± 0.16 f | 6.35 ± 0.87 e | 0.76 ± 0.16 de | |
Weed-free | 17.67 ± 1.20 b | 3.79 ± 0.39 ab | 18.67 ± 2.33 bc | 4.33 ± 0.42 a | ||
Weedy | 18.47 ± 1.35 ab | 1.62 ± 0.06 cd | 20.48 ± 1.04 ab | 1.88 ± 0.38 c |
Type | Treatments | Dosage Form | Formulation | Dose (mL ha−1) |
---|---|---|---|---|
PRE | Imazethapyr (5%) | AS | IML1 | 1275 |
PRE | IML2 | 1530 | ||
PRE | IML3 | 1800 | ||
PRE | Flumetsulam (80%) | SC | FLL1 | 60 |
PRE | FLL2 | 80 | ||
PRE | FLL3 | 120 | ||
PRE | Acetochlor (90%) | EC | ACL1 | 1050 |
PRE | ACL2 | 1200 | ||
PRE | ACL3 | 1350 | ||
PRE | Pendimethalin (33%) | EC | PEL1 | 1125 |
PRE | PEL2 | 1800 | ||
PRE | PEL3 | 2250 | ||
Weed-free | - | - | - | - |
Weedy | - | - | - | - |
Type | Treatments | Dosage Form | Formulation | Dose (mL ha−1) |
---|---|---|---|---|
POST | Imazethapyr (5%) + Haloxyfop-P (10.08%) | AS, EC | IML1 + HA | 1200 + 600 |
POST | IML2 + HA | 1500 + 600 | ||
POST | IML3 + HA | 1800 + 600 | ||
POST | 2,4-DB (30%) + Haloxyfop-P (10.08%) | SL, EC | 2,4L1 + HA | 1500 + 600 |
POST | 2,4L2 + HA | 2250 + 600 | ||
POST | 2,4L3 + HA | 3375 + 600 | ||
POST | Imazapyr (24%) + Haloxyfop-P (10.08%) | AS, EC | IPL1 + HA | 225 + 600 |
POST | IPL2 + HA | 300 + 600 | ||
POST | IPL3 + HA | 375 + 600 | ||
POST | Oxyfluorfen (24%) + Haloxyfop-P (10.08%) | EC, EC | OXL1 + HA | 375 + 600 |
POST | OXL2 + HA | 450 + 600 | ||
POST | OXL3 + HA | 600 + 600 | ||
Weed-free | - | - | - | - |
Weedy | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Ren, Z.; Xu, H.; Wang, W.; Zhang, Y.; Huang, F.; Yu, L.; Li, J. Sustainable Weed Management: The Effects of Applying Pre- and Post-Emergence Herbicides to Medicago ruthenica. Plants 2025, 14, 864. https://doi.org/10.3390/plants14060864
Li Q, Ren Z, Xu H, Wang W, Zhang Y, Huang F, Yu L, Li J. Sustainable Weed Management: The Effects of Applying Pre- and Post-Emergence Herbicides to Medicago ruthenica. Plants. 2025; 14(6):864. https://doi.org/10.3390/plants14060864
Chicago/Turabian StyleLi, Qiang, Zhongwei Ren, Hui Xu, Wenying Wang, Yarong Zhang, Fan Huang, Linqing Yu, and Jun Li. 2025. "Sustainable Weed Management: The Effects of Applying Pre- and Post-Emergence Herbicides to Medicago ruthenica" Plants 14, no. 6: 864. https://doi.org/10.3390/plants14060864
APA StyleLi, Q., Ren, Z., Xu, H., Wang, W., Zhang, Y., Huang, F., Yu, L., & Li, J. (2025). Sustainable Weed Management: The Effects of Applying Pre- and Post-Emergence Herbicides to Medicago ruthenica. Plants, 14(6), 864. https://doi.org/10.3390/plants14060864