Inorganic Carbon Acquisition and Photosynthetic Metabolism in Marine Photoautotrophs: A Summary †
Abstract
:1. Introduction
2. Marine Inorganic Carbon Sources for Carbon Assimilation
3. Assimilation of CO2 via Rubisco
4. Kinetics of Rubisco vs. Whole-Cell Photosynthesis
4.1. Cyanobacteria and Microalgae
Organisms | Rubisco | K0.5 CO2 (μM) | Srel (mol mol−1) | Kcat (mol CO2 mol−1 Active Sites s−1) | Reference |
---|---|---|---|---|---|
β-cyanobacteria | Form IBc | 200–260 * | 35–56 | 2.6–11.4 | [22] and references therein |
Prochlorococcus marinus | Form 1Ac | 750 | 4.7 | [23] | |
(α-cyanobacterium) | 309 | 60 | 6.6 | [24] | |
Green algae | Form 1B | 29–38 | 61–83 | [22] and references therein | |
Diatoms | Form 1D | 23–68 | 57–116 | 2.1–3.7 | [18] and references therein, [25] |
Synurophyceae | Form 1D | 18.2–41.8 | [26] [27] | ||
Olisthodiscophyceae | Form ID | ||||
Olisthodiscus | 59 | 100.5 | 0.83 | [28] | |
Coccolithophorids | Form ID | ||||
Pleurochrysis carterae | 17.7 | 102 | 3.3 | [29] | |
Emiliania huxleyi | 72–200 | [30,31] | |||
Dinoflagellates # | Form II | ||||
Amphidinium carterae | ~37 | [22] | |||
Rhodophyta | Form 1D | ||||
Porphyridium purpureum | 22 | 129 | 2.6 | [28] | |
Cyanidium | 6.6–6.7 | 224–238 | 1.3–1.6 | [32] |
4.2. Macroalgae and Seagrasses
5. Inorganic Carbon Acquisition and ‘Biophysical’ CCMs
5.1. Cyanobacteria and Microalgae
5.2. Macroalgae and Seagrasses
6. Alternative ‘Biochemical’ Modes of Inorganic Carbon Utilisation in Some Marine Photoautotrophs
6.1. Cyanobacteria and Microalgae
6.2. Macroalgae and Seagrasses
7. Inorganic Carbon Acquisition in Various Marine Environments
8. Future Scenarios
9. Summary
- Marine photoautotrophs in general use the 120 times higher HCO3− than CO2 concentration in seawater for their photosynthetic needs;
- There are several ways in which cyanobacteria and microalgae can acquire Ci from seawater, including diffusion or active transport of CO2. For many microalgae, however, as well as for macroalgae and seagrasses, the most common way is to convert HCO3− to CO2 via membrane-bound CA activity associated with the periplasmic space. Another, more efficient way to acquire HCO3− is by its direct uptake, mediated, at least in the macroalga Ulva, by an anion exchange protein bound to the plasma membrane;
- Because marine photoautotrophs contain Rubiscos with lower affinities for CO2 than terrestrial C3 plants, and given the slow diffusional supply of this Ci form in seawater, they are in need of (and typically possess) CCMs in order to partly or fully (depending on species and surrounding conditions) saturate Rubisco with CO2 so as to optimise photosynthetic and growth rates. Some (mainly red) algae, however, can under low irradiance utilise only CO2 by diffusion;
- The ‘biophysical’ CCMs of marine photoautotrophs are different from the ‘biochemical’ CCMs of terrestrial C4 and CAM plants as they rely on extracellular HCO3− supplying CO2 to their Rubiscos;
- Photoautotrophs using C4 and CAM pathways for inorganic carbon fixation are very rare in marine environments, but C4 metabolism may in some cases have an anaplerotic carboxylation role;
- While many macroalgae and all seagrasses investigated in laboratory conditions require additional CO2 to fully saturate carbon fixation, their performance in situ may be different such that they are closer to CO2 saturation without additional CO2 or Ci;
- Responses to future changes in CO2 levels would appear to be very species-dependent and also influenced by the modulation of CCM activity by other environmental conditions such as light and nutrient levels.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Falkowski, P.G.; Raven, J.A. Aquatic Photosynthesis; Princeton University Press: Princeton, NJ, USA, 2007. [Google Scholar]
- Kirk, J.T.O. Light and Photosynthesis in Aquatic Ecosystems; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Raven, J.A.; Kübler, J.; Beardall, J. Put out the light, and then put out the light. J. Mar. Biol. Assoc. UK 2000, 80, 1–25. [Google Scholar] [CrossRef]
- Quigg, A.; Kevekordes, K.; Raven, J.A.; Beardall, J. Limitations on microalgal growth at very low photon flux densities: The role of energy slippage. Photosynth. Res. 2006, 88, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Geider, R.J.; Osborne, B.A.; Raven, J.A. Light dependence of growth and photosynthesis in Phaeodactylum tricornutum (Bacillariophyceae). J. Phycol. 1985, 21, 609–619. [Google Scholar] [CrossRef]
- Marra, J.F.; Lance, V.P.; Vaillancourt, R.D.; Hargreaves, B.R. Resolving the ocean’s euphotic zone. Deep Sea Res. Part Oceanogr. Res. Pap. 2014, 83, 45–50. [Google Scholar] [CrossRef]
- Campbell, S.J.; McKenzie, L.J.; Kerville, S.P.; Bite, J.S. Patterns in tropical seagrass photosynthesis in relation to light, depth and habitat. Estuar. Coast. Shelf Sci. 2007, 73, 551–562. [Google Scholar] [CrossRef]
- Dennison, W.; Alberte, R.S. Photosynthetic responses of Zostera marina L. (Eelgrass) to in situ manipulations of light intensity. Oecologia 1982, 55, 137–144. [Google Scholar]
- Garcia, E.; Marba, N.; Cebrian, J.; Vaquer-Sunyer, R.; Garcia-Bonet, N.; Duarte, C.M. Thresholds of irradiance for seagrass Posidonia oceanica meadow metabolism. Mar. Ecol. Prog. Ser. 2012, 466, 69–79. [Google Scholar]
- Dattolo, E.; Ruocco, M.; Brunet, C.; Lorenti, M.; Lauritano, C.; D’Esposito, D.; De Luca, P.; Sanges, R.; Mazzuca, S.; Procaccini, G. Responses of the seagrass Posidonia oceanica to different light environments: Insights from a combined molecular and photo-physiological study. Mar. Environ. Res. 2014, 101, 225–236. [Google Scholar] [CrossRef]
- Yaacub, S.M.; Chen, E.; Bouma, T.J.; Eftemeijer, P.L.A.; Todd, P.A. Chronic light reduction reduces overall resilience to additional shading stress in the seagrass Halophila ovalis. Mar. Pollut. Bull. 2014, 83, 467–474. [Google Scholar] [CrossRef]
- Silva, J.; Santos, R. Daily variation patterns in seagrass photosynthesis along a vertical gradient. Mar. Ecol. Prog. Ser. 2003, 257, 37–44. [Google Scholar] [CrossRef]
- Beer, S.; Björk, M.; Beardall, J. Photosynthesis in the Marine Environment; Wiley: Blackwell, UK, 2014. [Google Scholar]
- Fuchs, G. Alternative pathways of carbon dioxide fixation: Insights into the early evolution of life? Ann. Rev. Microbiol. 2011, 65, 631–658. [Google Scholar] [CrossRef] [PubMed]
- Beardall, J.; Raven, J.A. Acquisition of Inorganic carbon by microalgae and cyanobacteria. In Microbial Photosynthesis; Wang, Q., Ed.; Springer: Singapore, 2020; pp. 151–168. [Google Scholar]
- Eisenhut, M.; Ruth, W.; Haimovitch, M.; Bauwe, H.; Kaplan, A.; Hagemann, M. The photorespiratory glycolate metabolism is essential for cyanobacteria and may have been conveyed endosymbiotically to plants. Proc. Natl. Acad. Sci. USA 2008, 105, 17199–17204. [Google Scholar] [CrossRef] [PubMed]
- Raven, J.A.; Beardall, J. CO2 acquisition mechanisms in algae: Carbon dioxide diffusion and carbon dioxide concentrating mechanisms. In Photosynthesis in the Algae; Larkum, A.W.D., Douglas, S.E., Raven, J.A., Eds.; Advances in Photosynthesis Series; Kluwer: Alphen aan den Rijn, The Netherlands, 2003; pp. 225–244. [Google Scholar]
- Oh, Z.G.; Askey, B.; Gunn, L. Red Rubiscos and opportunities for engineering green plants. J. Exp. Bot. 2023, 74, 520–542. [Google Scholar] [CrossRef] [PubMed]
- Raven, J.A.; Beardall, J.; Sánchez-Baracaldo, P. The possible evolution and future of CO2 concentrating mechanisms. J. Exp. Bot. 2017, 68, 3701–3716. [Google Scholar] [CrossRef]
- Capo-Bauca, S.; Inguez, C.; Galmes, J. The diversity and coevolution of Rubisco and CO2 concentrating mechanisms in marine macrophytes. New Phytol. 2024, 241, 2353–2365. [Google Scholar] [CrossRef]
- Meyer, M.; Griffiths, H. Origins and diversity of eukaryotic CO2-concentrating mechanisms: Lessons for the future. J. Exp. Bot. 2013, 64, 769–786. [Google Scholar] [CrossRef]
- Badger, M.R.; Andrews, T.J.; Whitney, S.M.; Ludwig, M.; Yellowlees, D.C.; Leggat, W.; Price, G.D. The diversity and co-evolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Can. J. Bot. 1998, 76, 1052–1071. [Google Scholar]
- Scott, K.M.; Henn-Sax, M.; Harmer, T.L.; Longo, D.L.; Frame, C.H.; Cavanaugh, C.M. Kinetic isotope effect and biochemical characterization of form IA RubisCO from the marine cyanobacterium Prochlorococcus marinus MIT9313. Limnol. Oceanogr. 2007, 52, 2199–2204. [Google Scholar] [CrossRef]
- Shih, P.M.; Occhialini, A.; Cameron, J.C.; Andralojc, P.J.; Parry, M.A.J.; Kerfeld, C.A. Biochemical characterization of predicted Precambrian RuBisCO. Nat. Comm. 2016, 7, 10382. [Google Scholar] [CrossRef]
- Young, J.N.; Heureux, A.M.C.; Sharwood, R.E.; Rickaby, R.E.M.; Morel, F.M.M.; Whitney, S.M. Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms. J. Exp. Bot. 2016, 67, 3445–3456. [Google Scholar] [CrossRef]
- Bhatti, S.; Colman, B. Inorganic carbon acquisition in some synurophyte algae. Physiol. Plant. 2008, 133, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Raven, J.A.; Giordano, M. Acquisition and metabolism of carbon in the Ochrophyta other than diatoms. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160400. [Google Scholar] [CrossRef] [PubMed]
- Read, B.A.; Tabita, F.R. High substrate specificity factor ribulose bisphosphate carboxylase/oxygenase from eukaryotic marine algae and properties of recombinant cyanobacterial Rubisco containing “algal” residue modifications. Arch. Biochem. Biophys. 1994, 312, 210–218. [Google Scholar] [CrossRef]
- Heureux, A.M.C.; Young, J.N.; Whitney, S.M.; Eason-Hubbard, M.R.; Lee, R.B.Y.; Sharwood, R.E.; Rickaby, R.E.M. The role of Rubisco kinetics and pyrenoid morphology in shaping the CCM of haptophyte microalgae. J. Exp. Bot. 2017, 68, 3959–3969. [Google Scholar] [CrossRef]
- Boller, A.J.; Thomas, P.J.; Cavanaugh, C.M.; Scott, K.M. Low stable carbon isotope fractionation by coccolithophore Rubisco. Geochim. Cosmochim. Acta 2011, 75, 7200–7207. [Google Scholar] [CrossRef]
- Shiraiwa, Y.; Danbara, A.; Yoke, K. Characterization of highly oxygen-sensitive photosynthesis in coccolithophorids. Jap. J. Phycol. 2004, 52, 87–94. [Google Scholar]
- Uemura, K.; Anwaruzzaman; Miyachi, S.; Yokota, A. Ribulose-1,5-bisphosphate carboxylase/oxygenase from thermophilic red algae with a strong specificity for CO2 fixation. Biochem. Biophys. Res. Commun. 1997, 233, 568–571. [Google Scholar] [CrossRef]
- Mishra, S.; Joshi, B.; Dey, P.; Pathak, H.; Pandey, N.; Kohra, A. CCM in photosynthetic bacteria and marine algae. J. Pharm. Phytochem. 2018, 7, 928–937. [Google Scholar]
- Burns, D.B.; Beardall, J. Utilization of inorganic carbon by marine microalgae. J. Exp. Mar. Biol. Ecol. 1987, 107, 75–86. [Google Scholar] [CrossRef]
- Burkhardt, S.; Amoroso, G.; Riebesell, U.; Sültemeyer, D. CO2 and HCO3− uptake in marine diatoms acclimated to different CO2 concentrations. Limnol. Oceanogr. 2001, 46, 1378–1391. [Google Scholar] [CrossRef]
- Iniguez, C.; Capo-Bauca, S.; Niinemets, U.; Stoll, H.; Aguilo-Nicolau, P.; Galmes, J. Evolutionary trends in RuBisCO kinetics and their co-evolution with CO2 concentrating mechanisms. Plant J. 2020, 101, 897–918. [Google Scholar] [CrossRef] [PubMed]
- Smith-Harding, T.J.; Mitchell, J.G.; Beardall, J. The role of external carbonic anhydrase in photosynthesis during growth of the marine diatom Chaetoceros muelleri. J. Phycol. 2018, 53, 1159–1170. [Google Scholar] [CrossRef] [PubMed]
- Sültemeyer, D.; Price, G.D.; Yu, J.W.; Badger, M.R. Characterisation of carbon dioxide and bicarbonate transport during steady-state photosynthesis in the marine cyanobacterium Synechococcus strain PCC7002. Planta 1995, 197, 597–607. [Google Scholar] [CrossRef]
- Kerby, N.W.; Raven, J.A. Transport and fixation of inorganic carbon by marine algae. Bot. Res. 1985, 2, 71–122. [Google Scholar]
- Israel, A.; Beer, S. Photosynthetic carbon acquisition in the red alga Gracilaria conferta. II. Rubisco carboxylase kinetics, carbonic anhydrase and HCO3− uptake. Mar. Biol. 1992, 112, 697–700. [Google Scholar] [CrossRef]
- Capo-Bauca, S.; Galmes, J.; Aguilo-Nikolai, P.; Ramez-Pozuelo, S.; Iniguez, C. Carbon assimilation in upper subtidal macroalgae is determined by an inverse correlation between Rubisco carboxylation efficiency and CO2 concentrating mechanism effectiveness. New Phytol. 2023, 237, 2027–2038. [Google Scholar] [CrossRef]
- Beer, S.; Israel, A. Photosynthesis of Ulva sp. III. O2 effects, carboxylation activity, and the CO2 incorporation pattern. Plant Physiol. 1986, 81, 937–938. [Google Scholar] [CrossRef]
- Raven, J.A.; Giordano, M.; Beardall, J.; Maberly, S.C. Algal evolution in relation to atmospheric CO2: Carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 493–507. [Google Scholar] [CrossRef]
- Capo-Bauca, S.; Inguez, C.; Galmes, J.; Galmez, J.; Aguilo-Nikolai, P. Correlative adaptation between Rubisco and CO2 concentrating mechanisms in seagrasses. Nat. Planta 2022, 8, 705–716. [Google Scholar]
- Beer, S. Photosynthesis and photorespiration in marine angiosperms (Review). Aquat. Bot. 1989, 34, 153–166. [Google Scholar] [CrossRef]
- Touchette, B.W.; Burkholder, J.A.M. Overview of the physiological ecology of carbon metabolism in seagrasses. J. Exp. Mar. Biol. Ecol. 2000, 250, 169–205. [Google Scholar] [CrossRef] [PubMed]
- Larkum, W.D.; Davey, P.A.; Kuo, J.; Ralph, P.J.; Raven, J.A. Carbon-concentrating mechanisms in seagrasses. J. Exp. Bot. 2017, 68, 3773–3784. [Google Scholar] [CrossRef] [PubMed]
- Maberly, S.C. Exogenous sources of inorganic carbon for photosynthesis by marine macroalgae. J. Phycol. 1990, 26, 439–449. [Google Scholar] [CrossRef]
- Middelboe, A.L.; Hansen, P.J. Direct effects of pH and inorganic carbon on macroalgal photosynthesis and growth. Mar. Biol. Res. 2007, 3, 134–144. [Google Scholar] [CrossRef]
- Raven, J.A.; Johnston, A.M.; Kübler, J.E.; Korb, R.; McInroy, S.G.; Handley, L.L.; Scrimgeour, C.M.; Walker, D.I.; Beardall, J.; Vanderklift, M.; et al. Mechanistic interpretation of carbon isotope discrimination by marine macroalgae and seagrasses. Funct. Plant Biol. 2002, 29, 355–378. [Google Scholar] [CrossRef]
- Cassar, N.; Laws, E.A.; Popp, B.N.; Bidigare, R.R. Sources of inorganic carbon for photosynthesis in a strain of Phaeodactylum tricornutum. Limnol. Oceanogr. 2002, 47, 1192–1197. [Google Scholar] [CrossRef]
- Cassar, N.; Laws, E.A.; Bidigare, R.R. Bicarbonate uptake by Southern Ocean phytoplankton. Glob. Biogeochem. Cycles 2004, 18, GB2003. [Google Scholar] [CrossRef]
- Beardall, J.; Giordano, M.; Raven, J.A. And nothing was the same anymore: The rise in O2 and consequences for photoautotrophs. In Evolutionary Physiology of Aquatic Plants and Algae; Giordano, M., Beardall, J., Maberly, S., Raven, J.A., Eds.; Cambridge University Press: Cambridge, UK, 2024; pp. 43–64. [Google Scholar]
- Kerfeld, C.; Melnicki, M.R. Assembly, function and evolution of cyanobacterial carboxysomes. Curr. Opin. Plant Biol. 2016, 31, 66–75. [Google Scholar] [CrossRef]
- Price, G.D.; Badger, M.R.; Woodger, F.J.; Long, B.M. Advances in understanding the cyanobacterial CO2− concentrating-mechanism (CCM): Functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J. Exp. Bot. 2008, 59, 1441–1461. [Google Scholar] [CrossRef]
- Spalding, M.H. Microalgal carbon-dioxide-concentrating mechanisms: Chlamydomonas inorganic carbon transporters. J. Exp. Bot. 2008, 59, 1463–1473. [Google Scholar] [CrossRef]
- Nakajima, K.; Tanaka, A.; Matsuda, Y. SLC4 family transporters in a marine diatom directly pump bicarbonate from seawater. Proc. Natl. Acad. Sci. USA 2013, 110, 1767–1772. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, Y.; Mahardika, A.; Matsuda, Y. Evolutionarily distinct strategies for the acquisition of inorganic carbon from seawater in marine diatoms. J. Exp. Bot. 2017, 68, 3949–3958. [Google Scholar] [CrossRef] [PubMed]
- Huertas, I.E.; Colman, B.; Espie, G.S. Inorganic carbon acquisition and its energization in eustigmatophyte algae. Funct. Plant Biol. 2002, 29, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Amoroso, G.; Sültemeyer, D.F.; Thyssen, C.; Fock, H.P. Uptake of HCO3− and CO2 in cells and chloroplasts from the microalgae Chlamydomonas reinhardtii and Dunaliella tertiolecta. Plant Physiol. 1998, 116, 193–201. [Google Scholar] [CrossRef]
- Tsuji, Y.; Nakajima, K.; Matsuda, Y. Molecular aspects of the biophysical CO2-concentrating mechanism and its regulation in marine diatoms. J. Exp. Bot. 2017, 68, 3763–3772. [Google Scholar] [CrossRef]
- Matsuda, Y.; Hopkinson, B.M.; Nakajima, K.; Dupont, C.L.; Tsuji, Y. Mechanisms of carbon dioxide acquisition and CO2 sensing in marine diatoms: A gateway to carbon metabolism. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160403. [Google Scholar] [CrossRef]
- DiMario, R.J.; Machingura, M.C.; Waldrop, G.L.; Moroney, J.V. The many types of carbonic anhydrases in photosynthetic organisms. Plant Sci. 2017, 268, 11–17. [Google Scholar] [CrossRef]
- Beer, S. Photosynthetic traits in the ubiquitous and prolific macroalga Ulva (Chlorophyta): A Review. Eur. J. Phycol. 2022, 58, 390–398. [Google Scholar] [CrossRef]
- Beer, S.; Koch, E. Photosynthesis of marine macroalgae and seagrasses in globally changing CO2 environments. Mar. Ecol. Prog. Ser. 1996, 141, 199–204. [Google Scholar] [CrossRef]
- Sven, B.; Eshel, A. Photosynthesis of Ulva sp. I. Effects of desiccation when exposed to air. J. Exp. Mar. Biol. Ecol. 1983, 70, 91–97. [Google Scholar] [CrossRef]
- Beer, S.; Israel, A.; Drechsler, Y.; Cohen, Y. Photosynthesis in Ulva fasciata V. Evidence for an inorganic carbon concentrating system, and Ribulose-1,5 bisphosphate carboxylase/oxygenase CO2 kinetics. Plant Physiol. 1990, 94, 1542–1546. [Google Scholar] [CrossRef] [PubMed]
- Beer, S.; Eshel, A. Photosynthesis of Ulva sp. II. Utilization of CO2 and HCO3− when submerged. J. Exp. Mar. Biol. Ecol. 1983, 70, 99–106. [Google Scholar]
- Purvaja, R.; Ganguly, D.; Hariharan, G.; Arumugam, K.; Ramesh, R. In situ photosynthetic activities and associated biogeochemical changes in three tropical seagrass species. Front. Earth Sci. 2020, 8, 467540. [Google Scholar] [CrossRef]
- Jiang, Z.J.; Huang, X.-P.; Zhang, J.-P. Effects of CO2 enrichment on photosynthesis, growth, and biochemical composition of seagrass Thalassia hemproichii (Ehrenb.) Aschers. J. Integr. Plant Biol. 2010, 52, 904–913. [Google Scholar] [CrossRef]
- Campbell, J.E.; Fourqurean, J.W. Mechanisms of bicarbonate use influence the photosynthetic carbon dioxide sensitivity of tropical seagrasses. Limnol. Oceanogr. 2013, 58, 839–848. [Google Scholar] [CrossRef]
- Björk, M.; Weil, A.; Semesi, S.; Beer, S. Photosynthetic utilisation of inorganic carbon by seagrasses from Zanzibar, East Africa. Mar. Biol. 1997, 129, 363–366. [Google Scholar] [CrossRef]
- Invers, O.; Zimmerman, R.C.; Alberte, R.S.; Perez, M.; Romero, J. Inorganic carbon sources for seagrass photosynthesis: An experimental evaluation of bicarbonate use in species inhabiting temperate waters. J. Exp. Mar. Biol. Ecol. 2001, 265, 203–217. [Google Scholar] [CrossRef]
- Invers, O.; Romero, J.; Perez, M. Effects of pH on seagrass photosynthesis: A laboratory and field assessment. Aquat. Bot. 1997, 59, 185–194. [Google Scholar] [CrossRef]
- Beer, S.; Waisel, Y. Some photosynthetic carbon fixation properties in seagrasses. Aquat. Bot. 1979, 7, 129–138. [Google Scholar] [CrossRef]
- Schwarz, A.-M.; Björk, M.; Buluda, T.; Mtolera, M.; Beer, S. Photosynthetic utilisation of carbon and light by two tropical seagrass species as measured in situ. Mar. Biol. 2000, 137, 755–761. [Google Scholar] [CrossRef]
- Hellblom, F.; Beer, S.; Björk, M.; Axelsson, L. A buffer sensitive inorganic carbon utilisation system in Zostera marina. Aquat. Bot. 2001, 69, 55–62. [Google Scholar] [CrossRef]
- Moroney, J.V.; Somanchi, A. How do algae concentrate CO2 to increase the efficiency of photosynthetic carbon fixation? Plant Physiol. 1999, 119, 9–16. [Google Scholar] [CrossRef]
- Drechsler, Z.; Sharkia, R.; Cabantchik, Z.I.; Beer, S. Bicarbonate uptake in the marine macroalga Ulva sp. is inhibited by classical probes of anion exchange by red blood cells. Planta 1993, 191, 34–40. [Google Scholar] [CrossRef]
- Sharkia, R.; Beer, S.; Kabantchik, Z.I. A membrane-located polypeptide which may be involved in the HCO3− transport of Ulva sp. is recognized by antibodies raised against the human red blood cell anion-exchange protein. Planta 1994, 194, 247–249. [Google Scholar] [CrossRef] [PubMed]
- Beer, S.; Israel, A. Photosynthesis in Ulva fasciata IV. pH, carbonic anhydrase and inorganic carbon conversions in the unstirred layer. Plant Cell Environ. 1990, 13, 555–560. [Google Scholar] [CrossRef]
- Axelsson, L.; Ryberg, H.; Beer, S. Two modes of bicarbonate utilization in the marine green macroalga Ulva lactuca. Plant Cell Environ. 1995, 18, 439–445. [Google Scholar] [CrossRef]
- Larsson, C.; Axelsson, L. Bicarbonate uptake and utilization in marine macroalga. Eur. J. Phycol. 1999, 34, 79–86. [Google Scholar] [CrossRef]
- Fernandez, P.A.; Hurd, C.L.; Roleda, M.Y.; Wernberg, T. Bicarbonate uptake via an anion exchange protein is the main mechanism of inorganic carbon acquisition by the kelp Macrocystis pyrifera (Laminariales, Phaeophyceae) under variable pH. J. Phycol. 2014, 50, 998–1008. [Google Scholar] [CrossRef]
- Rubio, L.; García, D.; García-Sánchez, M.J.; Niell, F.X.; Felle, H.H.; Hubert, H.; Fernández, J.A. A direct uptake of HCO3− in the marine angiosperm Posidonia oceanica (L.) Delile driven by a plasma membrane H+ economy. Plant Cell Environ. 2017, 40, 2820–2830. [Google Scholar] [CrossRef]
- Raven, J.A.; Beardall, J.; Giordano, M. Energy costs of carbon dioxide concentrating mechanisms in aquatic organisms. Photosynth. Res. 2014, 121, 111–124. [Google Scholar] [CrossRef]
- Raven, J.A.; Ball, L.A.; Beardall, J.; Giordano, M.; Maberly, S.C. Algae lacking CO2 concentrating mechanisms. Can. J. Bot. 2011, 83, 869–890. [Google Scholar] [CrossRef]
- Stepiens, C.C. Impacts of geography, taxonomy and functional group of inorganic carbon use patterns in marine macrophytes. J. Ecol. 2015, 103, 1372–1384. [Google Scholar] [CrossRef]
- Beardall, J.; Roberts, S. Inorganic carbon acquisition by two species of Antarctic macroalgae: Porphyra endivifolium (Rhodophyta: Bangiales) and Palmaria decipiens (Rhodophyta: Palmariales). Polar Biol. 1999, 21, 310–315. [Google Scholar] [CrossRef]
- Coughland, S.; Tattersfield, D. Photorespiration in larger littoral algae. Bot. Mar. 1977, 20, 265–266. [Google Scholar]
- Lundberg, P.; Weich, R.G.; Jensen, P.; Vogel, H.J. Phosphorus-91 and nitrogen-14 NMR studies of uptake of phosphorus and nitrogen compounds in the marine macroalga Ulva lactuca. Plant Physiol. 1989, 89, 1380–1387. [Google Scholar] [CrossRef]
- Invers, O.; Tomas, F.; Perez, M.; Romero, J. Potential effect of increased global CO2 availability on the depth distribution of the seagrass Posidonia oceanica (L.) delile: A tentative assessment using a carbon balance model. Bull. Mar. Sci. 2002, 71, 1191–1198. [Google Scholar]
- Invers, O.; Perez, M.; Romero, J. Bicarbonate utilization in seagrass photosynthesis: Role of carbonic anhydrase in Posidonia oceanica (L.) Delile and Cymodocea nodosa (Ucria) Ascherson. J. Exp. Mar. Biol. Ecol. 1999, 235, 125–133. [Google Scholar] [CrossRef]
- Beer, S.; Björk, M.; Hellblom, F.; Axelsson, L. Inorganic carbon utilisation in marine angiosperms (seagrasses). Funct. Plant Biol. 2002, 29, 349–354. [Google Scholar] [CrossRef]
- Uku, J.; Beer, S.; Björk, M. Buffer sensitivity of photosynthetic carbon utilisation in eight tropical seagrasses, Mar. Biol. 2005, 147, 1085–1090. [Google Scholar]
- Buapet, P.; Rasmusson, L.M.; Gullstrom, M.; Björk, M. Photorespiration and carbon limitation determine productivity in temperate seagrasses. PLoS ONE 2013, 8, e83804. [Google Scholar] [CrossRef]
- Beardall, J.; Mukerji, D.; Glover, H.E.; Morris, I. The path of carbon in photosynthesis by marine phytoplankton. J. Phycol. 1976, 12, 409–417. [Google Scholar] [CrossRef]
- Morris, I.; Beardall, J.; Mukerji, D. The mechanisms of carbon fixation in phytoplankton. Mitt. Int. Ver. Theor. Angew. Limnol. 1978, 21, 174–183. [Google Scholar]
- Reinfelder, J.R.; Kraepiel, A.M.L.; Morel, F.M.M. Unicellular C4 photosynthesis in a marine diatom. Nature 2000, 407, 996–999. [Google Scholar] [CrossRef] [PubMed]
- Reinfelder, J.R.; Milligan, A.J.; Morel, F.M.M. The role of C4 photosynthesis in carbon accumulation and fixation in a marine diatom. Plant Physiol. 2024, 135, 2106–2111. [Google Scholar] [CrossRef]
- Johnston, A.M.; Raven, J.A.; Beardall, J.; Leegood, R.C. Photosynthesis in a marine diatom. Nature 2001, 412, 40–41. [Google Scholar] [CrossRef]
- Roberts, K.; Granum, E.; Leegood, R.C.; Raven, J.A. C3 and C4 pathways of photosynthetic carbon assimilation in marine diatoms are under genetic, not environmental, control. Plant Physiol. 2007, 145, 230–235. [Google Scholar] [CrossRef]
- Roberts, K.; Granum, E.; Leegood, R.C.; Raven, J.A. Carbon acquisition by diatoms. Photosyn. Res. 2007, 93, 79–88. [Google Scholar] [CrossRef]
- Reiskind, J.B.; Bowes, G. The role of phosphoenolpyruvate carboxykinase in a marine macroalga with C4-like photosynthetic characteristics. Proc. Natl. Acad. Sci. USA 1991, 88, 2883–2887. [Google Scholar] [CrossRef]
- Reiskind, J.; Beer, S.; Bowes, G. Photosynthesis, photorespiration and ecophysiological interactions in marine macroalgae. Aquat. Bot. 1989, 34, 131–152. [Google Scholar] [CrossRef]
- Kremer, B.P.; Küppers, U. Carboxylating enzymes and pathway of photosynthetic assimilation in different marine algae. Evidence for C4 pathways? Planta 1977, 133, 191–196. [Google Scholar] [CrossRef]
- Beer, S.; Shragge, B. Photosynthetic carbon metabolism in Enteromorpha compressa (Chlorophyta). J. Phycol. 1987, 23, 580–584. [Google Scholar] [CrossRef]
- Zang, X.; Gao, G.; Gao, Z.; Gao, K.; Liu, D. The contribution of biophysical and biochemical CO2 concentration mechanisms to the carbon fixation of the green macroalga Ulva prolifera. Mar. Sci. Technol. 2024. [Google Scholar] [CrossRef]
- Guiry, M.D.; Guiry, G.M. AlgaeBase. In World-Wide Electronic Publication; National University of Ireland: Galway, Ireland, 2022. [Google Scholar]
- Johnston, A.M.; Raven, J.A. Dark carbon fixation studies on the intertidal macroalga Ascophyllum nodosum (Phaeophyta). J. Phycol. 1986, 22, 78–83. [Google Scholar] [CrossRef]
- Kübler, J.E.; Raven, J.A. Consequences of light limitation for carbon acquisition in three rhodophytes. Mar. Ecol. Prog. Ser. 1994, 110, 203–209. [Google Scholar] [CrossRef]
- Beardall, J. Effects of photon flux density on the “CO2 concentrating mechanism” of the cyanobacterium Anabaena variabilis. J. Plank. Res. 1991, 13, 133–141. [Google Scholar]
- Raven, J.A.; Beardall, J. CO2 Concentrating Mechanisms and Environmental Change. Aquat. Bot. 2014, 118, 24–37. [Google Scholar] [CrossRef]
- Raven, J.A.; Hurd, C.L. Ecophysiology of photosynthesis in macroalgae. Photosynth. Res. 2012, 113, 105–125. [Google Scholar] [CrossRef]
- Björk, M.; Axelsson, L.; Beer, S. Why is Ulva intestinalis the only macroalga inhabiting isolated rockpools along the Swedish Atlantic coast? Mar. Ecol. Prog. Ser. 2004, 284, 109–116. [Google Scholar] [CrossRef]
- Liu, S.-L.; Wang, W.-L.; Dy, D.T.; Fu, C.-C. The effect of ulvoid macroalgae on the inorganic carbon utilization by and intertidal seagrass Thalassia hemprichii. Bot. Bull. Acad. Sin. 2005, 46, 197–203. [Google Scholar]
- Beardall, J.; Raven, J.A. Aquatic Phototrophs and the Greenhouse Effect. In Evolutionary Physiology of Aquatic Plants and Algae; Giordano, M., Beardall, J., Maberly, S., Raven, J.A., Eds.; Cambridge University Press: Cambridge, UK, 2024; pp. 295–314. [Google Scholar]
- Beardall, J.; Beer, S.; Raven, J.A. Biodiversity of marine plants in an era of climate change: Some predictions based on physiological performance. Bot. Mar. 1998, 41, 113–123. [Google Scholar] [CrossRef]
- Koch, M.; Bowes, G.; Ross, C.; Zhang, X.-H. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob. Change Biol. 2013, 19, 103–132. [Google Scholar] [CrossRef] [PubMed]
- Hurd, C.L.; Hepburn, C.D.; Currie, K.I.; Raven, J.A.; Hunter, K.A. Testing methods of ocean acidification on algal metabolism: Consideration for experimental designs. J. Phycol. 2009, 45, 1236–1251. [Google Scholar] [CrossRef] [PubMed]
- Cornwall, C.; Revill, A.; Hall-Spencer, J.; Milazzo, M.; Raven, J.A.; Hurd, C.L. Inorganic carbon physiology underpins macroalgal responses to elevated CO2. Sci. Rep. 2017, 7, 46297. [Google Scholar] [CrossRef] [PubMed]
- van der Loos, L.M.; Schmid, M.; Leal, P.P.; McGraw, C.M.; Britton, D.; Revill, A.T.; Virtue, P.; Nichols, P.D.; Hurd, C. Responses of macroalgae to CO2 enrichment cannot be inferred solely from their inorganic carbon strategy. Ecol. Evol. 2019, 9, 125–140. [Google Scholar] [CrossRef]
- Minich, J.J.; Morris, M.M.; Brown, M.; Doane, M.; Edwards, S.; Michael, T.P.; Dinsdale, E.A. Elevated temperature drives kelp microbiome dysbiosis, while elevated carbon dioxide induces water microbiome disruption. PLoS ONE 2018, 13, e0134172. [Google Scholar] [CrossRef]
- Burnell, O.W.; Russel, B.D.; Irving, A.D.; Connell, S.D. Seagrass response to CO2 contingent on epiphytic algae: Indirect effects can overwhelm direct effects. Oecologia 2014, 176, 871–882. [Google Scholar] [CrossRef]
- Hutchins, D.A.; Walworth, N.G.; Webb, E.A.; Saito, M.A.; Moran, D.; McIlvin, M.R.; Gale, J.; Fu, F.-X. Irreversibly increased nitrogen fixation in Trichodesmium experimentally adapted to elevated carbon dioxide. Nat. Comm. 2015, 6, 8155. [Google Scholar] [CrossRef]
- Schaum, C.E.; Collins, S. Plasticity predicts evolution in a marine alga. Proc. R. Soc. B Biol. Sci. 2014, 281, 20141486. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beer, S.; Beardall, J. Inorganic Carbon Acquisition and Photosynthetic Metabolism in Marine Photoautotrophs: A Summary. Plants 2025, 14, 904. https://doi.org/10.3390/plants14060904
Beer S, Beardall J. Inorganic Carbon Acquisition and Photosynthetic Metabolism in Marine Photoautotrophs: A Summary. Plants. 2025; 14(6):904. https://doi.org/10.3390/plants14060904
Chicago/Turabian StyleBeer, Sven, and John Beardall. 2025. "Inorganic Carbon Acquisition and Photosynthetic Metabolism in Marine Photoautotrophs: A Summary" Plants 14, no. 6: 904. https://doi.org/10.3390/plants14060904
APA StyleBeer, S., & Beardall, J. (2025). Inorganic Carbon Acquisition and Photosynthetic Metabolism in Marine Photoautotrophs: A Summary. Plants, 14(6), 904. https://doi.org/10.3390/plants14060904