Complex Floral Scent Profile of Neottia ovata (Orchidaceae): General Attractants and Beyond
Abstract
:1. Introduction
2. Material and Methods
2.1. The Floral Scent of Neottia ovata—Sampling and Analysis
2.2. General and Specific Volatile Constituents—Reference Data Selection and Analyses
3. Results
3.1. Floral Volatiles of Neottia ovata
3.2. General and Specific Floral Volatiles of Rewarding and Food-Deceptive Orchids
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tremblay, R.L.; Ackerman, J.D.; Zimmerman, J.K.; Calvo, R.N. Variation in sexual reproduction in orchids and its evolutionary consequences: A spasmodic journey to diversification. Biol. J. Linn. Soc. 2005, 84, 1–54. [Google Scholar] [CrossRef]
- Dobson, H.E.; Danielson, E.M.; Wesep, I.D.V. Pollen odor chemicals as modulators of bumble bee foraging on Rosa rugosa Thunb. (Rosaceae). Plant Spec. Biol. 1999, 14, 153–166. [Google Scholar] [CrossRef]
- Raguso, R.A. Floral scent, olfaction, and scent-driven foraging behavior. In Cognitive Ecology of Pollination: Animal Behavior and Floral Evolution; Cambridge University Press: Cambridge, UK, 2001; pp. 83–105. [Google Scholar]
- Chittka, L.; Raine, N.E. Recognition of flowers by pollinators. Curr. Opin. Plant Biol. 2006, 9, 428–435. [Google Scholar] [CrossRef]
- Knudsen, J.T.; Eriksson, R.; Gershenzon, J.; Ståhl, B. Diversity and distribution of floral scent. Bot. Rev. 2006, 72, 1. [Google Scholar] [CrossRef]
- Caruso, C.M.; Eisen, K.E.; Martin, R.A.; Sletvold, N. A meta-analysis of the agents of selection on floral traits. Evolution 2019, 73, 4–14. [Google Scholar] [CrossRef]
- Knudsen, J.T.; Tollsten, L.; Bergström, L.G. Floral scents—A checklist of volatile compounds isolated by head-space techniques. Phytochemistry 1993, 33, 253–280. [Google Scholar] [CrossRef]
- Ramya, M.; Jang, S.; An, H.R.; Lee, S.Y.; Park, P.M.; Park, P.H. Volatile organic compounds from orchids: Synthesis and function to gene regulation. Int. J. Mol. Sci. 2020, 21, 1160. [Google Scholar] [CrossRef]
- Perkins, J.; Hayashi, T.; Peakall, R.; Flematti, G.R.; Bohman, B. The volatile chemistry of orchid pollination. Nat. Prod. Rep. 2023, 40, 819–839. [Google Scholar] [CrossRef]
- Knudsen, J.T.; Gershenzon, J. The chemical diversity of floral scent. In Biology of Plant Volatiles, 2nd ed.; Pichersky, E., Dudareva, N., Eds.; CRC Press: Boca Raton, FL, USA, 2020; pp. 57–78. [Google Scholar] [CrossRef]
- Ramya, M.; An, H.R.; Baek, Y.S.; Reddy, K.E.; Park, P.H. Orchid floral volatiles: Biosynthesis genes and transcriptional regulations. Sci. Hortic. 2018, 235, 62–69. [Google Scholar] [CrossRef]
- Rupp, T.; Oelschlägel, B.; Rabitsch, K.; Mahfoud, H.; Wenke, T.; Disney, R.H.L.; Neinhuis, C.; Wenke, S.; Dötterl, S. Flowers of deceptive Aristolochia microstoma are pollinated by Phorid flies and emit volatiles known from invertebrate carrion. Front. Ecol. Evol. 2021, 9, 658441. [Google Scholar] [CrossRef]
- Raguso, R.A.; Pellmyr, O. Dynamic headspace analysis of floral volatiles: A comparison of methods. Oikos 1998, 81, 238–254. [Google Scholar] [CrossRef]
- Tholl, D.; Boland, W.; Hansel, A.; Loreto, F.; Röse, U.S.R.; Schnitzler, J.P. Practical approaches to plant volatile analysis. Plant J. 2006, 45, 540–560. [Google Scholar] [CrossRef]
- Johnson, S.D.; Neal, P.R.; Harder, L.D. Pollen fates and the limits on male reproductive success in an orchid population. Biol. J. Linn. Soc. 2005, 86, 175–190. [Google Scholar] [CrossRef]
- Ollerton, J.; Killick, A.; Lamborn, E.; Watts, S.; Whiston, M. Multiple meanings and modes: On the many ways to be a generalist flower. Taxon 2007, 56, 717–728. [Google Scholar] [CrossRef]
- Van der Niet, T.; Jürgens, A.; Johnson, S.D. Pollinators, floral morphology and scent chemistry in the southern African orchid genus Schizochilus. S. Afr. J. Bot. 2010, 76, 726–738. [Google Scholar] [CrossRef]
- De Agostini, A.; Robustelli della Cuna, F.S.; Cortis, P.; Cogoni, A.; Sottani, C.; Soddu, F.; Sanna, C. Volatile Organic Compounds (VOCs) Diversity in the Orchid Himantoglossum robertianum (Loisel.) P. Delforge from Sardinia (Italy). Diversity 2022, 14, 1125. [Google Scholar] [CrossRef]
- Dobson, H.E. Relationship between floral fragrance composition and type of pollinator. In Biology of Floral Scent; Dudareva, N., Pichersky, E., Eds.; Taylor and Francis: Boca Raton, FL, USA, 2006; pp. 147–198. ISBN 9780429126666. [Google Scholar]
- Majetic, C.J.; Raguso, R.A.; Ashman, T.L. The sweet smell of success: Floral scent affects pollinator attraction and seed fitness in Hesperis matronalis. Funct. Ecol. 2009, 23, 480–487. [Google Scholar] [CrossRef]
- Sun, M.; Gross, K.; Schiestl, F.P. Floral adaptation to local pollinator guilds in a terrestrial orchid. Ann. Bot. 2014, 113, 289–300. [Google Scholar] [CrossRef]
- Lynch, J.H.; Pichersky, E.; Dudareva, N. Floral scent metabolic pathways and their regulation. In Biology of Plant Volatiles, 2nd ed.; Pichersky, E., Dudareva, N., Eds.; CRC Press: Boca Raton, FL, USA, 2020; pp. 147–164. [Google Scholar]
- Williams, N.H.; Whitten, W.M. Molecular phylogeny and floral fragrances of male euglossine bee-pollinated orchids: A study of Stanhopea (Orchidaceae). Plant Species Biol. 1999, 14, 129–136. [Google Scholar] [CrossRef]
- Albrecht, M.; Schmid, B.; Hautier, Y.; Muller, C.B. Diverse pollinator communities enhance plant reproductive success. Proc. R. Soc. B Biol. Sci. 2012, 279, 4845–4852. [Google Scholar] [CrossRef]
- Nilsson, L.A. Pollination ecology and adaptation in Platanthera chlorantha (Orchidaceae). Bot. Not. 1978, 131, 35–51. [Google Scholar]
- Nilsson, L.A. The pollination ecology of Listera ovata (Orchidaceae). Nord. J. Bot. 1981, 1, 461–480. [Google Scholar] [CrossRef]
- Tremblay, R.L. Trends in the pollination ecology of the Orchidaceae: Evolution and systematics. Can. J. Bot. 1992, 70, 642–650. [Google Scholar] [CrossRef]
- Li, P.; Luo, Y.; Bernhardt, P.; Kou, Y.; Perner, H. Pollination of Cypripedium plectrochilum (Orchidaceae) by Lasioglossum spp. (Halictidae): The roles of generalist attractants versus restrictive floral architecture. Plant Biol. 2008, 10, 220–230. [Google Scholar] [CrossRef]
- Johnson, S.D.; Hobbhahn, N. Generalized pollination, floral scent chemistry, and a possible case of hybridization in the African orchid Disa fragrans. S. Afr. J. Bot. 2010, 76, 739–748. [Google Scholar] [CrossRef]
- Brzosko, E.; Bajguz, A.; Chmur, M.; Burzyńska, J.; Jermakowicz, E.; Mirski, P. How are the flower structure and nectar composition of the generalistic orchid Neottia ovata adapted to a wide range of pollinator? Int. J. Mol. Sci. 2021, 22, 2214. [Google Scholar] [CrossRef]
- Brzosko, E.; Bajguz, A.; Burzyńska, J.; Chmur, M. Nectar chemistry or flower morphology—What is more important for the reproductive success of generalist orchid Epipactis palustris in natural and anthropogenic populations? Int. J. Mol. Sci. 2021, 22, 12164. [Google Scholar] [CrossRef]
- Salzmann, C.C.; Nardella, A.M.; Cozzolino, S.; Schiestl, F.P. Variability in floral scent in rewarding and deceptive orchids: The signature of pollinator-imposed selection? Ann. Bot. 2007, 100, 757–765. [Google Scholar] [CrossRef]
- Ackerman, J.D.; Cuevas, A.A.; Hof, D. Are deception-pollinated species more variable than those offering a reward? Plant Syst. Evol. 2011, 293, 91–99. [Google Scholar] [CrossRef]
- Claessens, J.; Kleynen, J. The Flower of the European Orchid: Form and Function; Jean Claessens & Jacques Kleynen: Geuelle, The Netherlands, 2011. [Google Scholar]
- Kowalkowska, A.K.; Krawczyńska, A.T. Anatomical features related with pollination of Neottia ovata (L.) Bluff & Fingerh. (Orchidaceae). Flora 2019, 255, 24–33. [Google Scholar] [CrossRef]
- Lang, D. Britain’s Orchids, a Guide to the Identification and Ecology of the Wild Orchids of Britain and Ireland; Wild Guides Ltd.: Old Basing, UK, 2004. [Google Scholar]
- Kotilínek, M.; Těšitelová, T.; Jersáková, J. Biological flora of the British Isles: Neottia ovata. J. Ecol. 2015, 103, 1354–1366. [Google Scholar] [CrossRef]
- Schiestl, F.P. The evolution of floral scent and insect chemical communication. Ecol. Lett. 2010, 13, 643–656. [Google Scholar] [CrossRef]
- NIST 2020 Mass Spectral Library. National Institute of Standards and Technology; U.S. Department of Commerce: Gaithersburg, MD, USA, 2020.
- Wiley Registry 12th Edition; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2020.
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Tkachev, A.V. Investigation of Plant’s Volatile Compounds; Offset Publishers: Novosibirsk, Russia, 2008. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 3 January 2025).
- Gu, Z.; Eils, R.; Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinform 2016, 32, 2847–2849. [Google Scholar] [CrossRef]
- D’Auria, M.; Lorenz, R.; Racioppi, R.; Romano, V.A. Determination of Volatile Organic Compounds in some Epipactis, Neottia, and Limodorum Orchids Growing in Basilicata (Southern Italy). Compounds 2024, 4, 366–375. [Google Scholar] [CrossRef]
- Isidorov, V.A. GC-MS of Biologically and Environmentally Significant Organic Compounds; TMS Derivatives; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Powers, J.M.; Briggs, H.M.; Campbell, D.R. Natural selection on floral volatiles and other traits can change with snowmelt timing and summer precipitation. N. Phytol. 2024, 245, 332–346. [Google Scholar] [CrossRef]
- Barták, P.; Bednář, P.; Čáp, L.; Ondráková, L.; Stránský, Z. SPME–A valuable tool for investigation of flower scent. J. Sep. Sci. 2003, 26, 715–721. [Google Scholar] [CrossRef]
- Lemaitre, A.B.; Pinto, C.F.; Niemeyer, H.M. Generalized pollination system: Are floral traits adapted to different pollinators? Arthropod-Plant Interact. 2014, 8, 261–272. [Google Scholar] [CrossRef]
- Burdon, R.C.; Raguso, R.A.; Gegear, R.J.; Pierce, E.C.; Kessler, A.; Parachnowitsch, A.L. Scented nectar and the challenge of measuring honest signals in pollination. J. Ecol. 2020, 108, 2132–2144. [Google Scholar] [CrossRef]
- Cozzolino, S.; Widmer, A. Orchid diversity: An evolutionary consequence of deception? Trends Ecol. Evol. 2005, 20, 487–494. [Google Scholar] [CrossRef]
- Jersákowá, J.; Johnson, S.D.; Kindlmann, P. Mechanisms and evolution of deceptive pollination in orchids. Biol. Rev. 2006, 81, 219–235. [Google Scholar] [CrossRef]
- Schiestl, F.P.; Peakall, R.; Mant, J. Chemical communication in the sexually deceptive orchid genus Cryptostylis. Bot. J. Linn. Soc. 2004, 144, 199–205. [Google Scholar] [CrossRef]
- Raguso, R.A. Behavioral responses to floral scent. Experimental Manipulations and multimodal plant-pollinator communication. In Biology of Plant Volatiles; Pichersky, E., Dudareva, N., Eds.; CRC Press: Boca Raton, FL, USA, 2020; ISBN 9780429455612. [Google Scholar]
- Dötterl, S.; Gershenzon, J. Chemistry, biosynthesis and biology of floral volatiles: Roles in pollination and other functions. Nat. Prod. Rep. 2023, 40, 1901–1937. [Google Scholar] [CrossRef]
- Boncan, D.A.T.; Tsang, S.S.; Li, C.; Lee, I.H.; Lam, H.M.; Chan, T.F.; Hui, J.H. Terpenes and terpenoids in plants: Interactions with environment and insects. Int. J. Mol. Sci. 2020, 21, 7382. [Google Scholar] [CrossRef]
- Raguso, R.A. Why are some floral nectars scented? Ecology 2004, 85, 1486–1494. [Google Scholar] [CrossRef]
- Castañeda-Zárate, M.; Johnson, S.D.; van der Niet, T. Food reward chemistry explain a novel pollinator shift and vestigialization of long floral spur in an orchid. Curr. Biol. 2021, 31, 238–246. [Google Scholar] [CrossRef]
- Chen, C.; Song, Q. Responses of the pollinating wasp Ceratosolen solmsi marchali to odor variation between two floral stages of Ficus hispida. J. Chem. Ecol. 2008, 34, 1536–1544. [Google Scholar] [CrossRef]
- Peakall, R.; Wong, D.C.; Bohman, B.; Flematti, G.R.; Pichersky, E. Floral volatiles for pollinator attraction and speciation in sexually deceptive orchids. In Biology of Plant Volatiles; Pichersky, E., Dudareva, N., Eds.; CRC Press: Boca Raton, FL, USA, 2020; ISBN 9780429455612. [Google Scholar]
- Stökl, J.; Brodmann, J.; Dafni, A.; Ayasse, M.; Hansson, B.S. Smells like aphids: Orchid flowers mimic aphid alarm pheromones to attract hoverflies for pollination. Proc. R. Soc. B Biol. Sci. 2011, 278, 1216–1222. [Google Scholar] [CrossRef]
- Dormont, L.; Fort, T.; Bessière, J.-M.; Proffit, M.; Hidalgo, E.G.; Buatois, B.; Schatz, B. Sources of floral scent variation in the food-deceptive orchid Orchis mascula. Acta Oecol. 2020, 107, 103600. [Google Scholar] [CrossRef]
- Borg-Karlson, A.K.; Valterova, I.; Nilsson, L.A. Volatile compounds from flowers of six species in the family Apiaceae: Bouquets for different pollinators? Phytochemistry 1994, 35, 111–119. [Google Scholar] [CrossRef]
- Zito, P.; Guarino, S.; Peri, E.; Sajeva, M.; Colazza, S. Electrophysiological and behavioural responses of the housefly to “sweet” volatiles of the flowers of Caralluma europaea (Guss.) NE Br. Arthropod-Plant Interact. 2013, 7, 485–489. [Google Scholar] [CrossRef]
- Borugă, O.; Jianu, C.; Mişcă, C.; Goleţ, I.; Gruia, A.T.; Horhat, F.G. Thymus vulgaris essential oil: Chemical composition and antimicrobial activity. J. Med. Life 2014, 3, 56–60. [Google Scholar]
- Zoghbi, M.D.G.Β.; Andrade, E.H.A.; Silva, M.F.F.D. Flower scent analysis of Encyclia vespa (vell.) Dressler & GE Pollard and E. fragrans (Sw.) Lemée. Acta Amaz. 2002, 32, 65–70. [Google Scholar] [CrossRef]
- Ağalar, H.G.; Göger, F.; Demirci, B.; Kırımer, N. Angelica sylvestris var. sylvestris L.: Essential oils and antioxidant activity evaluation. Eskişehir Tech. Univ. J. Sci. Technol. A-Appl. Sci. Eng. 2020, 21, 39–48. [Google Scholar] [CrossRef]
- Zych, M.; Junker, R.R.; Nepi, M.; Stpiczyńska, M.; Stolarska, B.; Roguz, K. Spatiotemporal variation in the pollination systems of a supergeneralist plant: Is Angelica sylvestris (Apiaceae) locally adapted to its most effective pollinators? Ann. Bot. 2019, 123, 415–428. [Google Scholar] [CrossRef]
- Pichersky, E.; Gershenzon, J. The formation and function of plant volatiles: Perfumes for pollinator attraction and defense. Curr. Opin. Plant Biol. 2002, 5, 237–243. [Google Scholar] [CrossRef]
- Bohman, B.; Flematti, G.R.; Barrow, R.A.; Pichersky, E.; Peakall, R. Pollination by sexual deception—It takes chemistry to work. Curr. Opin. Plant Biol. 2016, 32, 37–46. [Google Scholar] [CrossRef]
- Lahondère, C.; Vinauger, C.; Okubo, R.P.; Wolff, G.H.; Chan, J.K.; Akbari, O.S.; Riffell, J.A. The olfactory basis of orchid pollination by mosquitoes. Proc. Natl. Acad. Sci. USA 2020, 117, 708–716. [Google Scholar] [CrossRef] [PubMed]
- Jermakowicz, E.; Leśniewska, J.; Stocki, M.; Naczk, A.M.; Kostro-Ambroziak, A.; Pliszko, A. The floral signals of the inconspicuous orchid Malaxis monophyllos: How to lure small pollinators in an abundant environment. Biology 2022, 11, 640. [Google Scholar] [CrossRef] [PubMed]
- Borg-Karlson, A.K.; Groth, I.; Ågren, L.; Kullenberg, B. Form-specific fragances from Ophrys insectifera L.(Orchidaceae) attract species of different pollinator genera. Evidence of sympatric speciation? Chemoecology 1993, 4, 39–45. [Google Scholar] [CrossRef]
- Xu, H.; Bohman, B.; Wong, D.C.; Rodriguez-Delgado, C.; Scaffidi, A.; Flematti, G.R.; Phillips, R.D.; Pichersky, E.; Peakall, R. Complex sexual deception in an orchid is achieved by co-opting two independent biosynthetic pathways for pollinator attraction. Curr. Biol. 2017, 27, 1867–1877. [Google Scholar] [CrossRef]
- Ayasse, M.; Schiestl, F.P.; Paulus, H.F.; Ibarra, F.; Francke, W. Pollinator attraction in a sexually deceptive orchid by means of unconventional chemicals. Proc. R. Soc. B Biol. Sci. 2003, 270, 517–522. [Google Scholar] [CrossRef]
- Gavin, R.; Broad, G.R.; Shaw, M.R.; Fitton, M.G. Ichneumonid Wasps (Hymenoptera: Ichneumonidae): Their Classification and Biology. In Handbooks for the Identification of British Insects; Royal Entomological Society: London, UK, 2018; Volume 7, pp. 1–418. [Google Scholar]
- Weinstein, A.M.; Davis, B.J.; Menz, M.H.; Dixon, K.W.; Phillips, R.D. Behaviour of sexually deceived ichneumonid wasps and its implications for pollination in Cryptostylis (Orchidaceae). Biol. J. Linn. Soc. 2016, 119, 283–298. [Google Scholar] [CrossRef]
- Bohman, B.; Weinstein, A.M.; Phillips, R.D.; Peakall, R.; Flematti, G.R. 2-(Tetrahydrofuran-2-yl) acetic acid and ester derivatives as long-range pollinator attractants in the sexually deceptive orchid Cryptostylis ovata. J. Nat. Prod. 2019, 82, 1107–1113. [Google Scholar] [CrossRef]
- Mecca, M.; Racioppi, R.; Romano, V.A.; Viggiani, L.; Lorenz, R.; D’Auria, M. The scent of Himantoglossum species found in Basilicata (Southern Italy). Compounds 2021, 1, 164–173. [Google Scholar] [CrossRef]
- Bournéries, M.; Prrat, D. Les Orchidés de France, Belgique et Luxembourg; Parthénope Collection: Paris, France, 2005. [Google Scholar]
- Corbet, S.A. A typology of pollination systems: Implications for crop management and the conservation of wild plants. In Plant-Pollinator Interactions. From Specialization to Generalization; The University of Chicago Press: Chicago, IL, USA, 2006; pp. 315–340. [Google Scholar]
- Fernandes, F.M.; Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Wilcock, C.C.; Pinheiro de Calvalho, M.A.A. Volatiles of the inforescences of the Madeiran orchids, Goodyera macrophylla Lowe and Gennaria diphylla (Link) Parl. and their role in pollination. Nat. Prod. Commun. 2007, 2, 427–433. [Google Scholar] [CrossRef]
- Claessens, J.; Aguiar, A.F.; Karsholt, O.; Bacallado, J.J.; Heijungs, R.; Gravendeel, B. Pollination strategy of Gennaria diphylla (Orchidaceae) on the Canary Islands and on Madeira. Mediterr. Bot. 2022, 43, e73718. [Google Scholar] [CrossRef]
- Kaiser, R. The scent of orchids. In Olfactory and Chemical Investigations; Elsevier: Amsterdam, The Netherlands, 1993; ISBN 0-444-89841-7. [Google Scholar]
- Huber, F.K.; Kaiser, R.; Sauter, W.; Schiestl, F.P. Floral scent emission and pollinator attraction in two species of Gymnadenia (Orchidaceae). Oecologia 2005, 142, 564–575. [Google Scholar] [CrossRef]
- Schatz, B. Fine scale distribution of pollinator explains the occurrence of the natural orchid hybrid× Orchis bergonii. Ecoscience 2006, 13, 111–118. [Google Scholar] [CrossRef]
- Schatz, B.; Geoffroy, A.; Dainat, B.; Bessière, M.; Buatois, B.; Hossaert-McKey, M.; Selosse, M.-A. A case study of modified interactions with symbionts in a hybrid Mediterranean orchid. Am. J. Bot. 2010, 97, 1278–1288. [Google Scholar] [CrossRef]
- Braunschmid, H.; Guilhot, R.; Dötterl, S. Floral scent and pollinators of Cypripedium calceolus L. at different latitudes. Diversity 2020, 13, 5. [Google Scholar] [CrossRef]
- Romano, V.A.; Rosati, L.; Fascetti, S.; Cittadini, A.M.R.; Racioppi, R.; Lorenz, R.; D’Auria, M. Spatial and temporal variability of the floral scent emitted by Barlia robertiana (Loisel.) Greuter, a Mediterranean food-deceptive orchid. Compounds 2022, 2, 37–53. [Google Scholar] [CrossRef]
- Jersáková, J.; Spaethe, J.; Streinzer, M.; Neumayer, J.; Paulus, H.; Dötterl, S.; Johnson, S.D. Does Traunsteinera globosa (the globe orchid) dupe its pollinators through generalized food deception or mimicry? Bot. J. Linn. Soc. 2016, 180, 269–294. [Google Scholar] [CrossRef]
- Martel, C.; Rakosy, D.; Dötterl, S.; Johnson, S.D.; Ayasse, M.; Paulus, H.F.; Paulus, H.F.; Nilsson, L.A.; Mejlon, H.; Jersáková, J. Specialization for tachinid fly pollination in the phenologically divergent varieties of the orchid Neotinea ustulata. Front. Ecol. Evol. 2021, 9, 659176. [Google Scholar] [CrossRef]
- Salzmann, C.C.; Schiestl, F.P. Odour and colour polymorphism in the food-deceptive orchid Dactylorhiza romana. Plant Syst. Evol. 2007, 267, 37–45. [Google Scholar] [CrossRef]
- Robustelli della Cuna, F.S.; Cortis, P.; Esposito, F.; De Agostini, A.; Sottani, C.; Sanna, C. Chemical composition of essential oil from four sympatric orchids in NW-Italy. Plants 2022, 11, 826. [Google Scholar] [CrossRef]
NT (n = 6) | Nillson (1981) [26] | D’Auria, et al. (2024) [45] | |||||
---|---|---|---|---|---|---|---|
Compound | Number CAS | tret. (min.) | RIexp. | RIlit. | TIC (%) Mean (min.–max.) | Presence (+) Absence (−) | Presence (+) Absence (−) |
Monoterpenes | 61.5 (42.91–81.64) | ||||||
α-Thujene | 2867-05-2 | 7.910 | 922 | 924 b | 0.5 (tr-0.96) | − | − |
α-Pinene | 80-56-8 | 8.093 | 930 | 932 b | 0.71 (0.1–2.65) | − | − |
Sabinene | 3387-41-5 | 9.242 | 968 | 969 b | 0.6 (0.3–1.48) | − | − |
β-Pinene | 127-91-3 | 9.332 | 972 | 974 b | 0.52 (0–0.6) | − | − |
α-Phellandrene | 99-83-2 | 10.152 | 1002 | 1002 b | 0.63 (0–0.73) | − | − |
δ-3-Carene | 13466-78-9 | 10.317 | 1008 | 1010 c | 0.71 (0.29–1.29) | + | − |
Myrcene | - | + | − | ||||
α-Terpinene | 99-86-5 | 10.515 | 1015 | 1017 c | 5.44 (3.08–7.79) | + | − |
o-Cymene | 527-84-4 | 10.744 | 1022 | 1022 b | 1.42 (0.82–2.03) | − | − |
Limonene | 138-86-3 | 10.874 | 1027 | 1027 d | 0.94 (0–1.14) | + | + |
β-Phellandrene | 555-10-2 | 10.872 | 1027 | 1028 c | 0.89 (0.4–1.2) | +? | − |
Eucalyptol | 470-82-6 | 10.943 | 1028 | 1026 b | 0.63 (0.38–0.87) | − | − |
Perillen | - | + | − | ||||
trans-α-Ocimene | - | + | − | ||||
(E)-Ocimene | 502-99-8 | 11.457 | 1047 | 1048 d | 0.93 (0.18–2) | + | − |
γ-Terpinene | 99-85-4 | 11.795 | 1058 | 1058 c | 11.4 (6.63–16.98) | + | − |
cis-Sabinene hydrate | 17699-16-0 | 12.021 | 1066 | 1065 b | 3.87 (1.59–6.04) | − | − |
trans-Linalool oxide | - | + | − | ||||
cis-Linalool oxide | 5989-33-3 | 12.177 | 1069 | 1067 b | 0.31 (0–0.39) | − | − |
α-Terpinolene | 586-62-9 | 12.653 | 1088 | 1086 b | 3.58 (2.92–4.25) | − | − |
trans-Sabinene hydrate | 15826-82-1 | 12.950 | 1098 | 1098 b | 2.78 (0.64–6.68) | − | − |
Linalool | 78-70-6 | 13.026 | 1101 | 1100 c | 4.74 (1.55–12.24) | + | + |
cis-p-Menth-2-en-1-ol | 29803-82-5 | 13.630 | 1122 | 1121 c | 1.08 (0.78–1.51) | − | − |
trans-p-Menth-2-en-1-ol | 29803-81-4 | 14.150 | 1140 | 1141 c | 0.34 (0.21–0.41) | − | − |
Terpinen-4-ol | 562-74-3 | 15.336 | 1176 | 1174 b | 19.6 (7.12–36.74) | + | − |
trans-p-Mentha-1(7),8-dien-2-ol | 21391-84-4 | 15.492 | 1186 | 1187 b | 0.2 (0–0.26) | − | − |
α-Terpineol | 98-55-5 | 15.650 | 1192 | 1191 c | 1.44 (0.64–2.64) | − | − |
β-Terpineol | 10.72 | − | + | ||||
cis-Piperitol | 34350-53-3 | 15.805 | 1197 | 1195 b | 0.17 (0–0.22) | − | − |
Verbenone | 80-57-9 | 16.192 | 1211 | 1210 c | 0.31 (0–0.38) | − | − |
β-Cyclocitral | 432-25-7 | 16.506 | 1222 | 1220 c | 0.47 (0.21–0.53) | − | − |
Sesquiterpenes | 1.34 (0–2.57) | ||||||
α-Ylangene | 14912-44-8 | 20.632 | 1375 | 1373 d | 0.4 (0–0.46) | − | − |
a-Copaene | 3856-25-5 | 20.750 | 1378 | 1376 d | 0.32 (0–0.36) | − | − |
Seychellene | 20085-93-2 | 22.481 | 1447 | 1444 b | 0.12 (0–0.16) | − | − |
α-Amorphene | 20085-19-2 | 23.381 | 1485 | 1483 b | 0.52 (0–0.65) | − | − |
α-Farnesene | 502-61-4 | 23.996 | 1511 | 1510 c | 0.68 (0–1.69) | + | − |
α-Bergamotene | - | + | − | ||||
β-Farnesene | - | + | − | ||||
Farnesane | − | + | |||||
Sesquiterpenoide C15H26O | - | 26.953 | 1638 | - | 0.26 (0–0.382) | − | − |
Sesquiterpenoide C15H26O | - | 27.390 | 1658 | - | 0.16 (0–0.18) | − | − |
Sesquiterpenoide C15H26O | - | 27.450 | 1660 | - | 0.22 (0–0.27) | − | − |
Aliphatic acids | 1.3 (0–3.48) | ||||||
Acetic acid | 64-19-7 | 2.261 | 612 | 610 a | 0.35 (0–0.48) | − | − |
Hexanoic acid | 142-62-1 | 9.640 | 983 | 981 a | 0.2 (0–0.27) | − | − |
Dodecanoic acid | 143-07-7 | 25.258 | 1564 | 1565 b | 0.31 (0–0.4) | − | − |
Tetradecanoic acid | 544-63-8 | 29.697 | 1764 | 1765 a | 2.21 (0–3.08) | − | − |
Aliphatic ketones | 0.42 (0–0.96) | ||||||
2,3-Butanedione | 431-03-8 | 2.082 | 585 | 587 a | 0.24 (0–0.35) | − | − |
1-Penten-3-one | 1629-58-9 | 2.909 | 676 | 678 a | 0.11 (0–0.12) | − | − |
Acetoin | 513-86-0 | 3.253 | 706 | 706 a | 0.2 (0–0.24) | − | − |
2-Methyl-3-octanone | 923-28-4 | 9.565 | 982 | 984 a | 0.26 (0–0.38) | − | − |
Aliphatic alhehydes | 9.04 (3.03–15.72) | ||||||
Isobutanal | 78-84-2 | 1.935 | 554 | 552 a | 0.51 (0.1–1.09) | − | − |
Isopentanal | 590-86-3 | 2.575 | 643 | 642 a | 1.21 (tr-3.1) | − | − |
2-Methylbutanal | 96-17-3 | 2.671 | 653 | 652 a | 0.72 (tr-1.35) | − | − |
Pentanal | 110-62-3 | 3.050 | 700 | 702 b | 0.4 (0.27–0.64) | − | − |
(E)-2-Pentenal | 1576-87-0 | 3.897 | 745 | 746 a | 0.22 (tr-0.35) | − | − |
Hexanal | 66-25-1 | 4.727 | 799 | 801 c | 1.23 (0.68–2.25) | − | − |
(E)-2-Hexenal | 6728-26-3 | 5.944 | 844 | 846 b | 0.37 (0–0.31) | − | − |
Heptanal | 111-71-7 | 7.192 | 899 | 901 b | 0.32 (tr-0.63) | − | − |
(E)-2-Heptenal | 18829-55-5 | 8.732 | 949 | 947 b | 0.43 (tr-0.79) | − | − |
(E.E)-2,4-Heptadienal | 4313-03-5 | 9.918 | 993 | 994 a | 0.25 (0–0.32) | − | − |
Octanal | 124-13-0 | 10.099 | 1000 | 998 b | 1.1 (0.25–2.17) | − | − |
Nonanal | 124-19-6 | 13.124 | 1104 | 1105 c | 2.31 (0.62–4.01) | − | − |
(E)-2-Nonenal | 2463-53-8 | 14.721 | 1159 | 1157 b | 0.26 (0–0.32) | − | − |
Decanal | 112-31-2 | 16.047 | 1203 | 1201 b | 0.21 (0.12–0.37) | − | + |
(E.E)-2,4-Nonadienal | 5910-87-2 | 16.277 | 1214 | 1214 c | 0.14 (0–0.13) | − | − |
(E.Z)-2,4-Decadienal | 25152-83-4 | 18.488 | 1294 | 1292 b | 0.1 (0–0.1) | − | − |
Undecanal | 112-44-7 | 18.857 | 1307 | 1305 b | 0.19 (0–0.24) | − | − |
(E.E)-2,4-Decadienal | 25152-84-5 | 19.147 | 1317 | 1315 b | 0.16 (0–0.16) | − | − |
Dodecanal | 112-54-9 | 21.513 | 1410 | 1409 c | 0.13 (0–0.15) | − | − |
5,9,13-Trimethyl-4,8,12-tetradecenal | 23.01 | − | + | ||||
Tetradecanal | 124-25-4 | 26.404 | 1613 | 1613 c | 0.18 (0–0.26) | − | − |
Pentadecanal | 2765-11-9 | 28.669 | 1716 | 1715 a | 0.15 (0–0.27) | − | − |
Aliphatic alcohols | 12.8 (4.6–23.68) | ||||||
Methanol | 67-56-1 | 1.532 | 380 | 381 a | 3.92 (1.4–7.83) | − | − |
Ethanol | 64-17-5 | 1.626 | 444 | 445 a | 4.96 (0.26–9.85) | − | − |
1-Penten-3-ol | 616-25-1 | 2.852 | 671 | 673 a | 0.32 (0.12–0.56) | − | − |
Isopentanol | 123-51-3 | 3.548 | 724 | 726 c | 0.46 (0.14–1.23) | − | − |
1-Pentanol | 71-41-0 | 4.098 | 757 | 759 c | 0.22 (tr-0.1) | − | − |
(Z)-2-Penten-1-ol | 1576-95-0 | 4.168 | 763 | 765 b | 0.35 (tr-0.62) | − | − |
(Z)-3-Hexen-1-ol | 928-96-1 | 6.018 | 848 | 850 b | 0.32 (0.1–0.58) | − | − |
1-Hexanol | 111-27-3 | 6.349 | 861 | 863 b | 0.84 (0–1.81) | − | − |
(Z)-2-Hepten-1-ol | 55454-22-3 | 9.088 | 962 | N/A | 0.12 (0–0.13) | − | − |
1-Heptanol | 111-70-6 | 9.131 | 966 | 968 c | 0.35 (0–0.42) | − | − |
1-Octen-3-ol | 3391-86-4 | 9.403 | 974 | 974 b | 0.31 (tr-0.57) | − | − |
1-Octanol | 111-87-5 | 12.114 | 1069 | 1070 c | 1.15 (0.51–3.02) | − | − |
1-Nonanol | 143-08-8 | 15.082 | 1172 | 1172 c | 0.16 (0–0.25) | − | − |
1-Hexadecanol | 36653-82-4 | 32.093 | 1879 | 1877 c | 0.61 (0–0.78) | − | − |
Alkanes and Alkenes | 6.19 (3.15–9.67) | ||||||
n-Hexane | 110-54-3 | 2.136 | 600 | 600 a | 0.25 (0–0.36) | − | − |
(E)-4,8-Dimethyl-1,3,7-nonatriene | 19945-61-0 | 13.479 | 1117 | 1117 c | 1.31 (0.26–4.58) | − | − |
n-Tridecane | 629-50-5 | 18.654 | 1300 | 1300 a | 0.21 (0–0.22) | − | + |
n-Tetradecane | 629-59-4 | 21.269 | 1400 | 1400 a | 0.19 (0–0.19) | − | + (Tetradecane) |
Pentadecane | 18.14 | − | + | ||||
n-Hexadecane | 544-76-3 | 26.107 | 1600 | 1600 a | 0.19 (0–0.3) | − | + (Hexadecane) |
Heptadecane | 21.06 | − | + | ||||
Octadecane | 22.41 | − | + | ||||
Nonadecane | 23.70 | − | + | ||||
Eicosane | 24.93 | − | + | ||||
n-Heneicosane | 629-94-7 | 36.269 | 2100 | 2100 a | 0.86 (0.35–1.91) | − | + (Heinecosane) |
n-Docosane | 629-97-0 | 38.042 | 2200 | 2200 a | 0.61 (0.13–1.25) | − | + |
(Z)-9-Tricosene | 27519-02-4 | 39.303 | 2272 | 2270 d | 0.67 (0.22–1.65) | − | + |
(E)-9-Tricosene | 74685-29-3 | 39.355 | 2276 | N/A | 0.97 (0.39–1.79) | − | − |
n-Tricosane | 638-67-5 | 39.744 | 2300 | 2300 a | 1.69 (0.9–2.33) | − | + |
Aromatic compounds | 5.3 (2.09–11.18) | ||||||
Benzaldehyde | 100-52-7 | 8.846 | 953 | 952 b | 1.26 (0.52–2.9) | − | − |
Benzeneacetaldehyde | 122-78-1 | 11.309 | 1042 | 1043 d | 2.93 (1.04–8.35) | − | − |
2,2,4,6,6-Pentamethylhept-3-ene | 9.31 | − | + | ||||
2,6-di-t-butylbenzoquinone | 17.79 | − | + | ||||
2-Phenylethanol | 60-12-8 | 13.382 | 1113 | 1112 c | 1.05 (0.52–1.61) | − | − |
1-Methoxy-2-vinylbenzene | 612-15-7 | 14.526 | 1153 | N/A | 0.18 (0–0.22) | − | − |
Furan derivatives | 0.95 (0.47–1.17) | ||||||
2-Ethyl furan | 3208-16-0 | 3.087 | 702 | 704 b | 0.11 (0–0.11) | − | − |
2-Pentylfuran | 3777-69-3 | 9.772 | 986 | 984 b | 0.18 (0.36–1.17) | − | − |
(E)-Dendrolasin | 23262-34-2 | 25.568 | 1577 | 1575 c | 0.12 (0–0.12) | + | − |
Other compounds | 1.54 (0.69–2.3) | ||||||
Hexadecanioic acid | - | + | − | ||||
3-Methylthiopropanal | 3268-49-3 | 7.335 | 897 | 901 b | 0.74 (tr-1.19) | − | − |
(E)-α-Ionone | 127-41-3 | 22.032 | 1430 | 1428 b | 0.11 (0–0.12) | − | − |
Birkenal | N/A** | 22.360 | 1444 | 1443 c | 0.2 (0–0.26) | − | − |
(E)-β-Ionone | 79-77-6 | 23.489 | 1489 | 1487 b | 0.47 (0.26–0.99) | − | − |
Isopropyl tetradecanoate | 110-27-0 | 31.011 | 1827 | 1828 b | 0.32 (0.11–0.72) | − | − |
Unidentified compound | 0.36 (0–0.5) | ||||||
Unidentified compound | - | 13.261 | 1109 | - | 0.36 (0–0.5) | − | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jermakowicz, E.; Stocki, M.; Szefer, P.; Burzyńska, J.; Brzosko, E. Complex Floral Scent Profile of Neottia ovata (Orchidaceae): General Attractants and Beyond. Plants 2025, 14, 942. https://doi.org/10.3390/plants14060942
Jermakowicz E, Stocki M, Szefer P, Burzyńska J, Brzosko E. Complex Floral Scent Profile of Neottia ovata (Orchidaceae): General Attractants and Beyond. Plants. 2025; 14(6):942. https://doi.org/10.3390/plants14060942
Chicago/Turabian StyleJermakowicz, Edyta, Marcin Stocki, Piotr Szefer, Justyna Burzyńska, and Emilia Brzosko. 2025. "Complex Floral Scent Profile of Neottia ovata (Orchidaceae): General Attractants and Beyond" Plants 14, no. 6: 942. https://doi.org/10.3390/plants14060942
APA StyleJermakowicz, E., Stocki, M., Szefer, P., Burzyńska, J., & Brzosko, E. (2025). Complex Floral Scent Profile of Neottia ovata (Orchidaceae): General Attractants and Beyond. Plants, 14(6), 942. https://doi.org/10.3390/plants14060942