Application of a Novel Formulation of 1-Aminocyclopropane-1-carboxylic Acid (ACC) to Increase the Anthocyanins Concentration in Table Grape Berries
Abstract
:1. Introduction
2. Results
2.1. Application to the Entire Canopy of the Vines
2.2. Application Only to the Bunchess
3. Discussion
4. Materials and Methods
4.1. Location of Experiments and Grape Cultivar Evaluated
4.2. Experimental Design and Treatments
4.3. Assessments
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pezzuto, J.M. Grapes and human health: A perspective. J. Agric. Food Chem. 2008, 56, 6777–6784. [Google Scholar] [CrossRef]
- Rodriguez-Lopez, P.; Rueda-Robles, A.; Borrás-Linares, I.; Quirantes-Piné, R.M.; Emanuelli, T.; Segura-Carretero, A.; Lozano-Sánchez, J. Grape and Grape-Based Product Polyphenols: A Systematic Review of Health Properties, Bioavailability, and Gut Microbiota Interactions. Horticulturae 2022, 8, 583. [Google Scholar] [CrossRef]
- Flamini, R.; Mattivi, F.; Rosso, M.d.; Arapitsas, P.; Bavaresco, L. Advanced knowledge of three important classes of grape phenolics: Anthocyanins, stilbenes and flavonols. Int. J. Mol. Sci. 2013, 14, 19651–19669. [Google Scholar] [CrossRef]
- Muñoz-Espada, A.C.; Wood, K.V.; Bordelon, B.; Watkins, B.A. Anthocyanin Quantification and Radical Scavenging Capacity of Concord, Norton, and Marechal Foch Grapes and Wines. J. Agric. Food Chem. 2004, 52, 6779–6786. [Google Scholar] [CrossRef] [PubMed]
- Leão, P.C.S.; Soares, J.M.; Rodrigues, B.L. Principais cultivares. In A Vitivinicultura no Semiárido Brasileiro; Soares, J.M., Leão, P.C.S., Eds.; Embrapa Informação Tecnológica: Brasília, Brasil, 2009; pp. 151–214. [Google Scholar]
- Shahab, M.; Roberto, S.R.; Ahmed, S.; Colombo, R.C.; Silvestre, J.P.; Koyama, R.; de Souza, R.T. Anthocyanin accumulation and color development of ‘Benitaka’ table grape subjected to exogenous abscisic acid application at different timings of ripening. Agronomy 2019, 9, 164. [Google Scholar] [CrossRef]
- Peppi, M.C.; Fidelibus, M.W.; Dokoozlian, N. Abscisic Acid Application Timing and Concentration Affect Firmness, Pigmentation, and Color of ‘Flame Seedless’ Grapes. HortScience 2006, 41, 1440–1445. [Google Scholar] [CrossRef]
- Roberto, S.R.; de Assis, A.M.; Yamamoto, L.Y.; Miotto, L.C.V.; Koyama, R.; Sato, A.J.; Borges, R.D.S. Ethephon use and application timing of abscisic acid for improving color of ‘Rubi’ table grape. Pesqui. Agropecu. Bras. 2013, 48, 797–800. [Google Scholar] [CrossRef]
- Leão, P.C.d.S.; Lima, M.A.C.; Costa, J.P.D.; Trindade, D.C.G.d. Abscisic Acid and Ethephon for Improving Red Color and Quality of ‘Crimson Seedless’ Grapes Grown in a Tropical Region. Am. J. Enol. Vitic. 2015, 66, 37–45. [Google Scholar] [CrossRef]
- Jeong, S.T.; Uoto, N.G.; Kobayashi, S.; Esaka, M. Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins. Plant Sci. 2004, 167, 247–252. [Google Scholar] [CrossRef]
- Peppi, M.C.; Fidelibus, M.W.; Dokoozlian, N.K. Timing and concentration of abscisic acid applications affect the quality of ‘Crimson Seedless’ grapes. Int. J. Fruit Sci. 2008, 7, 71–83. [Google Scholar] [CrossRef]
- Parseh, S.H.; Amiri, M.E.; Fallahi, E. Application of ethephon and ABA at 40% veraison advanced maturity and quality of ‘Beidaneh Ghermez’ grape. Acta Hortic. 2010, 884, 371–377. [Google Scholar] [CrossRef]
- Kader, A.A. Postharvest Biology and Technology: An Overview. In Postharvest Technology of Horticultural Cropsi, 3rd ed.; Kader, A.A., Ed.; University of California Agriculture and Natural Resources: Davis, CA, USA, 2002; pp. 39–47. [Google Scholar]
- Peppi, M.C.; Fidelibus, M.W.; Dokoozlian, N.K. Application timing and concentration of abscisic acid affect the quality of ‘Redglobe’ grapes. J. Hortic. Sci. Biotech. 2007, 82, 304–310. [Google Scholar] [CrossRef]
- Mou, W.; Kao, Y.; Michard, E.; Simon, A.A.; Li, D.; Wudick, M.M.; Lizzio, M.A.; Feijó, J.A.; Chang, C. Ethylene-independent signaling by the ethylene precursor ACC in Arabidopsis ovular pollen tube attraction. Nat. Commun. 2020, 11, 1. [Google Scholar] [CrossRef]
- Polko, J.K.; Kieber, J.J. 1-Aminocyclopropane 1-Carboxylic Acid and Its Emerging Role as an Ethylene-Independent Growth Regulator. Front. Plant Sci. 2019, 10, 1602. [Google Scholar] [CrossRef]
- Aguiar, A.C.d.; Yamashita, F.; Koyama, R.; Caetano, B.E.B.; Utiamada, C.A.K.; Roberto, S.R. Exogenous Application of 1-Aminocyclopropane-1-carboxylic Acid as a New Strategy to Trigger the Color Development of Table Grapes Grown in Subtropics. Horticulturae 2024, 10, 1276. [Google Scholar] [CrossRef]
- Yang, S.F.; Hoffman, N.E. Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Biol. 1984, 35, 155–189. [Google Scholar] [CrossRef]
- Pires, E.J.P. Emprego de reguladores de crescimento em viticultura tropical. Inf. Agropecuário 1998, 19, 40–43. [Google Scholar]
- Shahab, M.; Roberto, S.R.; Ahmed, S.; Colombo, R.C.; Silvestre, J.P.; Koyama, R.; Souza, R.T.d. Relationship between anthocyanins and skin color of table grapes treated with abscisic acid at different stages of berry ripening. Sci. Hortic. 2020, 259, 108859. [Google Scholar] [CrossRef]
- Ribeiro, L.T.M.; Higuchi, M.T.; Aguiar, A.C.d.; Shimizu, G.D.; Gonçalves, L.S.A.; Roberto, S.R. Application of abscisic acid (S-ABA) at different stages of ripening on color development of ‘Rubi’ table grape. Semin. Ciênc. Agrár. 2022, 43, 263–282. [Google Scholar] [CrossRef]
- Jackson, R.S. Wine Science: Principles and Applications, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2008; 751p. [Google Scholar]
- Olivares, D.; Contreras, C.; Muñoz, V.; Rivera, S.; González-Agüero, M.; Retamales, J.; Defilippi, B.G. Relationship among color development, anthocyanin and pigment-related gene expression in ‘Crimson Seedless’ grapes treated with abscisic acid and sucrose. Plant Physiol. Biochem. 2017, 115, 286–297. [Google Scholar] [CrossRef]
- Keller, M. The Science of Grapevines: Anatomy and Physiology, 2nd ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Cantín, C.M.; Fidelibus, M.W.; Crisosto, C.H. Application of abscisic acid (ABA) at veraison advanced red color development and maintained postharvest quality of ‘Crimson Seedless’ grapes. Postharvest Biol. Technol. 2007, 46, 237–241. [Google Scholar] [CrossRef]
- Carreño, J.; Martínez, A.; Almela, L.; Fernández-Lópes, J.A. Measuring the color of table grapes. Color Res. Appl. 1996, 21, 50–54. [Google Scholar] [CrossRef]
- Domingues-Neto, F.J.; Tecchio, M.A.; Pimentel-Junior, A.; Vedoato, B.T.F.; Lima, G.P.P.; Roberto, S.R. Effect of ABA on colour of berries, anthocyanin accumulation and total phenolic compounds of ‘Rubi’ table grape (Vitis vinifera). Aust. J. Crop Sci. 2017, 11, 199–205. [Google Scholar] [CrossRef]
- Abe, L.T.; Mota, R.V.; Lajolo, F.M.; Genovese, M.I. Compostos fenólicos e capacidade antioxidante de cultivares de uvas Vitis labrusca L. e Vitis vinifera L. Food Sci. Technol. 2007, 27, 394–400. [Google Scholar] [CrossRef]
- Liang, Z.; Yang, C.; Yang, J.; Wu, B.; Wang, L.; Cheng, J.; Li, S. Inheritance of anthocyanins in Vitis vinifera grape berries. Euphytica 2009, 167, 113–125. [Google Scholar] [CrossRef]
- He, F.; Mu, L.; Yan, G.L.; Liang, N.N.; Pan, Q.H.; Wang, J.; Reeves, M.J.; Duan, C.Q. Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules 2010, 15, 9057–9091. [Google Scholar] [CrossRef]
- Koyama, R.; Colombo, R.C.; Borges, W.F.S.; Silvestre, J.P.; Hussain, I.; Shahab, M.; Ahmed, S.; Prudencio, S.H.; Souza, R.T.d.; Roberto, S.R. Abscisic acid application affects color and acceptance of the new hybrid ‘BRS Melodia’seedless grape grown in a subtropical region. HortScience 2019, 54, 1055–1060. [Google Scholar] [CrossRef]
- Boss, P.K.; Davies, C.; Robinson, S.P. Expression of anthocyanin biosynthesis pathway genes in red and white grapes. Plant Mol. Biol. 1996, 32, 565–569. [Google Scholar] [CrossRef]
- Koyama, K.; Sadamatsu, K.; Goto-Yamamoto, N. Abscisic acid stimulated ripening and gene expression in berry skins of the Cabernet Sauvignon grape. Funct. Integr. Genom. 2010, 10, 367–381. [Google Scholar] [CrossRef]
- Yamamoto, L.Y.; Koyama, R.; Assis, A.M.d.; Borges, W.F.S.; Oliveira, I.R.d.; Roberto, S.R. Color of berry and juice of ‘Isabel’ grape treated with abscisic acid in different ripening stages. Pesqui. Agropecu. Bras. 2015, 50, 1160–1167. [Google Scholar] [CrossRef]
- Peppi, M.C.; Fidelibus, M.W. Effects of forchlorfenuron and abscisic acid on the quality of ‘Flame Seedless’ grapes. HortScience 2008, 43, 173–176. [Google Scholar] [CrossRef]
- Ferrara, G.; Mazzeo, A.; Matarrese, M.A.S.; Pacucci, C.; Punzi, R.; Faccia, M.; Trani, A.; Gambacorta, G. Application of abscisic acid (S-ABA) and sucrose to improve colour, anthocyanin content and antioxidant activity of cv. Crimson Seedless grape berries. Aust. J. Grape Wine Res. 2015, 21, 18–29. [Google Scholar] [CrossRef]
- Reynolds, A.; Robbins, N.; Lee, H.S.; Kotsaki, E. Impacts and interactions of abscisic acid and gibberellic acid on sovereign Coronation and Skookum seedless table grapes. Am. J. Enol. Vitic. 2016, 67, 327–338. [Google Scholar] [CrossRef]
- Rodrigues, A.; Girardi, E.A.; Scarpare-Filho, J.A. Aplicação de ethephon e qualidade da uva ‘Rubi’ em Porto Feliz-SP. Ver. Bras. Frutic. 2010, 32, 925–930. [Google Scholar] [CrossRef]
- Gardin, J.P.P.; Schumacher, R.L.; Bettoni, J.C.; Petri, J.L.; Souza, E.L.d. Ácido abscísico e Etefom: Influência sobre a maturação e qualidade das uvas cabernet sauvignon. Ver. Bras. Frutic. 2012, 34, 321–327. [Google Scholar] [CrossRef]
- Ferrara, G.; Mazzeo, A.; Matarresea, M.S.; Paccuci, C.; Trani, A.; Fidelibus, M.W.; Gambacorta, G. Ethephon as a potential abscission agent for table grapes: Effects on pre-harvest abscission, fruit quality, and residue. Front. Plant Sci. 2016, 7, 620. [Google Scholar] [CrossRef]
- Jensen, F.L.; Kissler, J.; Peacock, W.; Leavitt, G. Effect of ethephon on color and fruit characteristics of Tokay and Emperor table grapes. Am. J. Enol. Vitic. 1975, 26, 79–81. [Google Scholar] [CrossRef]
- Szyjewicz, E.; Rosner, N.; Kliewer, W.M. Ethephon ((2-chloroethyl) phosphonic acid, Ethrel, CEPA) in viticulture—A review. Am. J. Enol. Vitic. 1984, 35, 117–123. [Google Scholar] [CrossRef]
- Peppi, M.C.; Walker, M.A.; Fidelibus, M.W. Application of abscisic acid rapidly upregulated UFGT gene expression and improved color of grape berries. Vitis-Geilweilerhof 2008, 47, 11. [Google Scholar]
- Khan, A.S.; Singh, Z. Pre-Harvest Application of Ethephon Affects Ethylene Biosynthesis, Fruit Softening and Quality of ‘Tegan Blue’ Japanese Plum during Ripening and Cold Storage. Postharvest Biol. Technol. 2005, 38, 18–28. [Google Scholar]
- Mcartney, S.J. Effects of 1-aminocyclopropane carboxylic acid on the rate of ethylene release from detached fruiting spurs and on fruit abscission in apple. J. Hortic. Sci. Biotech. 2011, 86, 640–644. [Google Scholar] [CrossRef]
- Van De Poel, B.; Van Der Straeten, D. 1-aminocyclopropane-1-carboxylic acid (ACC) in plants: More than just the precursor of ethylene! Front. Plant Sci. 2014, 5, 640. [Google Scholar] [CrossRef]
- Larsen, P.B. Mechanisms of ethylene biosynthesis and response in plants. Essays Biochem. 2015, 58, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Lurie, S.; Ovadia, R.; Nissim-Levi, A.; Oren-Shamir, M.; Kaplunov, T.; Zutahy, Y.; Weksler, H.; Lichter, A. Abscisic acid improves colour development in ‘Crimson Seedless’ grapes in the vineyard and on detached berries. J. Hortic. Sci. Biotech. 2009, 84, 639–644. [Google Scholar] [CrossRef]
- Batista, P.F.; Lima, M.A.C.; Leão, P.S.; Souza, F.F.; Alves, R.E. Divergência genética entre variedades de videiras do Banco Ativo de Germoplasma da Embrapa Semiárido. Rev. Cienc. Agron. 2015, 46, 800–808. [Google Scholar] [CrossRef]
- Nitsche, P.R.; Caramori, P.H.; Ricce, W.d.S.; Pinto, L.F.D. Atlas Climático do Estado do Paraná. Available online: https://www.idrparana.pr.gov.br/Pagina/Atlas-Climatico (accessed on 6 May 2022).
- Carreño, J.; Martínez, A.; Almela, L.; Fernández-López, J.A. Proposal of an index for the objective evaluation of the colour of red table grapes. Food Res. Int. 1995, 28, 373–377. [Google Scholar] [CrossRef]
- Instituto Adolfo Lutz. Procedimentos e determinações gerais. In Métodos Físico-Químicos para Análise de Alimentos, 4th ed.; Zenebon, O., Pascuet, N.S., Tiglea, P., Eds.; Instituto Adolfo Lutz: São Paulo, Brasil, 2008; pp. 85–104. [Google Scholar]
Treatments (Concentrations per 100 L or ha) | Total Anthocyanins (mg mal-3-glu g−1) | Berry Color Index (CIRG) |
---|---|---|
Control | 3.34 b | 4.03 c |
Accede® 25 g | 4.53 a | 4.99 b |
Accede® 50 g | 4.62 a | 5.01 b |
Accede® 75 g | 4.62 a | 5.26 ab |
Accede® 100 g | 4.83 a | 5.65 a |
Accede® 125 g | 4.84 a | 5.55 ab |
ProTone® 3.2 L | 4.82 a | 5.53 ab |
F | 16.43 ** | 18.19 ** |
CV (%) | 5.79 | 5.08 |
Treatments (Concentrations per 100 L or ha) | SS (°Brix) | TA (%) | SS/TA | Firmness (N) |
---|---|---|---|---|
Control | 12.85 | 0.69 | 18.79 | 16.17 |
Accede® 25 g | 13.35 | 0.64 | 20.99 | 15.78 |
Accede® 50 g | 13.30 | 0.66 | 20.04 | 15.28 |
Accede® 75 g | 13.30 | 0.65 | 20.53 | 14.28 |
Accede® 100 g | 13.35 | 0.67 | 19.88 | 14.30 |
Accede® 125 g | 13.18 | 0.64 | 20.51 | 14.05 |
ProTone® 3.2 L | 12.95 | 0.64 | 20.26 | 13.77 |
F | 0.75 ns | 1.20 ns | 0.80 ns | 2.25 ns |
CV (%) | 3.58 | 5.11 | 7.76 | 8.4% |
Treatments (Concentrations per 100 L or ha) | Total Anthocyanins (mg mal-3-glu g−1) | Berry Color Index (CIRG) |
---|---|---|
Control | 3.51 b | 4.10 c |
Accede® 25 g | 4.12 ab | 4.62 bc |
Accede® 50 g | 4.57 a | 5.15 ab |
Accede® 75 g | 4.68 a | 5.39 a |
Accede® 100 g | 4.75 a | 5.36 a |
Accede® 125 g | 4.81 a | 5.51 a |
ProTone® 3.2 L | 4.71 a | 5.52 a |
F | 7.14 ** | 11.42 ** |
CV (%) | 8.56% | 6.22% |
Treatments (Concentrations per 100 L or ha) | SS (°Brix) | TA (%) | SS/TA | Firmness (N) |
---|---|---|---|---|
Control | 12.87 | 0.64 a | 20.02 | 16.07 |
Accede® 25 g | 12.80 | 0.64 a | 20.16 | 16.82 |
Accede® 50 g | 13.22 | 0.60 ab | 22.19 | 12.87 |
Accede® 75 g | 13.05 | 0.61 ab | 21.31 | 14.54 |
Accede® 100 g | 13.00 | 0.58 b | 22.66 | 12.04 |
Accede® 125 g | 13.33 | 0.59 ab | 22.58 | 13.82 |
ProTone® 3.2 L | 12.95 | 0.58 b | 22.43 | 14.09 |
F | 0.38 ns | 5.46 ** | 2.07 ns | 1.55 ns |
CV (%) | 4.63% | 3.87% | 7.29% | 18.91% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Aguiar, A.C.; Sakai, D.M.; Barbosa, B.L.M.; da Silva, S.d.P.; Yamashita, F.; Roberto, S.R. Application of a Novel Formulation of 1-Aminocyclopropane-1-carboxylic Acid (ACC) to Increase the Anthocyanins Concentration in Table Grape Berries. Plants 2025, 14, 1058. https://doi.org/10.3390/plants14071058
de Aguiar AC, Sakai DM, Barbosa BLM, da Silva SdP, Yamashita F, Roberto SR. Application of a Novel Formulation of 1-Aminocyclopropane-1-carboxylic Acid (ACC) to Increase the Anthocyanins Concentration in Table Grape Berries. Plants. 2025; 14(7):1058. https://doi.org/10.3390/plants14071058
Chicago/Turabian Stylede Aguiar, Aline Cristina, Danielle Mieko Sakai, Bianca Liriel Martins Barbosa, Stefanie do Prado da Silva, Fábio Yamashita, and Sergio Ruffo Roberto. 2025. "Application of a Novel Formulation of 1-Aminocyclopropane-1-carboxylic Acid (ACC) to Increase the Anthocyanins Concentration in Table Grape Berries" Plants 14, no. 7: 1058. https://doi.org/10.3390/plants14071058
APA Stylede Aguiar, A. C., Sakai, D. M., Barbosa, B. L. M., da Silva, S. d. P., Yamashita, F., & Roberto, S. R. (2025). Application of a Novel Formulation of 1-Aminocyclopropane-1-carboxylic Acid (ACC) to Increase the Anthocyanins Concentration in Table Grape Berries. Plants, 14(7), 1058. https://doi.org/10.3390/plants14071058