Next Issue
Volume 14, April-2
Previous Issue
Volume 14, March-2
 
 

Plants, Volume 14, Issue 7 (April-1 2025) – 171 articles

Cover Story (view full-size image): Understanding the resistance mechanisms of plants against pests contributes to the sustainable deployment of plant resistance in Integrated Pest Management (IPM) programs. The Mi-1 gene in tomato is unique for providing resistance to various harmful organisms such as parasitic plant nematodes and pest insects, including the whitefly Bemisia tabaci MED (Mediterranean species). In this work, host gene expression was analyzed during the interaction of B. tabaci with susceptible tomato plants lacking the Mi-1 gene (cv. Moneymaker; compatible interaction), and with resistant plants carrying the Mi-1 gene (cv. Motelle; incompatible interaction). The oligonucleotide microarray technique was used and both interactions were studied at 2 and 12 days post infestation (dpi) of plants with adult insects. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
18 pages, 41343 KiB  
Article
Spatiotemporal Dynamics and Drivers of Vegetation Carbon Sinks in Zhejiang Province: A Case Study in Rapidly Urbanizing Subtropical Ecosystems
by Juntao Xu, Nguyễn Thị Hằng, Mengqi Ran and Junqia Kong
Plants 2025, 14(7), 1151; https://doi.org/10.3390/plants14071151 - 7 Apr 2025
Viewed by 280
Abstract
As a national ecological civilization pilot, Zhejiang’s growing vegetation carbon sink capacity is important for both regional ecological security and China’s carbon neutrality goals, but current studies lack a comprehensive assessment of multi-factor interactions. This study employed an improved Carnegie–Ames–Stanford Approach (CASA) and [...] Read more.
As a national ecological civilization pilot, Zhejiang’s growing vegetation carbon sink capacity is important for both regional ecological security and China’s carbon neutrality goals, but current studies lack a comprehensive assessment of multi-factor interactions. This study employed an improved Carnegie–Ames–Stanford Approach (CASA) and soil respiration empirical equation to estimate Net Ecosystem Productivity (NEP) in Zhejiang Province, and trend analysis, partial correlation analysis, and the GeoDetector model based on optimal parameters (OPGD) were utilized to investigate the spatiotemporal variations and driving factors of vegetation NEP. The results showed that the multi-year average NEP and carbon sink capacity in Zhejiang Province were 387.67 g C m−2 a−1 and 38.84 Tg C a−1, exhibiting an increasing trend at an average rate of 2.15 g C m−2 a−1 and 0.23 Tg C a−1, respectively. Spatially, NEP was higher in the western and southern mountainous regions and lower in the eastern coastal and northern plains. NEP in Zhejiang Province was driven by both natural and anthropogenic factors, with NDVI (q = 0.502) and elevation (q = 0.373) being the primary natural drivers, and nighttime light intensity (q = 0.327) and impervious surface dynamics (q = 0.295) being the main anthropogenic drivers. Moreover, the interactions among these factors all exhibited synergistic enhancement effects. Overall, Zhejiang Province functioned predominantly as a carbon sink, with its sequestration capacity gradually strengthening over time. The combined effects of natural and anthropogenic factors drove the spatiotemporal heterogeneity of vegetation NEP. These findings highlight the importance of coordinated ecosystem management strategies that consider both natural and anthropogenic-induced impacts to enhance the achievement of regional carbon sink goals. Full article
(This article belongs to the Special Issue Nutrient Management on Soil Microbiome Dynamics and Plant Health)
Show Figures

Figure 1

14 pages, 2493 KiB  
Article
Sasa veitchii Extract Mitigates Mycophenolate Mofetil-Induced Human Palatal Cell Proliferation Inhibition by Downregulating microRNA-4680-3p
by Hanane Horita, Yosuke Tsukiboshi, Kenichi Ogata, Aya Ogata, Hisaka Kurita, Shuji Yamashita, Hirotaka Yamashita, Naoki Inagaki, Hyogo Horiguchi and Hiroki Yoshioka
Plants 2025, 14(7), 1150; https://doi.org/10.3390/plants14071150 - 7 Apr 2025
Viewed by 319
Abstract
Cleft palate is a common birth defect worldwide and is caused by both genetic and environmental factors. Intrauterine drug exposure is one of the environmental factors that can induce cleft palate. Mycophenolate mofetil (MPM) is an immunosuppressant drug with teratogenic effects, including cleft [...] Read more.
Cleft palate is a common birth defect worldwide and is caused by both genetic and environmental factors. Intrauterine drug exposure is one of the environmental factors that can induce cleft palate. Mycophenolate mofetil (MPM) is an immunosuppressant drug with teratogenic effects, including cleft palate. However, the research on MPM-induced cleft palate remains limited. Sasa veitchii extract (SE), a medical plant extract, is commercially available in Asia and has been reported to show effectiveness against oral diseases. The purpose of the present study is to evaluate whether SE protects against MPM-induced immunosuppression in human embryonic palatal mesenchymal (HEPM) cells. Cell viability and G1 phase-related cell cycle markers were assessed by co-treatment with MPM and SE. Furthermore, we quantified cleft palate-associated miRNA levels and the expression of its downstream genes. MPM treatment reduced cell viability in a concentration-dependent manner. Co-treatment with SE alleviated MPM-induced inhibition of HEPM cell proliferation. Additionally, SE reduced MPM-induced miR-4680-3p upregulation and the downregulation of its downstream genes (ERBB2 and JADE1). These results suggest that SE alleviated MPM-induced cell proliferation inhibition through modulating miR-4680-3p expression. Full article
(This article belongs to the Special Issue Plant Extracts for Health Benefits and Nutrition)
Show Figures

Figure 1

14 pages, 1880 KiB  
Article
Dated Phylogeny of Banisteriopsis (Malpighiaceae) Suggests an Ancient Colonization of the Cerrado and No Evidence of Human Manipulation in the Origin of B. caapi
by Thais A. C. Santos, Bruno S. Amorim, Jefferson R. Maciel, Cassiano A. D. Welker, Scheila Cristina Biazatti and Regina C. Oliveira
Plants 2025, 14(7), 1149; https://doi.org/10.3390/plants14071149 - 7 Apr 2025
Viewed by 239
Abstract
Banisteriopsis is a genus in the Malpighiaceae family with 61 species, notable for including ritualistic taxa such as B. caapi (Spruce ex Griseb.) C.V. Morton, one of the main components of Ayahuasca tea. We analyzed 38 Banisteriopsis species, representing more than 60% of [...] Read more.
Banisteriopsis is a genus in the Malpighiaceae family with 61 species, notable for including ritualistic taxa such as B. caapi (Spruce ex Griseb.) C.V. Morton, one of the main components of Ayahuasca tea. We analyzed 38 Banisteriopsis species, representing more than 60% of the genus, to investigate its geographical origin, diversification period, and colonization routes in the Neotropics. Plastid genes (matK, ndhF, and rbcL) and nuclear regions (ETS, ITS, and PHYC) were used in our analyses. Divergence time analyses were performed using Bayesian inference with a relaxed molecular clock and ancestral area reconstruction. Our results show that Banisteriopsis originated in the Miocene approximately 22 million years ago, and its diversification coincides with the expansion of dry areas in South America. Banisteriopsis began colonizing the Cerrado earlier than most other plants, and the history of the genus reveals that the biome served as a source of species for Neotropical rainforests. Our results also indicate a probable ancient origin for B. caapi, with no evidence of human manipulation in its diversification, and they reinforce archaeological evidence of a millennia-old exchange of uses among Amazonian peoples. Full article
(This article belongs to the Section Plant Systematics, Taxonomy, Nomenclature and Classification)
Show Figures

Figure 1

14 pages, 2950 KiB  
Article
Evaluation of Cannabis sativa L. Callus Extract as a Novel Cosmetic Ingredient with Dual Anti-Inflammatory and Antioxidant Effects
by Ga-Ram Yu, Da-Hoon Kim, Hyuck Kim and Dong-Woo Lim
Plants 2025, 14(7), 1148; https://doi.org/10.3390/plants14071148 - 7 Apr 2025
Viewed by 345
Abstract
The plant callus culture technique is an emerging source of bioactive compounds with potential applications in cosmetics and pharmaceuticals. Callus-derived extracts contain high concentrations of secondary metabolites with significant antioxidant and anti-inflammatory properties when elicited. Cannabis sativa L. has been used for its [...] Read more.
The plant callus culture technique is an emerging source of bioactive compounds with potential applications in cosmetics and pharmaceuticals. Callus-derived extracts contain high concentrations of secondary metabolites with significant antioxidant and anti-inflammatory properties when elicited. Cannabis sativa L. has been used for its medicinal effects; however, the potential of its C. sativa callus extract (CCE) for cosmetic applications remains unexplored. Callus from C. sativa was induced in vitro using a Murashige and Skoog (MS) medium supplemented with Thidiazuron (TDZ) and naphthalene acetic acid (NAA). The extract was analyzed for its bioactive composition using high-performance liquid chromatography (HPLC). The antioxidant activity was assessed using the DPPH radical scavenging assay. The anti-inflammatory effects were evaluated in lipopolysaccharides (LPS)-stimulated RAW264.7 macrophages by measuring nitric oxide (NO) production, DAF-2 fluorescence intensity, released cytokine levels, and protein expression of inflammatory mediators via ELISA, Western blot, and immunofluorescence assays. CCE demonstrated significant radical scavenging activity. CCE effectively suppressed LPS-induced NO production and reduced pro-inflammatory cytokine levels. Western blot analysis revealed that CCE inhibited NF-κB nuclear translocation while upregulating NRF2-mediated antioxidant responses. Furthermore, HPLC analysis confirmed the presence of cannabinoids, which could potentially be associated with the modulation of inflammatory pathways through the endocannabinoid system. This study provides evidence that CCE possesses notable antioxidant and anti-inflammatory properties, making it a promising ingredient for cosmetic formulations targeting oxidative stress and inflammatory skin conditions. Full article
(This article belongs to the Special Issue Plant Tissue Culture V)
Show Figures

Figure 1

15 pages, 2195 KiB  
Article
The Effect of Leaf Traits on the Excitation, Transmission, and Perception of Vibrational Mating Signals in the Tea Leafhopper Empoasca onukii Matsuda (Hemiptera: Cicadellidae)
by Yao Shan, Qiuyi Yao, Qisheng Jia, Jiping Lu, Xiaoming Cai, Zongmao Chen and Lei Bian
Plants 2025, 14(7), 1147; https://doi.org/10.3390/plants14071147 - 7 Apr 2025
Viewed by 235
Abstract
The physical properties of plants affect the transmission of plant-borne vibrational signals, which many herbivorous insects use for communication. Male calling signals (MCaSs, with sections S0, S1, and S2) and courtship signals (MCoSs, with sections S1 and S2) of Empoasca onukii Matsuda (Hemiptera: [...] Read more.
The physical properties of plants affect the transmission of plant-borne vibrational signals, which many herbivorous insects use for communication. Male calling signals (MCaSs, with sections S0, S1, and S2) and courtship signals (MCoSs, with sections S1 and S2) of Empoasca onukii Matsuda (Hemiptera: Cicadellidae), a major pest of tea plant, have a multicomponent structure. The same MCaS was repeatedly played back on different leaves of a tea branch, and parameters of the transmitted signal and female responses were measured on the leaf inhabited by females. We also measured the signal parameters and behaviors of E. onukii on single leaves of different ages. The intensity of MCaSs from other leaves attenuated after they propagated to leaves on which females were located, which decreased the duration of MCaS-S2. Higher leaf thickness, leaf hardness, and leaf area were associated with an increased pulse repetition time (PRT) of MCaSs, number of pulses in MCaS-S2, and duration of MCaS-S2, respectively. MCoS-S1 had a higher dominant frequency (Df) in leaves with a long main vein and high hardness, and the PRT of MCoS-S2 was longer on thicker leaves. In the initial stage of courtship, the signal excitation of males was affected by leaf traits, especially the temporal parameters of MCaS-S2, which was the most significantly affected section after host transmission; it also had an important effect on the response delay of females. In the location stage, the signal excitation of males was not only affected by leaf traits but also interacted with the signal excitation of females. These results facilitate exploration of the interaction between leafhoppers and host plants during courtship communication and have implications for the breeding of E. onukii-resistant varieties. Full article
(This article belongs to the Special Issue Plant–Insect Interactions—3rd Edition)
Show Figures

Figure 1

17 pages, 309 KiB  
Article
Characterizing the Genetic Basis of Winter Wheat Rust Resistance in Southern Kazakhstan
by Shynbolat Rsaliyev, Elena Gultyaeva, Olga Baranova, Alma Kokhmetova, Rahim Urazaliev, Ekaterina Shaydayuk, Akbope Abdikadyrova and Galiya Abugali
Plants 2025, 14(7), 1146; https://doi.org/10.3390/plants14071146 - 7 Apr 2025
Viewed by 295
Abstract
In an effort to enhance wheat’s resilience against rust diseases, our research explores the genetic underpinnings of resistance in a diverse collection of winter bread wheat accessions. Leaf rust (Puccinia triticina), yellow rust (Puccinia striiformis f. sp. tritici), and [...] Read more.
In an effort to enhance wheat’s resilience against rust diseases, our research explores the genetic underpinnings of resistance in a diverse collection of winter bread wheat accessions. Leaf rust (Puccinia triticina), yellow rust (Puccinia striiformis f. sp. tritici), and stem rust (Puccinia graminis f. sp. tritici) are significant threats to global wheat production. By leveraging host genetic resistance, we can improve disease management strategies. Our study evaluated 55 wheat accessions, including germplasm from Kazakhstan, from Uzbekistan, from Russia, from Kyrgyzstan, France, and CIMMYT under field conditions in southern Kazakhstan from 2022 to 2024. The results showed a robust resistance profile: 49.1% of accessions exhibited high to moderate resistance to leaf rust, 12.7% to yellow rust, and 30.9% to stem rust. Notably, ten accessions demonstrated resistance to multiple rust species, while seven showed resistance to two rusts. Twenty accessions were selected for further seedling resistance and molecular analysis. Three accessions proved resistant to six isolates of P. triticina, two to four isolates of P. striiformis, and four to five isolates of P. graminis. Although no genotypes were found to be universally resistant to all rust species at the seedling stage, two accessions—Bezostaya 100 (Russia) and KIZ 90 (Kazakhstan)—displayed consistent resistance to leaf and stem rust in both seedling and field evaluations. Molecular analysis revealed the presence of key resistance genes, including Lr1, Lr3, Lr26, Lr34, Yr9, Yr18, Sr31, Sr57, and the 1AL.1RS translocation. This work provides valuable insights into the genetic landscape of wheat rust resistance and contributes to the development of new wheat cultivars that can withstand these diseases, enhancing global food security. Full article
19 pages, 14670 KiB  
Article
Genome-Wide Identification of the GS3 Gene Family and the Influence of Natural Variations in BnGS3-3 on Salt and Cold Stress Tolerance in Brassica napus
by Ting Jin, Xiaoshuai Hao, Zhen Huang, Xingguo Zhang, Shimeng Li, Ying Yang and Weihua Long
Plants 2025, 14(7), 1145; https://doi.org/10.3390/plants14071145 - 7 Apr 2025
Viewed by 346
Abstract
Saline-alkali stress and cold damage significantly impact the yield of Brassica napus. G proteins play a crucial role in plant resistance to abiotic stresses, and research on G proteins in Brassica napus (rapeseed) is still in its early stages. In this study, [...] Read more.
Saline-alkali stress and cold damage significantly impact the yield of Brassica napus. G proteins play a crucial role in plant resistance to abiotic stresses, and research on G proteins in Brassica napus (rapeseed) is still in its early stages. In this study, we employed bioinformatics tools to systematically investigate the basic physicochemical properties, phylogenetic relationships, distribution, gene structure, cis-regulatory elements, and expansion patterns of the GS3 gene family in Brassica napus. Additionally, reverse transcription polymerase chain reaction (RT-PCR) was used to analyze the response of the BnGS3-3 gene to salt and low-temperature stresses. Natural variations were found in the promoter region of BnGS3-3. By conducting a promoter-driven luciferase (LUC) assay, the relationship between natural variations in the BnGS3-3 promoter and salt and cold tolerance was analyzed. Furthermore, the impact of these natural variations on flowering time, root length, and yield was explored using phenotypic data from a population. Our research results aim to provide insights into the function and molecular mechanisms of BnGS3-3 in Brassica napus, and to offer valuable genetic resources for molecular breeding to improve salt and low-temperature tolerance in Brassica napus. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

16 pages, 5623 KiB  
Article
Genome-Wide Identification of WOX Gene Family in Chimonanthus praecox and a Functional Analysis of CpWUS
by Huafeng Wu, Bin Liu, Yinzhu Cao, Guanpeng Ma, Xiaowen Zheng, Haoxiang Zhu and Shunzhao Sui
Plants 2025, 14(7), 1144; https://doi.org/10.3390/plants14071144 - 7 Apr 2025
Viewed by 326
Abstract
Chimonanthus praecox, also known as wintersweet, is a traditional ornamental plant in China. It blooms during the cold winter months and emits a long-lasting fragrance. The WUSCHEL-related homeobox (WOX) transcription factor family is a plant-specific family of homeodomain (HD) transcription factors that [...] Read more.
Chimonanthus praecox, also known as wintersweet, is a traditional ornamental plant in China. It blooms during the cold winter months and emits a long-lasting fragrance. The WUSCHEL-related homeobox (WOX) transcription factor family is a plant-specific family of homeodomain (HD) transcription factors that plays diverse roles in plant development. We identified 13 WOX family genes (CpWOX1–CpWOX12 and CpWUS) and systematically analysed their physicochemical properties, evolutionary relationships, conserved domains, and expression regulation characteristics. The subcellular localization prediction indicates that all CpWOX proteins are localized in the nucleus and contain a conserved homeobox domain, with the WUS clade specifically containing a WUS-box motif. Phylogenetic analysis revealed that these genes are divided into three evolutionary branches: the WUS, ancient, and intermediate clades. Promoter analysis suggests that CpWOX genes may be involved in hormone responses, abiotic stress, developmental regulation, and encodes a nuclear-localised protein with self-activating activity. It is highly expressed in the stamen and root and is induced by low and high temperatures, salt stress, and methyl jasmonate. This study revealed the evolutionary characteristics of the WOX family genes in wintersweet and the function of CpWUS in regulating flowering time and root development, providing a theoretical basis for understanding the developmental regulatory mechanisms in wintersweet. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

16 pages, 3665 KiB  
Article
Nutrient Additions Regulate Height Growth Rate but Not Biomass Growth Rate of Alpine Plants Through the Contrasting Effect of Total and Available Nitrogen
by Runfang Feng, Shu Wang, Jikui Ma, Nannan Wang, Xiaoli Wang, Fei Ren, Honglin Li, Defei Liang, Jing Hu, Xilai Li and Lanping Li
Plants 2025, 14(7), 1143; https://doi.org/10.3390/plants14071143 - 6 Apr 2025
Viewed by 363
Abstract
Plant growth, a fundamental biological process that underpins terrestrial ecosystem function, is susceptible to nutrient availability. Despite extensive research on lowland ecosystems, the responses of alpine plant growth to nutrient addition remain poorly understood, particularly given the heightened sensitivity of alpine ecosystems to [...] Read more.
Plant growth, a fundamental biological process that underpins terrestrial ecosystem function, is susceptible to nutrient availability. Despite extensive research on lowland ecosystems, the responses of alpine plant growth to nutrient addition remain poorly understood, particularly given the heightened sensitivity of alpine ecosystems to global change. To investigate the effects of nitrogen (N) and phosphorus (P) additions on the growth rates of alpine plants and the underlying mechanisms of how these nutrient additions influence plant growth rates, we conducted an experiment in an alpine grassland on the Qinghai–Tibet Plateau, targeting 14 common plant species. Growth rates were measured using biomass and height, with plant height and soil physicochemical properties recorded biweekly during the growing season. We assessed the effects of nitrogen and phosphorus additions on growth rates, their seasonal dynamics, and their relationships with soil physicochemical properties. Results showed that phosphorus addition and combined nitrogen-phosphorus additions significantly increased the relative growth rate based on height (RGRH). In contrast, nutrient additions had no significant effect on the relative growth rate based on biomass (RGRB). RGRH decreased from June and early July to August, exhibiting species-specific responses to nutrient additions. Additionally, RGRH was significantly influenced by the interaction of nitrogen and phosphorus additions, species, and seasonal dynamics (p < 0.05). Soil available N, available P, and moisture were significantly positively correlated with RGRH (p < 0.05), while soil temperature (ST), total nitrogen (TN), and soil organic carbon (SOC) exhibited significant negative correlations (p < 0.05). Nutrient additions altered the hierarchy, as well as the direct and indirect factors that influence RGRH, revealing the opposing regulatory effects of total and available nitrogen. These findings highlight the critical roles of nitrogen and phosphorus, suggesting phosphorus is a potential limiting factor for plant growth in this alpine region. This study offers a comprehensive analysis of how nitrogen and phosphorus additions affect alpine plant growth rates and clarifies the underlying mechanisms in these sensitive ecosystems. Full article
(This article belongs to the Special Issue Role of Nitrogen in Plant Growth and Production)
Show Figures

Figure 1

28 pages, 9139 KiB  
Article
A Truncated Endogenous U6 Promoter Enables High-Efficiency CRISPR Editing in Flax (Linum usitatissimum L.)
by Feifei Li, Min Xue, Dongliang Guo, Leilei Zhu, Yuandong Li and Liqiong Xie
Plants 2025, 14(7), 1142; https://doi.org/10.3390/plants14071142 - 6 Apr 2025
Viewed by 398
Abstract
Functional U6 promoters are widely utilized in CRISPR gene editing systems for crops. The identification of endogenous U6 promoter activity and the establishment of CRISPR/Cas9 gene editing systems in various crops can enhance the efficiency and accuracy of gene editing in molecular breeding. [...] Read more.
Functional U6 promoters are widely utilized in CRISPR gene editing systems for crops. The identification of endogenous U6 promoter activity and the establishment of CRISPR/Cas9 gene editing systems in various crops can enhance the efficiency and accuracy of gene editing in molecular breeding. In this study, four U6 snRNAs were identified in the genome of the oil flax (Linum usitatissimum L.) cultivar Longya 10, which exhibit high homology with the promoter regions of Arabidopsis thaliana U6 snRNA. We cloned and constructed fusion expression vectors with U6 promoter-driven dual-luciferase reporter genes. Transient transformation of flax and Nicotiana benthamiana was performed to measure the relative activity of dual luciferase. The U6-4 on chromosome 14 showed the highest transcriptional activity. Truncations of varying lengths from the 5′ end of this promoter were tested, revealing that a 342 bp U6 promoter fragment possesses high transcriptional activity and an optimal length. Subsequently, we constructed a CRISPR/Cas9 gene editing vector with LuU6-5P/AtU6-P driving LusPDS sgRNA. Agrobacterium-mediated infection of flax hypocotyls yielded transgenic albino flax shoots. DNA from these shoots was used as a template to amplify LusPDS fragments, which were then sequenced. Sequencing analysis revealed that CRISPR/Cas9 vectors using Lu14U6-4-5P achieved higher editing frequencies at LusPDS compared to AtU6-P-driven systems. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

17 pages, 3358 KiB  
Article
Analysis of Targeted Supplemental-Waveband Lighting to Increase Yield and Quality of Lettuce Grown Indoors
by Nathan Kelly and Erik S. Runkle
Plants 2025, 14(7), 1141; https://doi.org/10.3390/plants14071141 - 6 Apr 2025
Viewed by 295
Abstract
Lighting from light-emitting diodes (LEDs) is one of the largest capital and operational expenses for indoor farms. While broad-waveband white LEDs are relatively inexpensive, their efficacy is lower than most narrow-band LEDs. This study aimed to determine how supplementing warm-white light with additional [...] Read more.
Lighting from light-emitting diodes (LEDs) is one of the largest capital and operational expenses for indoor farms. While broad-waveband white LEDs are relatively inexpensive, their efficacy is lower than most narrow-band LEDs. This study aimed to determine how supplementing warm-white light with additional blue (400–499 nm), green (500–599 nm), red (600–699 nm), or far-red (700–750 nm) light influences lettuce (Lactuca sativa) growth and quality, and whether these effects are consistent across two photon flux densities (PFDs). We grew lettuce ‘Rouxai’ and ‘Rex’ under 90 or 180 µmol∙m−2∙s−1 of warm-white light supplemented with 40 or 80 µmol∙m−2∙s−1 of blue, green, red, far-red, or warm-white light. Supplemental far-red light increased biomass without reducing secondary metabolites. Supplemental red, far-red, and warm-white light maximized biomass, whereas additional blue light enhanced secondary metabolite concentrations and leaf coloration. Increasing the PFD increased biomass and phenolic content in ‘Rouxai’. Notably, spectral effects were consistent across PFD levels, suggesting that higher PFDs do not diminish spectral responses. These results demonstrate the potential of enriching white light to increase yield or quality in controlled-environment agriculture and provide insights for cost-effective commercial production. Full article
(This article belongs to the Special Issue Light and Plant Responses)
Show Figures

Figure 1

22 pages, 4396 KiB  
Article
Evaluating Genome Assemblies for Optimized Completeness and Accuracy of Reference Gene Sequences in Wheat, Rye, and Triticale
by Mingke Yan, Guodong Yang, Dongming Yang, Xin Zhang, Quanzhen Wang, Jinghui Gao and Chugang Mei
Plants 2025, 14(7), 1140; https://doi.org/10.3390/plants14071140 - 6 Apr 2025
Viewed by 314
Abstract
Recent years have witnessed a surge in the publication of dozens of genome assemblies for Triticeae crops, which have significantly advanced gene-related research in wheat, rye, and triticale. However, this progress has also introduced challenges in selecting universally efficient and applicable reference genomes [...] Read more.
Recent years have witnessed a surge in the publication of dozens of genome assemblies for Triticeae crops, which have significantly advanced gene-related research in wheat, rye, and triticale. However, this progress has also introduced challenges in selecting universally efficient and applicable reference genomes for genotypes with distant or ambiguous phylogenetic relationships. In this study, we assessed the completeness and accuracy of genome assemblies for wheat, rye, and triticale using comparative benchmarking universal single-copy orthologue (BUSCO) analysis and transcript mapping approaches. BUSCO analysis revealed that the proportion of complete genes positively correlated with RNA-seq read mappability, while the frequency of internal stop codons served as a significant negative indicator of assembly accuracy and RNA-seq data mappability in wheat. By integrated analysis of alignment rate, covered length, and total depth from RNA-seq data, we identified the assemblies of SY Mattis, Lo7, and SY Mattis plus Lo7 as the most robust references for gene-related studies in wheat, rye, and triticale, respectively. Furthermore, we recommend that the D genome sequence be incorporated in reference assemblies in bioinformatic analyses for triticale, as introgression, translocation, and substitution of the D genome into triticale genome frequently occurs during triticale breeding. The frequency of internal stop codons could help in evaluating correctness of assemblies published in the future, and other findings are expected to support gene-related research in wheat, rye, triticale, and other closely related species. Full article
(This article belongs to the Special Issue Functional Genomics and Molecular Breeding of Crops—2nd Edition)
Show Figures

Figure 1

26 pages, 5515 KiB  
Article
Effect of Exogenous Melatonin on Corn Seed Germination and Seedling Salt Damage Mitigation Under NaCl Stress
by Yuyu Zhang, Yuchuang Li, He Liu, Haili Xie, Jiani Liu, Jinzhu Hua, Mingchun Xiong, Huaifei Song and Chengjian Yong
Plants 2025, 14(7), 1139; https://doi.org/10.3390/plants14071139 - 6 Apr 2025
Viewed by 315
Abstract
Maize is very sensitive to salt stress during seed germination and seedling growth periods, which can seriously affect the development of the maize industry. In this study, we applied exogenous melatonin (MT) to treat maize seeds and seedlings to investigate the alleviation mechanism [...] Read more.
Maize is very sensitive to salt stress during seed germination and seedling growth periods, which can seriously affect the development of the maize industry. In this study, we applied exogenous melatonin (MT) to treat maize seeds and seedlings to investigate the alleviation mechanism of salt damage in maize. Phenotypic analyses showed that 100 µmol/L MT alleviated the effects of salt stress on maize seed germination, and germination index and vigor index were increased compared with salt treatment. MT also alleviated the effects of salt stress on biomass and photosynthesis of maize seedlings, and at a concentration of 100 µmol/L, root and shoot lengths were increased, Gs and Tr were significantly elevated, and LWUEint and LWUEins were decreased. MT also scavenged ROS accumulation, reduced MDA, H2O2, and O2 production, and increased antioxidant enzyme activities and osmoregulatory substances in maize seedlings, but too high a concentration exacerbated oxidative and osmotic stresses. In addition, MT reduced Na+ content and increased K+ content in leaves and roots of maize seedlings. The principal components analysis explained 99.1% of the total variance in the first two axes (PC1 and PC2), and the differences between the treatment groups along the PC1 and PC2 axes were obvious. Correlation analysis elucidated the correlation between the indicators. Random forest analysis showed that different treatments had significant effects on germination percentage (GP), free proline (FP), CAT, and leaf intrinsic water use efficiency (LWUEint). Partial least squares analysis showed that photosynthetic parameters and pigment content played an important role in the salt tolerance of maize seedlings. In conclusion, the application of exogenous MT can effectively alleviate the negative effects of salt stress on the growth of maize seeds and seedlings, especially at a concentration of 100 µmol/L, which is the most effective. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

10 pages, 4326 KiB  
Article
Modified Media for Repeated In Vitro Cutting Cycles of Cannabis sativa Without the Use of Cytokinin
by Molly McKay, James E. Faust, Matthew Taylor and Jeffrey Adelberg
Plants 2025, 14(7), 1138; https://doi.org/10.3390/plants14071138 - 6 Apr 2025
Viewed by 304
Abstract
In vitro hedging; combined with the fed-batch liquid media process is an innovative system that generates multiple sterile plants without the use of exogenous cytokinin. This combined process was demonstrated with Cannabis sativa (‘Cherry1’, ‘BaOx’, ‘T1’, ‘Peach’) grown in vessels of three different [...] Read more.
In vitro hedging; combined with the fed-batch liquid media process is an innovative system that generates multiple sterile plants without the use of exogenous cytokinin. This combined process was demonstrated with Cannabis sativa (‘Cherry1’, ‘BaOx’, ‘T1’, ‘Peach’) grown in vessels of three different physical states—stationary agar (A); stationary Oasis® infused with liquid (OILs); and agitated Oasis® infused with liquid (OILa). Vessels were pre-selected as control or supplemented; where supplement vessels received 15 mL DKW liquid media each cycle harvest. The number of shoot tips harvested; shoot length; and dry shoot mass from repeated cutting cycles was recorded. In a single harvest; ‘BaOx’ and ‘Cherry 1’ produced one shoot per plant from the original 15 planted on all treatments. ‘Peach’ and ‘T1’ produced less shoots on average; but the most in OIL treatments. All shoots harvested were longer in OIL compared to A; regardless of genotype. Over multiple cycles; ‘Peach’ and ‘T1’ were unable to reliably produce shoots on a repeated schedule and were, therefore, eliminated from the experiment. By cycle 3; maximum number of plants were produced; regardless of supplementation (‘Cherry 1’; 30; ‘BaOx’; 22). Shoot length was above 10 mm (planting standard) for both genotypes until after the third cycle (10 weeks) where number and quality decreased (nodes and internodes easily discerned). By the end of the experiment; the only shoots that remained productive for over 16 weeks and multiple repeated harvest cycles were those in OIL treatments with supplements. Full article
Show Figures

Figure 1

17 pages, 9707 KiB  
Article
Investigating the Distribution Dynamics of the Camellia Subgenus Camellia in China and Providing Insights into Camellia Resources Management Under Future Climate Change
by Yue Xu, Bing-Qian Guan, Ran Chen, Rong Yi, Xiao-Long Jiang and Kai-Qing Xie
Plants 2025, 14(7), 1137; https://doi.org/10.3390/plants14071137 - 6 Apr 2025
Viewed by 291
Abstract
Rapid climate change has significantly impacted species distribution patterns, necessitating a comprehensive understanding of dominant tree dynamics for effective forest resource management and utilization. The Camellia subgenus Camellia, a widely distributed taxon in subtropical China, represents an ecologically and economically important group [...] Read more.
Rapid climate change has significantly impacted species distribution patterns, necessitating a comprehensive understanding of dominant tree dynamics for effective forest resource management and utilization. The Camellia subgenus Camellia, a widely distributed taxon in subtropical China, represents an ecologically and economically important group of woody plants valued for both oil production and ornamental purposes. In this study, we employed the BIOMOD2 ensemble modeling framework to investigate the spatial distribution patterns and range dynamics of the subgenus Camellia under projected climate change scenarios. Our analysis incorporated 1455 georeferenced occurrence records from 15 species, following the filtering of duplicate points, along with seven bioclimatic variables selected after highly correlated factors were eliminated. The ensemble model, which integrates six single species distribution models, demonstrated robust predictive performance, with mean true skil l statistic (TSS) and area under curve (AUC) values exceeding 0.8. Our results identified precipitation of the coldest quarter (Bio19) and temperature seasonality (Bio4) as the primary determinants influencing species distribution patterns. The center of species richness for the subgenus Camellia was located in the Nanling Mountains and eastern Guangxi Zhuang Autonomous Region. The projections indicate an overall expansion of suitable habitats for the subgenus under future climate conditions, with notable scenario-dependent variations: distribution hotspots are predicted to increase by 8.86% under the SSP126 scenario but experience a 2.53% reduction under the SSP585 scenario. Furthermore, a westward shift in the distribution centroid is anticipated. To ensure long-term conservation of Camellia genetic resources, we recommend establishing a germplasm conservation center in the Nanling Mountains region, which represents a critical biodiversity hotspot for this taxon. Full article
(This article belongs to the Special Issue Plant Conservation Science and Practice)
Show Figures

Figure 1

16 pages, 11179 KiB  
Article
Genome-Wide Identification and Characterization of Basic Pentacysteine Transcription Factors in Brassica napus
by Huan Hu, Yuqin Jiang, Chiyuan Liu, Ying Zhang, Mingxun Chen and Zijin Liu
Plants 2025, 14(7), 1136; https://doi.org/10.3390/plants14071136 - 6 Apr 2025
Viewed by 271
Abstract
BARLEY B-RECOMBINANT/BASIC PENTACYSTEINE (BBR/BPC), a plant-specific transcription factor family, is a group of GAGA_motif binding factors controlling multiple developmental processes of growth and response to abiotic stresses. BPCs recruit histone remodeling factors for transcriptional repression of downstream targets. However, the information about BnaBPCs [...] Read more.
BARLEY B-RECOMBINANT/BASIC PENTACYSTEINE (BBR/BPC), a plant-specific transcription factor family, is a group of GAGA_motif binding factors controlling multiple developmental processes of growth and response to abiotic stresses. BPCs recruit histone remodeling factors for transcriptional repression of downstream targets. However, the information about BnaBPCs from Brassica napus remains unclear. Here, we identified 25 BnaBPC genes that were mainly localized in the nucleus, randomly localized on 16 chromosomes, and grouped into three subfamilies based on phylogenetic analysis. Twenty-five BnaBPC genes exhibit syntenic relationships with AtBPC genes, and the polypeptides encoded by BnaBPC genes within the same subfamily share similar conserved motifs and protein domains. The expansion of BnaBPC genes underwent whole-genome duplication events and purifying selection in genomes, and all the BnaBPC genes had the same conserved GAGA binding domains. Additionally, the promoter of each BnaBPC gene consisted of various cis-elements associated with stresses, phytohormones, and growth and development. Notably, the seed-specific regulatory element was found only in the BnaC04.BPC4 promoter. Further expression pattern analysis showed that BnaBPC members are widely expressed in stems, buds, developing seeds and siliques. These findings provide insights into BnaBPC genes and enrich our understanding of their functional characterization in B. napus. Full article
(This article belongs to the Special Issue Advances in Molecular Genetics and Breeding of Brassica napus L.)
Show Figures

Figure 1

21 pages, 1912 KiB  
Review
Unraveling the Complexities of Flowering in Ornamental Plants: The Interplay of Genetics, Hormonal Networks, and Microbiome
by Muhammad Aizaz, Lubna, Syed Salman Hashmi, Muhammad Aaqil Khan, Rahmatullah Jan, Saqib Bilal, Kyung-Min Kim, Ahmed Al-Harrasi and Sajjad Asaf
Plants 2025, 14(7), 1131; https://doi.org/10.3390/plants14071131 - 6 Apr 2025
Viewed by 537
Abstract
In ornamental plants, one of the most complex life processes, i.e., flowering, is regulated by interaction between the microbiota, hormones, and genes. Flowering plays an integral role in overall development and is quintessential for reproduction. Considering its importance, this review explores the complex [...] Read more.
In ornamental plants, one of the most complex life processes, i.e., flowering, is regulated by interaction between the microbiota, hormones, and genes. Flowering plays an integral role in overall development and is quintessential for reproduction. Considering its importance, this review explores the complex mechanisms that determine the induction of flowering, highlighting the relationship between hormonal and genetic networks as well as the growing significance of the microbiome. Important genes involved in genetic control include FT, SOC1, and LFY. These genes react to environmental stimuli like photoperiod and vernalization. Auxins, cytokinin, and gibberellins are only a few hormone pathways important for floral growth and timing. The importance of plant–microbe interactions has been emphasized by current research, which shows that the microbiome affects flowering through processes like hormone production and availability of food. A comprehensive understanding of flowering induction is possible by integrating results from microbiota, hormones, and genetics studies, which may improve the breeding and culture of ornamental plants. For researchers to understand the complexity of flowering in ornamental plants and develop unique breeding strategies and improved floral qualities, it is critical to use interdisciplinary approaches, as this comprehensive investigation demonstrates. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

13 pages, 1022 KiB  
Article
Development and Application of Novel SSR Markers to Assess the Genetic Diversity and Population Structure of Phacelia secunda Along an Altitudinal Gradient in the Central Chile Andes
by Cristian Torres-Díaz, Ana Ortíz-Sepúlveda, Moisés A. Valladares, Darío Farias-Cantillana, Marco A. Molina-Montenegro and Gabriel I. Ballesteros
Plants 2025, 14(7), 1135; https://doi.org/10.3390/plants14071135 - 5 Apr 2025
Viewed by 343
Abstract
Phacelia secunda J.F. Gmel. (Boraginaceae) is a widely distributed insect-pollinated perennial herb. In central Chile (33° S), it occurs from the sea level up to 3600 m in the Andes, exhibiting broad morphological variation. In this study, we developed and characterized novel polymorphic [...] Read more.
Phacelia secunda J.F. Gmel. (Boraginaceae) is a widely distributed insect-pollinated perennial herb. In central Chile (33° S), it occurs from the sea level up to 3600 m in the Andes, exhibiting broad morphological variation. In this study, we developed and characterized novel polymorphic microsatellites for this species, using an Illimina MiSeq sequencing platform. Nineteen polymorphic loci were obtained, with alleles numbers ranging from 3 to 13 per locus (mean = 5.84). Observed (HO) and expected heterozygosities (HE) ranged from 0.050 to 0.900 and from 0.049 to 0.825, respectively. These markers were applied to assess the genetic diversity and population structure along an altitudinal spanning from 1600 to 3600 m. The highest elevation population exhibited significantly lower within-population genetic diversity compared to lower-elevation populations. Significant population differentiation was observed along the gradient. Gene flow estimates support a stepping-stone like mode of migration, with greater exchange between adjacent elevations. These new microsatellites provide a valuable tool for elucidating the influence of altitude on genetic diversity and structure, and for evaluating the roles of local adaptation and phenotypic plasticity in shaping population variation. Full article
(This article belongs to the Section Plant Genetic Resources)
Show Figures

Figure 1

17 pages, 10492 KiB  
Article
A Bread Wheat Line with the Substituted Wild Emmer Chromosome 4A Results in Fragment Deletions of Chromosome 4B and Weak Plants
by Yu Qiu, Fei Lu, Bohao Yang, Xin Hu, Yanhao Zhao, Mingquan Ding, Lei Yang and Junkang Rong
Plants 2025, 14(7), 1134; https://doi.org/10.3390/plants14071134 - 5 Apr 2025
Viewed by 332
Abstract
In response to the growing genetic uniformity within wheat populations, developing efficient wheat–alien translocation strategies has become critically important. We observed that several offspring of the common wheat (Triticum aestivum L.)–wild emmer (Triticum turgidum L. var. dicoccoides) chromosome arm substitution [...] Read more.
In response to the growing genetic uniformity within wheat populations, developing efficient wheat–alien translocation strategies has become critically important. We observed that several offspring of the common wheat (Triticum aestivum L.)–wild emmer (Triticum turgidum L. var. dicoccoides) chromosome arm substitution line (CASL4AL) exhibited stunted growth, including significantly reduced plant height, spike length, spikelet number, and stem width compared to normal plants. Integrative transcriptomic analyses (RNA-Seq and BSR-Seq) revealed a statistically significant depletion (p < 0.01) of single nucleotide polymorphisms (SNPs) on chromosome 4B in compromised plants. Chromosome association analysis of differentially expressed genes (DEGs, up- or downregulated) revealed that downregulated genes were predominantly located on chromosome 4B. The 1244 downregulated DEGs on Chr4B were employed for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, and RNA metabolic processes, DNA repair, and transport systems were significantly enriched by GO analysis; however, only the mRNA surveillance pathway was enriched by KEGG enrichment. Molecular marker profiling showed a complete absence of target amplification in the critical 0–155 Mb region of chromosome 4B in all weak plants. Pearson’s correlation coefficients confirmed significant associations (p < 0.01) between 4B-specific amplification and weak phenotypes. These results demonstrate that 4B segmental deletions drive weak phenotypes in CASL4AL progeny, and provide experimental evidence for chromosome deletions induced in wild emmer chromosome substitution lines. This study highlights the potential of wild emmer as a valuable tool for generating chromosomal variations in wheat breeding programs. Full article
(This article belongs to the Special Issue Bioinformatics and Functional Genomics in Modern Plant Science)
Show Figures

Figure 1

19 pages, 3620 KiB  
Article
Inhibitory Effects of Aqueous and Hydroalcoholic Extracts from Jatobá Coat (Hymenaea courbaril L.) on Pancreatic Amylase and Starch Absorption
by Ana Caroline Polo, Thaís Marques Uber, Gustavo Henrique Souza, Rúbia Carvalho Gomes Corrêa, José Rivaldo dos Santos Filho, Anacharis Babeto de Sá-Nakanishi, Flávio Augusto Vicente Seixas, Adelar Bracht and Rosane Marina Peralta
Plants 2025, 14(7), 1133; https://doi.org/10.3390/plants14071133 - 5 Apr 2025
Viewed by 239
Abstract
Jatobá (Hymenaea courbaril) is a native tree abundant in Brazil. The fruit coat is an industrial by-product of jatobá flour processing, typically discarded. Presently, within the circular bioeconomy concept, there are efforts underway that aim at finding economically viable applications for [...] Read more.
Jatobá (Hymenaea courbaril) is a native tree abundant in Brazil. The fruit coat is an industrial by-product of jatobá flour processing, typically discarded. Presently, within the circular bioeconomy concept, there are efforts underway that aim at finding economically viable applications for the bio-residues of jatobá. Within this context, the present work attempts to find possible applications for the jatobá coat in glycemic control through inhibition of α-amylase activity. Aqueous and hydroethanolic extracts were used. In vitro experiments included detailed kinetic studies with an α-amylase catalyzed reaction. Starch absorption in vivo was assessed by means of a starch tolerance test in mice. Both extracts inhibited α-amylase. The IC50 values for the aqueous and hydroalcoholic extracts were 81.98 ± 3.53 µg/mL and 51.06 ± 0.42 µg/mL, respectively. The inhibition was of the non-competitive type. Both extracts reduced hyperglycemia caused by starch administration in mice, the aqueous extract being effective over a larger dose range. This action can be attributed to the α-amylase inhibition. In silico studies suggested that procyanidin dimers, taxifolin 7-O-rhamnoside, and quercetin 7-rhamnoside contribute, but several other not-yet-identified substances may be involved. The findings suggest that aqueous and hydroalcoholic extracts from jatobá coat warrant further investigations as potential modulators of glycemia following starch ingestion. Full article
(This article belongs to the Special Issue Plant-Based Foods and By-Products)
Show Figures

Figure 1

22 pages, 3649 KiB  
Article
Influence of Summer Drought on Post-Drought Resprouting and Leaf Senescence in Prunus spinosa L. Growing in a Common Garden
by Kristine Vander Mijnsbrugge, Stefaan Moreels, Sharon Moreels, Damien Buisset, Karen Vancampenhout and Eduardo Notivol Paino
Plants 2025, 14(7), 1132; https://doi.org/10.3390/plants14071132 - 5 Apr 2025
Viewed by 322
Abstract
Understanding how woody plants cope with severe water shortages is critical, especially for regions where droughts are becoming more frequent and intense. We studied the effects of drought intensity, focusing on post-drought resprouting, autumn leaf senescence and the subsequent spring bud burst. Furthermore, [...] Read more.
Understanding how woody plants cope with severe water shortages is critical, especially for regions where droughts are becoming more frequent and intense. We studied the effects of drought intensity, focusing on post-drought resprouting, autumn leaf senescence and the subsequent spring bud burst. Furthermore, we aimed to study population differentiation in the drought and post-drought responses. We performed a summer dry-out experiment in a common garden of potted Prunus spinosa L. (Rosaceae) saplings. We analysed responses across different visual stress symptom categories and examined differentiation between provenances from a local origin (Western Europe, Belgium), a lower latitude (Spain) and a higher latitude (Sweden). The chance of post-drought resprouting was greater for the more severely affected plants than for the less severely affected ones, and it occurred earlier. The plants that displayed wilting of the leaves during the drought had a leaf senescence 2.7 days earlier than the controls, whereas that of plants with 25 to 75% and more than 75% of desiccated leaves was 7 and 15 days later, respectively. During the drought, the local provenance was the first to develop visual symptoms compared to the other two provenances. However, among plants that exhibited no or only mild symptoms, this provenance also had a higher likelihood of post-drought resprouting. Among the control plants, the higher-latitude provenance displayed leaf senescence earlier, while the lower-latitude provenance senesced later compared to the local provenance. However, these differences in the timing of leaf senescence among the three provenances disappeared in treated plants with more than 25% of desiccated leaves due to the drought. Whereas leaf senescence could be earlier or later depending on the developed drought symptoms, the timing of bud burst was only delayed. Results indicate that resprouting and timing of leaf senescence are responsive to the severity of the experienced drought in a provenance-dependent way. Full article
(This article belongs to the Special Issue Plant Challenges in Response to Salt and Water Stress)
Show Figures

Figure 1

31 pages, 9080 KiB  
Article
Appearances Can Be Deceptive: Morphological, Phylogenetic, and Nomenclatural Delineation of Two Newly Named African Species Related to Frankenia pulverulenta (Frankeniaceae)
by María Ángeles Alonso, Manuel B. Crespo, Jordi Abad-Brotons, Mario Martínez-Azorín and José Luis Villar
Plants 2025, 14(7), 1130; https://doi.org/10.3390/plants14071130 - 5 Apr 2025
Viewed by 223
Abstract
Frankenia is a morphologically complex genus, with some species exhibiting a few diagnostic characters and significant morphological variability. This has led to misidentification or the synonymisation of many names based on one or a few diagnostic traits. This phenomenon affects the annual sea-heath, [...] Read more.
Frankenia is a morphologically complex genus, with some species exhibiting a few diagnostic characters and significant morphological variability. This has led to misidentification or the synonymisation of many names based on one or a few diagnostic traits. This phenomenon affects the annual sea-heath, F. pulverulenta, a Eurasian–Mediterranean herb that has become subcosmopolitan, to which several entities have been included due to their shared features, namely their annual lifespan or their flattened leaves. However, this fact also extends to shrubby species, such as the Madeiran F. cespitosa. Here, integrative taxonomic studies, encompassing detailed morphological descriptions of macro- and microcharacters along with molecular phylogenetic analyses of both nuclear ribosomal (ITS1-5.8S-ITS2 region) and plastid (matK gene) DNA sequence data, and an analysis of biogeographic data were undertaken. This examination has resulted in the most complete phylogenetic trees of Frankenia to date, leading to the reinstatement of two African species broadly differing morphologically from F. pulverulenta. Firstly, F. florida L.Chevall., a name applied to a species occurring in the Saharan regions of Algeria, Morocco, Mali, and Mauritania, is often accepted as a variety or subspecies of the annual sea-heath. In contrast, F. densa Pohnert, a species endemic to southern Namibia and northern South Africa, has been synonymised with F. pulverulenta. However, since those two names were later homonyms of two Chilean and Australian plants, they were deemed illegitimate upon publication. Consequently, two new names are proposed for them: F. sahariensis and F. dinteri, respectively. Their substantiation as independent species is provided by data on their morphology, distribution, ecology, and molecular phylogenetics, which demonstrate their distinctiveness from F. pulverulenta. Nomenclatural synonymy and types are also presented for all concerned names, including the designation of two new lectotypes. Furthermore, the importance of an accurate description of the morphological variation in populations is emphasised for a precise identification of taxa in Frankenia. Full article
(This article belongs to the Special Issue Taxonomy and Nomenclature of Euro + Mediterranean Vascular Plants)
Show Figures

Figure 1

13 pages, 1629 KiB  
Article
Differential Impact of Temperature, Release Rate, Prey Density, and Pesticides on Hyperaspis trifurcata (Coleoptera: Coccinellidae) to Optimize Integrated Management of Dactylopius opuntiae (Hemiptera: Dactylopiidae)
by Rachid Bouharroud, Salahddine Chafiki, Redouan Qessaoui, Yassine Imlil, Jamila Bargach, Aissa Derhem and Rachid Elaini
Plants 2025, 14(7), 1129; https://doi.org/10.3390/plants14071129 - 5 Apr 2025
Viewed by 1045
Abstract
The current work aims to establish an integrated pest management strategy using Hyperaspis trifurcata Schaeffer (Coleoptera: Coccinellidae) to control Dactylopius opuntiae Cockerell (Hemiptera: Dactylopiidae) and to assess the side effects of pesticides commonly used on this predator. The first part of this study [...] Read more.
The current work aims to establish an integrated pest management strategy using Hyperaspis trifurcata Schaeffer (Coleoptera: Coccinellidae) to control Dactylopius opuntiae Cockerell (Hemiptera: Dactylopiidae) and to assess the side effects of pesticides commonly used on this predator. The first part of this study was performed under controlled conditions at two temperatures with three prey densities and two release rates for 83 days. Under field conditions, a survival time test was conducted in a screen house (1.2 ha), where a total of 5700 predators were released on 1425 cactus plants and then monitored for a period of 23 weeks. Furthermore, eight pesticides were tested on H. trifurcata in laboratory conditions at five rates in order to define the lethal doses. Under controlled conditions, the effect of temperature on predation was not significant until 27 days after release. However, the prey density significantly impacted the predation rates from the 10th to 27th day after release (p < 0.001). The predator release rate significantly affected predation starting from the 15th day after release. The lowest median survival time based on Kaplan–Meier tests was obtained at 30 °C (the high temperature) for eight predators/cladode (27 days), but the highest was at 26 °C (the low temperature) for four predators/cladode (63 days). Depending on cochineal infestation, the effect of temperature significantly increased the predation rate from the 10th to 49th day after release, but only at a high density (50 colonies/cladode). Under field conditions, the effect of the infestation level on the survival function was significant (Log-Rank p < 0.05), and the median times were 111 and 130 days after release for low and high densities, respectively. Acetamiprid, Vaseline oil, black soap, copper oxychloride, and paraffin oil were highly toxic to H. trifurcata (>84% of mortality), and the LD50 values ranged from 2.3 to 69.6% of the recommended rate. For Mancozeb at the recommended dose, the mortality rate was low (<2%). The large-scale release of H. trifurcata would be successful in the Near East and North Africa (NENA) region, provided that the use of the mentioned pesticides is avoided or at least reduced. Full article
(This article belongs to the Special Issue Plant Protection and Integrated Pest Management)
Show Figures

Figure 1

22 pages, 8647 KiB  
Article
Genomic Signatures of Environmental Adaptation in Castanopsis hainanensis (Fagaceae)
by Sha Li, Xing Chen, Yang Wu and Ye Sun
Plants 2025, 14(7), 1128; https://doi.org/10.3390/plants14071128 - 5 Apr 2025
Viewed by 264
Abstract
As an endemic Castanopsis species on Hainan Island, Castanopsis hainanensis Merr. is uniquely adapted to tropical climatic conditions and occupies a relatively narrow habitat range. Given its long generation times, limited dispersal capacity, and ecological and economic importance, understanding the genomic processes shaping [...] Read more.
As an endemic Castanopsis species on Hainan Island, Castanopsis hainanensis Merr. is uniquely adapted to tropical climatic conditions and occupies a relatively narrow habitat range. Given its long generation times, limited dispersal capacity, and ecological and economic importance, understanding the genomic processes shaping this dominant tree species is critical for conservation. Its adaptation to specialized habitats and distinct geographical distribution provide valuable insights into biodiversity challenges in island ecosystems. This study employs genome-wide single-nucleotide polymorphism (SNP) markers to investigate genetic structure, population dynamics, and adaptive variation. Analyses revealed weak genetic divergence among populations, suggesting high gene flow. Demographic reconstruction indicated a historical population bottleneck, consistent with MaxEnt modeling projections of future range contraction under climate change. Selective sweep and genotype–environment association (GEA) analyses identified SNPs strongly correlated with environmental variables, particularly moisture and temperature. Using these SNPs, we quantified the risk of non-adaptedness (RONA) across climate scenarios, pinpointing regions at heightened vulnerability. Gene Ontology (GO) enrichment highlighted the key genes involved in plant growth and stress adaptation. By integrating genomic and environmental data, this study establishes a framework for deciphering adaptive mechanisms of C. hainanensis and offers actionable insights for informed conservation strategies to mitigate climate-driven biodiversity loss. Full article
(This article belongs to the Special Issue Plant Phylogeny, Taxonomy and Evolution)
Show Figures

Figure 1

15 pages, 35428 KiB  
Article
Low Caffeine Concentrations Induce Callus and Direct Organogenesis in Tissue Cultures of Ornithogalum dubium
by Carloalberto Petti
Plants 2025, 14(7), 1127; https://doi.org/10.3390/plants14071127 - 5 Apr 2025
Viewed by 321
Abstract
Caffeine is a nitrogenous base that naturally occurs in coffee (Cafea arabica), tea (Thea sinensis), and cocoa (Theobroma cacao). Chemically, caffeine is 1,3,5-trimethylxanthine, a purine analogue. Due to significant human consumption, caffeine effects have been widely studied. [...] Read more.
Caffeine is a nitrogenous base that naturally occurs in coffee (Cafea arabica), tea (Thea sinensis), and cocoa (Theobroma cacao). Chemically, caffeine is 1,3,5-trimethylxanthine, a purine analogue. Due to significant human consumption, caffeine effects have been widely studied. Being a natural xanthine derivative, the key degradative enzyme is xanthine oxidase, converting caffeine into 1-methyluric acid. Ecologically, caffeine is believed to act as a repellent molecule against insect feeding behavior. Caffeine’s chemical similarity to purines and plant hormones motivated this study, establishing the potential for cellular de-differentiation and re-differentiation. For this, a highly hormone-responsive plant species, Ornithogalum dubium, was used. As caffeine has been shown to induce endoreplication, the potential for new germlines in O. dubium is attractive. Using tissue culture, a range of caffeine concentrations were used (0.0125 mg/L to 2.0 mg/L) without additional hormones. A significant difference (p > 0.05) was observed for intermediate concentrations of 0.0125, 0.025, and 0.05 mg/L when compared to the control (no hormones). The highest rates of callus induction were obtained at a concentration of 0.025 mg/mL. Higher concentrations were phytotoxic (1.0 mg/L or greater). To conclude, caffeine-regenerated plants were not dissimilar to those obtained from canonical hormones. Full article
(This article belongs to the Special Issue Plant Tissue Culture V)
Show Figures

Figure 1

28 pages, 12172 KiB  
Article
The Targeted Metabolomic Signatures of Phytohormones in Leaves of Mulberry (Morus alba L.) Are Crucial for Regrowth and Specifically Modulated by the Differential Stubble Lengths
by Haonan Li, Michael Ackah, Frank Kwarteng Amoako, Aaron Tettey Asare, Jianbin Li, Zhenjiang Wang, Qiang Lin, Changyu Qiu, Mengdi Zhao and Weiguo Zhao
Plants 2025, 14(7), 1126; https://doi.org/10.3390/plants14071126 - 5 Apr 2025
Viewed by 400
Abstract
Vegetative propagation of mulberry (Morus alba L.) via sapling methods, due to the ability to exponentially multiply lateral buds on stem cuttings to enhance rapid shoot formation, is crucial for sericulture industries. The sprouting of mulberry using stubbles is an emerging method [...] Read more.
Vegetative propagation of mulberry (Morus alba L.) via sapling methods, due to the ability to exponentially multiply lateral buds on stem cuttings to enhance rapid shoot formation, is crucial for sericulture industries. The sprouting of mulberry using stubbles is an emerging method for rapid and mass production of mulberry leaves, but the growth mechanisms associated with its use remain obscure. This study is the first to report how the differential stubble lengths from mulberry plants alter and modulate phytohormones and the associated mechanisms. This study seeks to evaluate the growth mechanisms by elucidating the phytohormone signature modulation in response to differential stubble lengths of 0 cm, 5 cm, 10 cm, 20 cm, and a control via targeted metabolomics analysis in mulberry leaves. The results consistently show that the use of differential stubble lengths of mulberry promoted growth, the number of buds, aboveground biomass, and branch and leaf weights by improving the net photosynthesis, transpiration rate, stomatal conductance, and intercellular CO2 relative to the control. The differential stubble lengths not only caused contrasting responses in the contents of plant hormones, including salicylic acid (SA), abscisic acid (ABA), indole-3-acetic acid (IAA), jasmonic acid (JA), and gibberellin (GA), but also modulated higher elemental contents relative to the control. The results further reveal significant and positive correlations between the phytohormones and all growth, biomass, and photosynthetic parameters, highlighting the role of phytohormones in the sprouting and rejuvenation of mulberry stubbles. Meanwhile, the targeted metabolomics analysis identified a total of 11 differentially accumulated phytohormones in response to the differential stubble lengths, which were significantly implicated and enriched in three major pathways, including the biosynthesis of plant hormones (ko01070), metabolic pathways (ko01100), and the plant hormone signal transduction pathway (ko04575). The use of stubbles for rapid leaf production in mulberry plants is of great importance to improve early sprouting and cutting survival, as well as shortening growth and rooting time, and is highly recommended for the sericulture industries. Full article
Show Figures

Figure 1

14 pages, 263 KiB  
Review
The Multi-Pistil Phenomenon in Higher Plants
by Liang Chai, Cheng Cui, Benchuan Zheng, Ka Zhang, Yanling Li, Tongyun Zhang, Yongchun Zhou, Jun Jiang, Haojie Li, Jinfang Zhang and Liangcai Jiang
Plants 2025, 14(7), 1125; https://doi.org/10.3390/plants14071125 - 4 Apr 2025
Viewed by 365
Abstract
Correct floral morphology determines the accuracy of fruit formation, which is crucial for reproductive success in higher plants. Despite this, an abnormal, multi-pistil phenotype has been observed in the flowers of many plants. In this review, we gather information on the multi-pistil phenomenon [...] Read more.
Correct floral morphology determines the accuracy of fruit formation, which is crucial for reproductive success in higher plants. Despite this, an abnormal, multi-pistil phenotype has been observed in the flowers of many plants. In this review, we gather information on the multi-pistil phenomenon in various species and highlight potential causes, as well as possible consequences, of the trait. Our assessment of the reported multi-pistil phenotype in rice (Oryza sativa L.), wheat (Triticum aestivum L.), tomato (Solanum lycopersicum L.), Medicago, sweet cherry (Prunus avium L.), rye (Secale cereale L.), and rapeseed (Brassica napus L. and B. campestris L.) leads us to conclude that hybridization and mutation are the main factors that give rise to this phenotype. We also delve into the inheritance patterns of the multi-pistil phenotype and factors that influence this trait, such as nuclear–cytoplasmic interactions, temperature conditions, and shading. Finally, we discuss the effects of multi-pistil flowers on the yield of these plants. This analysis increases our understanding of floral development and lays the foundation for the potential utilization of the multi-pistil trait to increase seed production in crops. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
19 pages, 16309 KiB  
Article
Nutrient Uptake of Two Semidomesticated Jaltomata Schltdl. Species for Their Cultivation
by Ignacio Darío Flores-Sánchez, Manuel Sandoval-Villa and Ebandro Uscanga-Mortera
Plants 2025, 14(7), 1124; https://doi.org/10.3390/plants14071124 - 4 Apr 2025
Viewed by 286
Abstract
The nutrient uptake of a species under cultivated conditions is important for program fertilization. The Jaltomata genus has two semidomesticated species, J. procumbens and J. tlaxcala, used as food and considered with potential for their study in controlled environments. The objective of [...] Read more.
The nutrient uptake of a species under cultivated conditions is important for program fertilization. The Jaltomata genus has two semidomesticated species, J. procumbens and J. tlaxcala, used as food and considered with potential for their study in controlled environments. The objective of this research was to determine nutrient uptake curves of these species in a greenhouse and using hydroponics. The research was carried out at the Colegio de Postgraduados, Campus Montecillo, Texcoco, State of Mexico, from August to November 2020. The treatments included the following: two species and three electrical conductivity levels: 1, 2, and 3 dS m−1. Nutrients in leaf and total dry matter (TDM) were determined. Variability between species and phenological stages on the nutrient concentration and accumulation of TDM was observed. For macronutrients, J. procumbens concentrated in descending order more P from the vegetative stage (4.21–2.43 g kg−1 dry matter), and Mg until fructification (4.92–3.26 g kg−1 dry matter), for K it was higher at vegetative (52.29 g kg−1 dry matter) and harvesting stages (26.05 g kg−1 dry matter), and N (23.92 g kg−1 dry matter) at flowering; J. tlaxcala concentrated more Ca from fructification (10.10–13.85 g kg−1 dry matter). For micronutrients, J. tlaxcala concentrated more Fe from the vegetative stage (157.7–207.5 mg kg−1 dry matter), B and Zn at 23.3–38.4 and 26.04–28.45 mg kg−1 dry matter, respectively, from flowering, and Mn (108.4–232.28 mg kg−1 dry matter) from fructification. The main structures of TDM accumulation by vegetative stage in J. procumbens were the leaf and root (vegetative and flowering), root and stem (fructification), and reproductive structures and root (harvesting); in J. tlaxcala, the main structures were the leaf and root (vegetative), root and leaf (flowering and fructification), and root and reproductive structures (harvesting). Due to this variability, specific fertilization programs are required for each species. Full article
Show Figures

Figure 1

12 pages, 2679 KiB  
Article
In Vitro Propagation of Clausena lenis Drake
by Pajaree Sathuphan, Srunya Vajrodaya, Nuttha Sanevas and Narong Wongkantrakorn
Plants 2025, 14(7), 1123; https://doi.org/10.3390/plants14071123 - 4 Apr 2025
Viewed by 783
Abstract
Clausena lenis Drake, a valuable medicinal plant in the Rutaceae family, faces threats from wildlife predation, overharvesting, and climate change. In the wild, C. lenis primarily propagates through seeds; however, their rapid loss of viability poses challenges for long-term storage and germplasm conservation. [...] Read more.
Clausena lenis Drake, a valuable medicinal plant in the Rutaceae family, faces threats from wildlife predation, overharvesting, and climate change. In the wild, C. lenis primarily propagates through seeds; however, their rapid loss of viability poses challenges for long-term storage and germplasm conservation. Plant tissue culture offers a practical solution for both its conservation and large-scale production. This study examines seed sterilization, callus induction, shoot multiplication, and root induction protocols for C. lenis. Seeds attained a 100% sterilization rate using 0.2% (w/v) HgCl2 for 20 min without compromising germination. When cultured on MS medium containing 0.5 mg/L 2,4-D, seed, stem-node, and 1-week-old seedling explants produced abundant callus. A 2.0 mg/L BA treatment achieved 100% shoot induction, with stem-node explants yielding the highest shoot proliferation (3.90 ± 0.31 shoots/explant), followed by 1-week-old seedlings (2.30 ± 0.21 shoots/explant) and seed explants (1.60 ± 0.16 shoots/explant). Rooting was most effective on half-strength MS medium supplemented with 20.0 mg/L IBA, producing an average of 4.30 ± 0.83 roots per shoot in shoot-tip-deprived explants. The rooted plantlets successfully acclimatized, attaining a 100% survival rate in a 1:1:1 mixture of sterile soil, cocopeat, and vermiculite. These findings provide a robust platform for the sustainable propagation and conservation of C. lenis in response to its growing vulnerabilities. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

15 pages, 1945 KiB  
Review
Effects of Freeze–Thaw Cycles on Uptake Preferences of Plants for Nutrient: A Review
by Fang Liu, Wei Zhang and Siqi Li
Plants 2025, 14(7), 1122; https://doi.org/10.3390/plants14071122 - 4 Apr 2025
Viewed by 403
Abstract
Freeze–thawing is an abiotic climatic force prevalent at mid-to-high latitudes or high altitudes, significantly impacting ecosystem nitrogen (N) and phosphorus (P) cycling, which is receiving increasing attention due to ongoing global warming. The N and P nutrients are essential for plant growth and [...] Read more.
Freeze–thawing is an abiotic climatic force prevalent at mid-to-high latitudes or high altitudes, significantly impacting ecosystem nitrogen (N) and phosphorus (P) cycling, which is receiving increasing attention due to ongoing global warming. The N and P nutrients are essential for plant growth and development, and the uptake and utilization of these nutrients by plants are closely linked to external environmental conditions. Additionally, the availability of N and P nutrients influences the ecological adaptability of plants. Adapting plants to diverse external environments for the efficient uptake and utilization of N and P nutrients represents a main focus in contemporary ecological research on plant nutrient utilization in the ecosystems of mid-to-high latitudes or high altitudes. Through a comprehensive analysis of the experimental results regarding plant nutrient uptake and utilization in mid-to-high-latitude or high-altitude ecosystems, this paper discussed the processes of soil N and P cycling and the different utilization strategies of nutrient forms employed by plants during freezing and thawing. Freeze–thaw cycles affect the availability of N and P in the soil. Under freeze–thaw conditions, plants preferentially take up readily available N sources (e.g., nitrate (NO3-N) or ammonium (NH4+-N)) and adjust their root growth and timing of N uptake, developing specific physiological and biochemical adaptations to meet their growth needs. When nutrient conditions are poor or N sources are limited, plants may rely more on low-molecular-weight organic nitrogen (e.g., amino acids) as N sources. Plants adapt to changes in their environment by adjusting root growth, making changes in root secretions, and utilizing microbial communities associated with the P cycle to support more efficient P utilization. Future research should (i) enhance the monitoring of plant roots and nutrient dynamics in the subterranean layers of the soil; (ii) incorporate a broader range of nutrients; (iii) examine specific freeze–thaw landscape types, along with the spatial and temporal heterogeneity of climate change within seasons, which is essential for minimizing uncertainty in our understanding of plant nutrient utilization strategies. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop