Morphological Variability amid Genetic Homogeneity and Vice Versa: A Complicated Case with Humidophila (Bacillariophyceae) from Tropical Forest Soils of Vietnam with the Description of Four New Species
Abstract
:1. Introduction
2. Results
Taxon (Strain) | Length (µm) | Width (µm) | Striae Density in 10 µm | Features | Reference |
---|---|---|---|---|---|
H. concava sp. nov. (VP169) | 12.8–13.5 | 2.5–3.0 (apex width of 3.5 μm) | 40–45 | Slit-like areolae | this study |
H. manipurensis | 9.5–13.0 | 2.0–3.0 | 50 | Shallow grooves present on both sides of the proximal and distal raphe ends; internally, a well–developed central nodule present at center of the valve; rectangular fascia | [18] |
H. misionera | 8.8–11.7 | 2.3–3.0 | 34–36 | Very distinct fascia; terminal raphe endings simple and occasionally flanked by small, shallow depressions | [9] |
H. lagartiensis | 8.2–10.8 | 2.9–3.5 | 38–40 | Externally, central raphe endings are T-shaped, terminal raphe endings are straight; troughs are present | [9] |
H. parallela | 7.2–9.1 | 2.0–3.1 | 34–34.9 | T-shaped depression of the proximal raphe ends absent | [41] |
H. paracontenta var. magisconcava | 7–13 | 2.0–3.3 | 28–30 | Very short comma-like depressions flanking central and terminal pores of the raphe | [39] |
H. biscutella | 8–12 | 2.0–2.5 | 36–40 | Without any depressions near raphe ends; mantle areolae are interrupted at the apices | [40] |
H. delognei | 7–13 | 2.5–3.0 | 40 | Valves linear with parallel margins and non-protracted apices; central and terminal raphe endings terminating with shallow T- to Y-shaped grooves; central nodule clearly raised | [42] |
H. tahitiensis | 11.2–14.0 8.5–11.0 | 2.9–3.8 3.0–3.4 | 37–42 | Proximal and distal raphe endings terminating in a laterally expanded depression, often intersecting the areolae (T-shaped fissures) | [1,39] |
H. simplex | 6.0–11.5 | 2.1–2.9 (apex width of 3.5 μm) | 34–38 | Clear rectangular fascia; shorter striae with rounded, almost never transapically elongated areolae | [14,43] (p. 432) |
H. deceptionensis | 9.0–12.5 | 2.7–3.1 | resolvable in LM 30–32 | Mantle areolae clearly interrupted near the valve apices; depressions at the raphe ends are absent | [15] |
H. discordabilis | 16–20 | 5.5–6.5 | 28–32 | Depressions at the raphe ends are absent | [40] (Tafel 27, p. 258) |
Taxon (Strain) | Length (µm) | Width (µm) | Striae Density in 10 µm | Features | Reference |
---|---|---|---|---|---|
H. “bacilliformis” (VP161) | 12.5–14.0 | 2.5–2.9 | n.d. | Hyaline areas at the apices absent | this study (Figure 8AL–AR) |
H. “bacilliformis” (VP114) | 18.0–19.0 | 2.5–3.0 | 34–36 | ALD *; hyaline areas at the apices present | this study (Figure 8I–O) |
H. “bacilliformis” (VP112) | 19.0–20.5 | 2.5–3.0 | 33–34 | ALD; hyaline areas at the apices present | this study (Figure 8Q–X and Figure 10A,B) |
H. “bacilliformis” (VP108) | 20.0–22.0 | 2.5–3.0 | 36.5–40 | ALD; hyaline areas at the apices present | this study (Figure 8A–H and Figure 9) |
H. “bacilliformis” (VP251) | 17.5–19.0 | 2.3–3.0 | 36–38 | ALD; hyaline areas at the apices present | this study (Figure 8Y–AC) |
H. “bacilliformis” (VP120) | 11.5–12.7 | 2.5–3.0 | 38–40 | ALD; hyaline areas difficult to distinguish in LM, adjacent to valves apices | this study (Figure 8AD–AK and Figure 10C,D) |
H. “bacilliformis” (VP244) | 14.0–16.0 | 2.3–3.0 | 36–36.5 | ALD; hyaline areas at the apices are present | this study (Figure 8AS–AZ and Figure 10E,F) |
H. “bacilliformis” (VP111) | 13.8–14.5 | 2.5–3.0 | 38–40 | ALD; hyaline area absent or present on one or both apices | this study (Figure 8BA–BG and Figure 11) |
H. “bacilliformis” (VP110) | 14.5–16.0 | 2.5–3.0 | 35 | ALD | this study (Figure 14) |
H. comperei | 6.0–15.0 (type) 9.1–13.3 | 2.0–3.0 2.2–3.1 | 30–34 31–36 | Hyaline areas at the apices absent | [44,45] |
H. vojtajarosikii | 7.5–12.5 | 2.5–3.0 | 30–32 | Mantle areolae clearly interrupted near the valve apices; hyaline areas at the apices absent | [15] |
H. virginiana | 16.0–20.0 | 2.8–3.1 | 38–40 | Circumpolar areolae apically more or less elongated and continue onto the valve face from the mantle; hyaline areas at the apices absent | [39] |
H. iguazuensis | 5.5–16.0 | 2.5–3.0 | 36–40 | Hyaline areas at the apices absent | [9] |
H. lacunosa | 10.0–15.0 | 2.8–3.5 | 36 | Cuneate rather than rounded apices; hyaline areas at the apices absent | [40] |
H. komarekiana | 14.0–20.0 | 3.0–4.0 | 29–32 | Mantle areolae clearly interrupted near the valve apices; hyaline areas at the apices absent | [16] |
H. keiliorum | 10.4–31.2 | 3.2–5.2 | 27–30 | Mantle areolae clearly interrupted near the valve apices; hyaline areas at the apices absent | [15] (p. 123); [30] |
Taxon (Strain) | Length (µm) | Width (µm) | Striae Density in 10 µm | Features | Reference |
---|---|---|---|---|---|
H. “lanceolate-triundulate” (VP253) | 24.4–26.5 | 2.7–3.2 | 34–36 | Lanceolate, triundulate valve outline; ALD only at apices | this study |
H. paravietnamica sp. nov. (VP128) | 24.5–26.0 | 2.5–3.0 (apex width of 2.3–2.7) | 33–35 | ALD | this study |
H. aspera | 8.0–18.0 | 2.5–3.0 | 40–45 | Valve surface uneven, covered by irregular siliceous thickenings; central area with a distinct rounded thickening; mantle striae at the apices located on the valve face | [42] |
Taxon (Strain) | Length (µm) | Width (µm) | Striae Density in 10 µm | Features | Reference |
---|---|---|---|---|---|
H. cf. platensis (VP119) | 32.0–35.0 | 2.8–3.2 | 36 | ALD | this study |
H. platensis | 30.0–33.0 | 3.5 | 35–36 | ALD | [36] (p. 356) |
H. potapovae | 15.5–27.0 | 3.0–3.5 | 30–32 | Axial area shows shallow indented depressions | [20] |
H. sp. sensu Lowe et al. 2017 (Figures 27–38, [20]) | 26.0–48.0 | 3.4–3.8 | 29–30 | ALD, nodules, and raphe on elevated axial area | [20] |
H. elegans | 20.0–30.0 | 4.0–5.0 | 27–30 | — | [40] (p. 144, pl. 29, Figure 7) |
H. irata | 30.0–33.0 | 3.5 | 30 | Irregular pattern of circular depressions on the valve face | (p.114); [1,20,39,46] |
3. Discussion
3.1. Phylogenetic Position of Humidophila
3.2. Combined Analysis of Genetic and Morphometric Differences Between Studied Humidophila Strains
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lowe, R.L.; Kociolek, P.; Johansen, J.R.; Van de Vijver, B.; Lange-Bertalot, H.; Kopalová, K. Humidophila gen. nov., a new genus for a group of diatoms (Bacillariophyta) formerly within the genus Diadesmis: Species from Hawai’i, including one new species. Diatom Res. 2014, 29, 351–360. [Google Scholar] [CrossRef]
- Goeyers, C.; Sabbe, K.; Verleyen, E.; Hamilton, P.B.; Kohler, T.J.; Van de Vijver, B. The genus Humidophila (Bacillariophyta) in Greenland with the description of 2 new species. Fottea 2024, 24, 198–221. [Google Scholar] [CrossRef]
- Van de Vijver, B.; Ector, L.; Schuster, T.M. Observations on and typification of Navicula difficilis Grunow and its transfer to the genus Humidophila RL Lowe & al.(Diadesmidaceae, Bacillariophyta). Not. Algarum 2020, 173, 1–5. [Google Scholar]
- Andreeva, S.; Kulikovskiy, M.; Maltsev, Y.; Podunay, Y.; Gusev, E. Molecular genetic investigation of diatom genera Diadesmis and Humidophila (Bacillariophyceae). Bot. Zhurn. 2016, 101, 621–628. [Google Scholar] [CrossRef]
- Schimani, K.; Abarca, N.; Skibbe, O.; Mohamad, H.; Jahn, R.; Kusber, W.-H.; Campana, G.L.; Zimmermann, J. Exploring benthic diatom diversity in the West Antarctic Peninsula: Insights from a morphological and molecular approach. Metabarcoding Metagenom. 2023, 7, 339–384. [Google Scholar] [CrossRef]
- Kuehnle, A.; Schurr, R.; Perez, M. Some microalgae from the Hawaiian Islands with a focus on industrial applications. Curr. Biotechnol. 2015, 4, 499–513. [Google Scholar] [CrossRef]
- Guiry, M.D.; Guiry, G.M.; AlgaeBase. World-Wide Electronic Publication, University of Galway. Available online: https://www.algaebase.org (accessed on 29 March 2024).
- Ferreira, P.C.; Kava, V.M.; Ludwig, T.A.V. Humidophila (Bacillariophyceae) in subtropical mountain springs and subaerial habitats, Parani state, Brazil, with the description of H. piraquarae sp. nov. Fottea 2023, 23, 8–20. [Google Scholar] [CrossRef]
- Vouilloud, A.A.; Guerrero, J.M.; Sala, S.E.; Simonato, J.; Kociolek, J.P. Taxonomy and valve morphology of Humidophila species (Bacillariophyceae) from aerophilous habitats in northeastern Argentina, with the description of four new species. Fottea 2022, 22, 56–77. [Google Scholar] [CrossRef]
- Fazlutdinova, A.; Gabidullin, Y.; Allaguvatova, R.; Gaysina, L. Diatoms in Volcanic Soils of Mutnovsky and Gorely Volcanoes (Kamchatka Peninsula, Russia). Microorganisms 2021, 9, 1851. [Google Scholar] [CrossRef]
- Zhang, Y.; Ouyang, S.; Nie, L.; Chen, X. Soil diatom communities and their relation to environmental factors in three types of soil from four cities in central-west China. Eur. J. Soil Biol. 2020, 98, 103175. [Google Scholar] [CrossRef]
- Qin, B.; Zheng, M.; Chen, X.; Yang, X.D. Diatom composition of epiphytic bryophytes on trees and its ecological distribution in Wuhan City. Chin. J. Ecol. 2016, 35, 2983. [Google Scholar]
- Chattová, B.; Cahová, T.; Pinseel, E.; Kopalová, K.; Kohler, T.J.; Hrbáček, F.; Van de Vijver, B.; Nývlt, D. Diversity, ecology, and community structure of the terrestrial diatom flora from Ulu Peninsula (James Ross Island, NE Antarctic Peninsula). Polar Biol. 2022, 45, 873–894. [Google Scholar] [CrossRef]
- Van de Vijver, B.; Goeyers, C.; Ector, L.; Kusber, W.-H. On the taxonomic identity of Humidophila contenta (Grunow) RL Lowe & al. and H. biceps (Grunow) Furey & al. (Diadesmidaceae, Bacillariophyta). Not. Algarum 2022, 265, 1–11. [Google Scholar]
- Kopalová, K.; Kociolek, J.P.; Lowe, R.L.; Zidarova, R.; Van de Vijver, B. Five new species of the genus Humidophila (Bacillariophyta) from the Maritime Antarctic Region. Diatom Res. 2015, 30, 117–131. [Google Scholar] [CrossRef]
- Kochman-Kędziora, N.; Noga, T.; Zidarova, R.; Kopalová, K.; Van de Vijver, B. Humidophila komarekiana sp. nov. (Bacillariophyta), a new limnoterrestrial diatom species from King George Island (Maritime Antarctica). Phytotaxa 2016, 272, 184–190. [Google Scholar] [CrossRef]
- Chattová, B.; Lebouvier, M.; Van de Vijver, B. Morphological and taxonomical analysis of the terrestrial diatom genus Humidophila (Bacillariophyta) on Ile Ámsterdam and Ile SaintPaul (Southern Indian Ocean). Phytotaxa 2018, 336, 28–42. [Google Scholar] [CrossRef]
- Yogeshwaran, M.; Radhakrishnan, C.; Dwivedi, A.; Patrick, J. Humidophila manipurensis sp. nov. and the first record of Humidophila bigibba (Hustedt) Lowe, Kociolek, Johansen, Van de Vijver, Lange–Bertalot et Kopalová from Northeast India. Fottea 2022, 22, 162–170. [Google Scholar] [CrossRef]
- Binoy, T.T.; Ray, J.G. Diversity and Ecology of Diatoms in Oxic Dystrustepts soils under three different vegetation of the Western Ghats, Kerala, South India. J. Ecol. 2016, 111, 465–475. [Google Scholar]
- Lowe, R.; Kociolek, J.P.; You, Q.; Wang, Q.; Stepanek, J. Diversity of the diatom genus Humidophila in karst areas of Guizhou, China. Phytotaxa 2017, 305, 269–284. [Google Scholar]
- Rybak, M.; Peszek, Ł.; Bąk, M.; Redzuan, N.S. Moss-associated diatoms from Malaysian montane cloud forest with a description of two new species. Diatom Res. 2023, 38, 209–227. [Google Scholar] [CrossRef]
- Rybak, M.; Kochman-Kędziora, N.; Luthfi, O.M. A new diatom (Bacillariophyta) species from Indonesian urban areas, description of Microcostatus labrisicus sp. nov. Phytotaxa 2022, 555, 87–94. [Google Scholar] [CrossRef]
- Rybak, M.; Christenhusz, M.J.; Byng, J. Discovery of a new moss-associated diatom species, Humidophila caribaea (Bacillariophyceae: Diadesmidaceae), from terrestrial habitats of the Monts Caraïbes, Guadeloupe. Phytotaxa 2024, 674, 111–120. [Google Scholar] [CrossRef]
- Pham, H.T.; Nguyen, L.T.; Duong, T.A.; Bui, D.T.; Doan, Q.T.; Nguyen, H.T.; Mundt, S. Diversity and bioactivities of nostocacean cyanobacteria isolated from paddy soil in Vietnam. Syst. Appl. Microbiol. 2017, 40, 470–481. [Google Scholar] [CrossRef] [PubMed]
- Joseph, J.; Ray, J.G. A critical review of soil algae as a crucial soil biological component of high ecological and economic significance. J. Phycol. 2024, 60, 229–253. [Google Scholar] [CrossRef]
- Kezlya, E.; Glushchenko, A.; Kociolek, J.P.; Maltsev, Y.; Martynenko, N.; Genkal, S.; Kulikovskiy, M. Mayamaea vietnamica sp. nov.: A new, terrestrial diatom (Bacillariophyceae) species from Vietnam. Algae 2020, 35, 325–335. [Google Scholar] [CrossRef]
- Kezlya, E.; Glushchenko, A.; Maltsev, Y.; Gusev, E.; Genkal, S.; Kuznetsov, A.; Kociolek, J.P.; Kulikovskiy, M. Placoneis cattiensis sp. nov.—A new, diatom (Bacillariophyceae: Cymbellales) soil species from Cát Tiên National Park (Vietnam). Phytotaxa 2020, 460, 237–248. [Google Scholar] [CrossRef]
- Kezlya, E.; Glushchenko, A.; Maltsev, Y.; Gusev, E.; Genkal, S.; Kociolek, J.P.; Kulikovskiy, M. Three new species of Placoneis Mereschkowsky (Bacillariophyceae: Cymbellales) with comments on cryptic diversity in the P. elginensis—Group. Water 2021, 13, 3276. [Google Scholar] [CrossRef]
- Kezlya, E.; Glushchenko, A.; Kociolek, J.P.; Maltsev, Y.; Genkal, S.; Kulikovskiy, M. A new species of Placoneis Mereschkowsky (Bacillariophyceae: Cymbellales) from wet soils in southern Vietnam. Cryptogam. Algol. 2022, 43, 177–188. [Google Scholar] [CrossRef]
- Glushchenko, A.; Kezlya, E.; Maltsev, Y.; Genkal, S.; Kociolek, J.P.; Kulikovskiy, M. Description of the soil diatom Sellaphora terrestris sp. nov. (Bacillariophyceae, Sellaphoraceae) from Vietnam, with remarks on the phylogeny and taxonomy of Sellaphora and systematic position of Microcostatus. Plants 2022, 11, 2148. [Google Scholar] [CrossRef]
- Kezlya, E.; Maltsev, Y.; Genkal, S.; Krivova, Z.; Kulikovskiy, M. Phylogeny and fatty acid profiles of new Pinnularia (Bacillariophyta) species from soils of Vietnam. Cells 2022, 11, 2446. [Google Scholar] [CrossRef]
- Martynenko, N.; Kezlya, E.; Gusev, E. Description of a New Species of the Genus Cryptomonas (Cryptophyceae: Cryptomonadales), Isolated from Soils in a Tropical Forest. Diversity 2022, 14, 1001. [Google Scholar] [CrossRef]
- Maltseva, S.; Kezlya, E.; Krivova, Z.; Gusev, E.; Kulikovskiy, M.; Maltsev, Y. Phylogeny and fatty acid profiles of Aliinostoc vietnamicum sp. nov. (Cyanobacteria) from the soils of Vietnam. J. Phycol. 2022, 58, 789–803. [Google Scholar] [CrossRef]
- Pinseel, E.; Kulichová, J.; Scharfen, V.; Urbánková, P.; Van de Vijver, B.; Vyverman, W. Extensive cryptic diversity in the terrestrial diatom Pinnularia borealis (Bacillariophyceae). Protist 2019, 170, 121–140. [Google Scholar] [CrossRef]
- Pinseel, E.; Vanormelingen, P.; Hamilton, P.B.; Vyverman, W.; Van de Vijver, B.; Kopalová, K. Molecular and morphological characterization of the Achnanthidium minutissimum complex (Bacillariophyta) in Petuniabukta (Spitsbergen, High Arctic) including the description of A. digitatum sp. nov. Eur. J. Phycol. 2017, 52, 264–280. [Google Scholar] [CrossRef]
- Metzeltin, D.; Lange-Bertalot, H.; García-Rodriguez, F. Diatoms of Uruguay: Compared with Other Taxa from South America and Elsewhere. Iconogr. Diatomol. 2005, 15, 1–736. [Google Scholar]
- Rumrich, U.; Lange-Bertalot, H.; Rumrich, M. Diatoms of the Andes from Venezuela to Patagonia/Tierra del Fuego and two additional contributions. Iconogr. Diatomol. 2000, 9, 1–673. [Google Scholar]
- Zidarova, R.; Kopalová, K.; van de Vijver, B. Diatoms from the Antarctic Region: Maritime Antarctica. Iconogr. Diatomol. 2016, 24, 1–504. [Google Scholar]
- Lange-Bertalot, H.; Werum, M. Diadesmis fukushimae sp. nov. and some other new or rarely observed taxa of the subgenus Paradiadesmis Lange-Bertalot & Le Cohu. Diatom 2001, 17, 3–19. [Google Scholar]
- Moser, G.; Lange-Bertalot, H.; Metzeltin, D. Insel der Endemiten: Geobotanisches Phaenomen Neukaledonien; Bibliotheca Diatomologica: Stuttgart, Germany, 1998; Volume 38, pp. 1–464. [Google Scholar]
- Furey, P.C.; Manoylov, K.M.; Lowe, R.L. New and interesting aerial diatom assemblages from southwestern Iceland. Phytotaxa 2020, 428, 173–208. [Google Scholar] [CrossRef]
- Goeyers, C.; Van de Vijver, B. The diatom genus Humidophila (Bacillariophyta) in an historic Delogne sample with the description of 2 new species. Bot. Lett. 2023, 171, 35–49. [Google Scholar] [CrossRef]
- Reichardt, E. Eine bemerkenswerte Diatomeenassoziation in einem Quellhabitat im Grazer Bergland, Österreich: Ein Beitrag zur Kenntnis seltener und wenig bekannter Diatomeen. Iconogr. Diatomol. 2004, 13, 418–479. [Google Scholar]
- Le Cohu, R.; Van de Vijver, B. Le genre Diadesmis (Bacillariophyta) dans les archipels de Crozet et de Kerguelen avec la description de cinq espèces nouvelles. Ann. Limnol. 2002, 38, 119–132. [Google Scholar] [CrossRef]
- Nikolić, N.; Popović, S.; Vidaković, D.; Subakov-Simić, G.; Krizmanić, J. Genus Humidophila from caves in Serbia with an improved detailed description of rare H. brekkaensoides. Arch. Biol. Sci. 2020, 72, 279–289. [Google Scholar] [CrossRef]
- Krasske, G. Beiträge zur Kenntnis der Diatomeenflora der Alpen. Hedwigia 1932, 72, 92–135. [Google Scholar]
- Kulikovskiy, M.S.; Maltsev, Y.I.; Glushchenko, A.M.; Gusev, E.S.; Kapustin, D.A.; Kuznetsova, I.V.; Frolova, L.; Kociolek, J.P. Preliminary molecular phylogeny of the diatom genus Nupela with the description of a new species and consideration of the interrelationships of taxa in the suborder Neidiineae DG Mann sensu EJ Cox. Fottea 2020, 20, 192–204. [Google Scholar] [CrossRef]
- Hamsher, S.E.; Evans, K.M.; Mann, D.G.; Poulíčková, A.; Saunders, G.W. Barcoding diatoms: Exploring alternatives to COI-5P. Protist 2011, 162, 405–422. [Google Scholar] [CrossRef]
- Vanormelingen, P.; Evans, K.M.; Chepurnov, V.; Vyverman, W.; Mann, D.G. Molecular species discovery in the diatom Sellaphora and its congruence with mating trials. Fottea 2013, 13, 133–148. [Google Scholar] [CrossRef]
- Poulíčková, A.; Kollár, J.; Hašler, P.; Dvořák, P.; Mann, D.G. A new species Pinnularia lacustrigibba sp. nov. within the Pinnularia subgibba group (Bacillariophyceae). Diatom Res. 2018, 33, 273–282. [Google Scholar] [CrossRef]
- Kollár, J.; Pinseel, E.; Vanormelingen, P.; Poulíčková, A.; Souffreau, C.; Dvořák, P.; Vyverman, W. A polyphasic approach to the delimitation of diatom species: A case study for the genus Pinnularia (Bacillariophyta). J. Phycol. 2019, 55, 365–379. [Google Scholar] [CrossRef]
- Kollár, J.; Pinseel, E.; Vyverman, W.; Poulíčková, A. A time-calibrated multi-gene phylogeny provides insights into the evolution, taxonomy and DNA barcoding of the Pinnularia gibba group (Bacillariophyta). Fottea 2021, 21, 62–72. [Google Scholar] [CrossRef]
- Blanc, L.; Maury-Lechon, G.; Pascal, J.P. Structure, floristic composition and natural regeneration in the forests of Cat Tien National Park, Vietnam: An analysis of the successional trends. J. Biogeogr. 2000, 27, 141–157. [Google Scholar] [CrossRef]
- Tiunov, A.V. (Ed.) Structure and Functions of Soil Communities of a Monsoon Tropical Forest (Cat Tien National Park, Southern Vietnam); KMK Scientific Press: Moscow, Russia, 2011; 277p. [Google Scholar]
- Khokhlova, O.S.; Myakshina, T.N.; Kuznetsov, A.N.; Gubin, S.V. Morphogenetic features of soils in the Cat Tien National Park, southern Vietnam. Eurasian Soil Sci. 2017, 50, 158–175. [Google Scholar] [CrossRef]
- Gollerbach, M.M.; Shtina, E.A. Soil Algae; Nauka: Leningrad, Russia, 1969; 228p. (In Russian) [Google Scholar]
- Vadjunina, A.F.; Korchagina, Z.A. Methods of Studying the Physical Properties of Soils; Agropromisdat: Moscow, Russia, 1986; 416p. [Google Scholar]
- Anichkin, A.E. Soil macrofauna: Structure and seasonal dynamics. In Structure and Functions of Soil Communitties of Monsoon Tropical Forest (Cat Tien National Park, South Vietnam); KMK Scientific Press: Moscow, Russia, 2011; pp. 44–75. (In Russian) [Google Scholar]
- Guillard, R.R.L.; Lorenzen, C.J. Yellow-green algae with chlorophyllide c. J. Phycol. 1972, 8, 10–14. [Google Scholar] [CrossRef]
- Arinushkina, E.V. Handbook for Chemical Analysis of Soils; Publishing House of Moscow State University: Moscow, Russia, 1970; 487p. (In Russian) [Google Scholar]
- Kulikovskiy, M.; Glushchenko, A.; Genkal, S.I.; Kuznetsova, I. Identification Book of Diatoms from Russia; Filigran: Yaroslavl, Russia, 2016; 803p. (In Russian) [Google Scholar]
- Gololobova, M.A.; Gogorev, R.M.; Lyakh, A.M.; Dorofeyuk, N.I. The main valve shapes of diatoms: Terminology. I. Valve shapes symmetrical to the apical axis and valve shapes with radial symmetry. Nov. Sist. Nizsh. Rast. 2022, 56, 29–54. [Google Scholar] [CrossRef]
- Gogorev, R.M.; Gololobova, M.A.; Lyakh, A.M.; Dorofeyuk, N.I. The main valve shapes of diatoms: Terminology. II. Valve shapes symmetrical to the transapical axis and intermediate valve shapes. Nov. Sist. Nizsh. Rast. 2023, 57, 7–26. [Google Scholar] [CrossRef]
- Zimmermann, J.; Jahn, R.; Gemeinholzer, B. Barcoding diatoms: Evaluation of the V4 subregion on the 18S rRNA gene, including new primers and protocols. Org. Divers. Evol. 2011, 11, 173–192. [Google Scholar] [CrossRef]
- Ruck, E.C.; Theriot, E.C. Origin and evolution of the canal raphe system in diatoms. Protist 2011, 162, 723–737. [Google Scholar] [CrossRef]
- Daugbjerg, N.; Andersen, R.A. A molecular phylogeny of the heterokont algae based on analyses of chloroplast-encoded rbcL sequence data. J. Phycol. 1997, 33, 1031–1041. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Katoh, K.; Toh, H. Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 2010, 26, 1899–1900. [Google Scholar] [CrossRef]
- Drummond, A.J.; Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 2007, 7, 214. [Google Scholar] [CrossRef]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef]
- Stamatakis, A.; Hoover, P.; Rougemont, J. A rapid bootstrap algorithm for the RAxML web–servers. Syst. Biol. 2008, 57, 758–771. [Google Scholar] [CrossRef] [PubMed]
- Beszteri, B.; John, U.; Medlin, L.K. An assessment of cryptic genetic diversity within the Cyclotella meneghiniana species complex (Bacillariophyta) based on nuclear and plastid genes, and amplified fragment length polymorphisms. Eur. J. Phycol. 2007, 42, 47–60. [Google Scholar] [CrossRef]
- Evans, K.M.; Wortley, A.H.; Simpson, G.E.; Chepurnov, V.A.; Mann, D.G. A molecular systematic approach to explore diversity within the Sellaphora pupula species complex (Bacillariophyta). J. Phycol. 2008, 44, 215–231. [Google Scholar] [CrossRef] [PubMed]
- Mann, D.G.; Poulíčková, A. Homothallism, morphology and phylogenetic position of a new species of Sellaphora (Bacillariophyta), S. pausariae. Plant Ecol. Evol. 2019, 152, 203–218. [Google Scholar] [CrossRef]
- Van de Vyver, E.; Pinseel, E.; Verleyen, E.; Vanormelingen, P.; Van Wichelen, J.; de Jong, R.; Urrutia, R.; Vyverman, W. Planktonic diatom communities in temperate South-Central Chilean lakes with a focus on Asterionella formosa and the genus Aulacoseira. J. Paleolimnol. 2022, 68, 279–296. [Google Scholar] [CrossRef]
- Irisarri, I.; Darienko, T.; Pröschold, T.; Fürst-Jansen, J.M.R.; Jamy, M.; de Vries, J. Unexpected cryptic species among streptophyte algae most distant to land plants. Proc. R. Soc. B 2021, 288, 20212168. [Google Scholar] [CrossRef]
- Verbruggen, H.; Vlaeminck, C.; Sauvage, T.; Sherwood, A.R.; Leliaert, F.; De Clerck, O. Phylogenetic Analysis of Pseudochlorodesmis Strains Reveals Cryptic Diversity above the Family Level in the Siphonous Green Algae (Bryopsidales, Chlorophyta). J. Phycol. 2009, 45, 726–731. [Google Scholar] [CrossRef]
- Krivina, E.S.; Temraleeva, A.D. Identification problems and cryptic diversity of Chlorella-clade microalgae (Chlorophyta). Microbiology 2020, 89, 720–732. [Google Scholar] [CrossRef]
- Egorova, I.N.; Kulakova, N.V.; Bedoshvili, Y.D. Diversity of the scenedesmacean genus Chodatodesmus (Chlorophyta) and new cryptic species in the algae flora of Lake Baikal revealed by an integrative approach. Org. Divers. Evol. 2025, 1–19. [Google Scholar] [CrossRef]
- Saengkaew, J.; Muangmai, N.; Zuccarello, G.C. Cryptic diversity of the mangrove-associated alga Bostrychia (Rhodomelaceae, Rhodophyta) from Thailand. Bot. Mar. 2016, 59, 363–371. [Google Scholar] [CrossRef]
- Yan, S.H.; Wang, X.L.; Xia, B.M.; Wang, G.C. A multiscale analysis of coralline algae Lithophylloideae (Corallinophycidae, Rhodophyta) shedding new light on understanding cryptic diversity. Mol. Phylogenetics Evol. 2024, 199, 108140. [Google Scholar] [CrossRef]
- Kim, J.I.; Shin, W.; Triemer, R.E. Cryptic speciation in the genus Cryptoglena (Euglenaceae) revealed by nuclear and plastid SSU and LSU rRNA gene. J. Phycol. 2013, 49, 92–102. [Google Scholar] [CrossRef]
- Kim, J.I.; Linton, E.W.; Shin, W. Morphological and genetic diversity of Euglena deses group (Euglenophyceae) with emphasis on cryptic species. Algae 2016, 31, 219–230. [Google Scholar] [CrossRef]
- Jankowska, K.; Łukomska-Kowalczyk, M.; Milanowski, R.; Fells, A.; Zakryś, B. Biodiversity of autotrophic euglenids based on the group specific DNA metabarcoding approach. Protist 2024, 175, 126024. [Google Scholar] [CrossRef] [PubMed]
- Alverson, A.J. Molecular systematics and the diatom species. Protist 2008, 159, 339–353. [Google Scholar] [CrossRef]
- Kermarrec, L.; Bouchez, A.; Rimet, F.; Humbert, J.F. First evidence of the existence of semi-cryptic species and of a phylogeographic structure in the Gomphonema parvulum (Kützing) Kützing complex (Bacillariophyta). Protist 2013, 164, 686–705. [Google Scholar] [CrossRef]
- Pérez-Burillo, J.; Trobajo, R.; Leira, M.; Keck, F.; Rimet, F.; Sigró, J.; Mann, D.G. DNA metabarcoding reveals differences in distribution patterns and ecological preferences among genetic variants within some key freshwater diatom species. Sci. Total Environ. 2021, 798, 149029. [Google Scholar] [CrossRef]
Taxon (Strain) | Length (µm) | Width (µm) | Striae Density in 10 µm | Features | Reference |
---|---|---|---|---|---|
H. cattiensis sp. nov. (VP242, VP243, VP252, VP254) | 17.5–26.0 | 2.8–3.3 | 30–36 | this study | |
H. vietnamica sp. nov. (VP241) | 25.0–25.5 | 3.0–3.5 | 34–36 | Elongated areolae at the apices | this study |
H. paravietnamica sp. nov. (VP128) | 24.5–26.0 | 2.5–3.0 | 33–35 | this study | |
H. subtropica | 12.0–18.0 (type) 10.0–17.0 [1] | 2.7–3.5 (type) 2.3–2.5 [1] | 35–40 | [1,36] (p. 47; pl. 56, Figures 25–31) | |
H. pantropica | 20.0–35.0 (type) 17.0–22.0 [1] | 3.0–4.0 2.8–3.3 | 25–27 28–30 | [1,37] | |
H. australoshetlandica | 11.6–24.5 | 3.6–4.3 | 31–32 | Internally a well-developed central nodule is present | [15] |
H. costei | 19–23.5 | 3.5–4.5 | 34–36 | Hyaline area at the apices absent | [38] (p. 220) |
Strain | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | H. cattiensis VP242 | – | ||||||||||||||||||||||
2 | H. cattiensis VP243 | 0.0 | – | |||||||||||||||||||||
3 | H. cattiensis VP252 | 0.0 | 0.0 | – | ||||||||||||||||||||
4 | H. cattiensis VP254 | 0.0 | 0.0 | 0.0 | – | |||||||||||||||||||
5 | H. paravietnamica VP128 | 2.6 | 1.7 | 2.6 | 2.6 | – | ||||||||||||||||||
6 | H. vietnamica VP241 | 2.3 | 1.6 | 2.3 | 2.3 | 2.0 | – | |||||||||||||||||
7 | H. concava VP169 | 3.4 | 2.6 | 3.4 | 3.4 | 2.9 | 3.7 | – | ||||||||||||||||
8 | H. frolihiensis B360 | 4.1 | 3.4 | 4.1 | 4.1 | 3.7 | 4.1 | 3.1 | – | |||||||||||||||
9 | H. cf. platensis VP119 | 1.3 | 1.0 | 1.3 | 1.3 | 2.8 | 2.6 | 3.4 | 4.1 | – | ||||||||||||||
10 | H. “lanceolate-triundulate” VP253 | 1.3 | 1.0 | 1.3 | 1.3 | 2.8 | 2.6 | 3.4 | 4.1 | 0.0 | – | |||||||||||||
11 | H. “bacilliformis” VP110 | 5.5 | 5.3 | 5.5 | 5.5 | 7.0 | 6.3 | 7.4 | 8.5 | 4.6 | 4.6 | – | ||||||||||||
12 | H. “bacilliformis” VP108 | 1.0 | 1.0 | 1.0 | 1.0 | 1.4 | 1.6 | 2.6 | 3.1 | 0.0 | 0.0 | 4.5 | – | |||||||||||
13 | H. “bacilliformis” VP111 | 1.3 | 1.0 | 1.3 | 1.3 | 2.9 | 2.6 | 3.4 | 4.1 | 0.0 | 0.0 | 4.4 | 0.0 | – | ||||||||||
14 | H. “bacilliformis” VP112 | 1.3 | 1.0 | 1.3 | 1.3 | 2.8 | 2.6 | 3.4 | 4.1 | 0.0 | 0.0 | 4.6 | 0.0 | 0.0 | – | |||||||||
15 | H. “bacilliformis” VP114 | 1.3 | 1.0 | 1.3 | 1.3 | 2.8 | 2.6 | 3.4 | 4.1 | 0.0 | 0.0 | 4.6 | 0.0 | 0.0 | 0.0 | – | ||||||||
16 | H. “bacilliformis” VP120 | 1.3 | 1.0 | 1.3 | 1.3 | 2.8 | 2.6 | 3.4 | 4.1 | 0.0 | 0.0 | 4.6 | 0.0 | 0.0 | 0.0 | 0.0 | – | |||||||
17 | H. “bacilliformis” VP161 | 1.3 | 1.0 | 1.3 | 1.3 | 2.8 | 2.6 | 3.4 | 4.1 | 0.0 | 0.0 | 4.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | – | ||||||
18 | H. “bacilliformis” VP244 | 1.3 | 1.0 | 1.3 | 1.3 | 2.8 | 2.6 | 3.4 | 4.1 | 0.0 | 0.0 | 4.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | – | |||||
19 | H. “bacilliformis” VP251 | 1.3 | 1.0 | 1.3 | 1.3 | 2.8 | 2.6 | 3.4 | 4.1 | 0.0 | 0.0 | 4.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | – | ||||
20 | H. sceppacuerciae D300_002 | 3.9 | 3.1 | 3.9 | 3.9 | 2.8 | 3.3 | 1.7 | 3.3 | 3.3 | 3.3 | 7.1 | 2.4 | 3.3 | 3.3 | 3.3 | 3.3 | 3.3 | 3.3 | 3.3 | – | |||
21 | H. sceppacuerciae D300_022 | 3.9 | 3.1 | 3.9 | 3.9 | 2.8 | 3.3 | 1.7 | 3.3 | 3.3 | 3.3 | 7.1 | 2.4 | 3.3 | 3.3 | 3.3 | 3.3 | 3.3 | 3.3 | 3.3 | 0.0 | – | ||
22 | Nupela indonesica Ind121 | 3.6 | 3.6 | 3.6 | 3.6 | 3.3 | 3.6 | 1.9 | 4.2 | 3.6 | 3.6 | 7.8 | 3.3 | 3.6 | 3.6 | 3.6 | 3.6 | 3.6 | 3.6 | 3.6 | 2.6 | 2.6 | – | |
23 | Nupela lesothensis Ind168 | 4.9 | 3.9 | 4.9 | 4.9 | 4.3 | 4.1 | 4.3 | 4.9 | 5.1 | 5.1 | 8.5 | 4.2 | 5.2 | 5.1 | 5.1 | 5.1 | 5.1 | 5.1 | 5.1 | 3.6 | 3.6 | 2.6 | – |
Strain | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | H. cattiensis VP242 | – | ||||||||||||||||||||||
2 | H. cattiensis VP243 | 0.0 | – | |||||||||||||||||||||
3 | H. cattiensis VP252 | 0.0 | 0.0 | – | ||||||||||||||||||||
4 | H. cattiensis VP254 | 0.0 | 0.0 | 0.0 | – | |||||||||||||||||||
5 | H. paravietnamica VP128 | 0.7 | 0.7 | 0.7 | 0.7 | – | ||||||||||||||||||
6 | H. vietnamica VP241 | 0.7 | 0.7 | 0.7 | 0.7 | 0.9 | – | |||||||||||||||||
7 | H. concava VP169 | 4.6 | 4.6 | 4.6 | 4.6 | 4.4 | 4.6 | – | ||||||||||||||||
8 | H. frolihiensis B360 | 4.8 | 4.8 | 4.8 | 4.8 | 4.9 | 4.9 | 5.5 | – | |||||||||||||||
9 | H. cf. platensis VP119 | 0.6 | 0.6 | 0.6 | 0.6 | 0.7 | 0.9 | 4.3 | 4.7 | – | ||||||||||||||
10 | H. “lanceolate-triundulate” VP253 | 0.5 | 0.5 | 0.5 | 0.5 | 0.7 | 0.8 | 4.5 | 4.9 | 0.1 | – | |||||||||||||
11 | H. “bacilliformis” VP110 | 0.7 | 0.7 | 0.7 | 0.7 | 0.8 | 1.0 | 4.4 | 4.8 | 0.1 | 0.2 | – | ||||||||||||
12 | H. “bacilliformis” VP108 | 0.5 | 0.5 | 0.5 | 0.5 | 0.7 | 0.8 | 4.5 | 4.9 | 0.1 | 0.0 | 0.2 | – | |||||||||||
13 | H. “bacilliformis” VP111 | 0.5 | 0.5 | 0.5 | 0.5 | 0.7 | 0.8 | 4.5 | 4.9 | 0.1 | 0.0 | 0.2 | 0.0 | – | ||||||||||
14 | H. “bacilliformis” VP112 | 0.5 | 0.5 | 0.5 | 0.5 | 0.7 | 0.8 | 4.5 | 4.9 | 0.1 | 0.0 | 0.2 | 0.0 | 0.0 | – | |||||||||
15 | H. “bacilliformis” VP114 | 0.5 | 0.5 | 0.5 | 0.5 | 0.7 | 0.8 | 4.5 | 4.9 | 0.1 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | – | ||||||||
16 | H. “bacilliformis” VP120 | 0.5 | 0.5 | 0.5 | 0.5 | 0.7 | 0.8 | 4.5 | 4.9 | 0.1 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | – | |||||||
17 | H. “bacilliformis” VP161 | 0.5 | 0.5 | 0.5 | 0.5 | 0.7 | 0.8 | 4.5 | 4.9 | 0.1 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | – | ||||||
18 | H. “bacilliformis” VP244 | 0.5 | 0.5 | 0.5 | 0.5 | 0.7 | 0.8 | 4.5 | 4.9 | 0.1 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | – | |||||
19 | H. “bacilliformis” VP251 | 0.5 | 0.5 | 0.5 | 0.5 | 0.7 | 0.8 | 4.5 | 4.9 | 0.1 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | – | ||||
20 | H. sceppacuerciae D300_002 | 4.4 | 4.4 | 4.4 | 4.4 | 4.4 | 4.3 | 3.8 | 5.2 | 4.5 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | – | |||
21 | H. sceppacuerciae D300_022 | 4.4 | 4.4 | 4.4 | 4.4 | 4.4 | 4.3 | 3.8 | 5.2 | 4.5 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 0.0. | – | ||
22 | Nupela indonesica Ind121 | 5.6 | 5.6 | 5.6 | 5.6 | 5.6 | 5.5 | 6.7 | 6.4 | 5.5 | 5.7 | 5.6 | 5.7 | 5.7 | 5.7 | 5.7 | 5.7 | 5.7 | 5.7 | 5.7 | 6.3 | 6.3 | – | |
23 | Nupela lesothensis Ind168 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | 5.4 | 6.3 | 6.2 | 5.4 | 5.6 | 5.5 | 5.6 | 5.6 | 5.6 | 5.6 | 5.6 | 5.6 | 5.6 | 5.6 | 5.9 | 5.9 | 1.0 | – |
Strain | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | H. cattiensis VP242 | – | ||||||||||||||||||||||
2 | H. cattiensis VP243 | 0.0 | – | |||||||||||||||||||||
3 | H. cattiensis VP252 | 0.0 | 0.0 | – | ||||||||||||||||||||
4 | H. cattiensis VP254 | 0.0 | 0.0 | 0.0 | – | |||||||||||||||||||
5 | H. paravietnamica VP128 | 1.1 | 1.2 | 1.1 | 1.1 | – | ||||||||||||||||||
6 | H. vietnamica VP241 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | – | |||||||||||||||||
7 | H. concava VP169 | 6.1 | 6.6 | 6.2 | 6.2 | 5.6 | 5.3 | – | ||||||||||||||||
8 | H. frolihiensis B360 | 6.3 | 6.0 | 6.5 | 6.5 | 5.8 | 5.4 | 7.2 | – | |||||||||||||||
9 | H. cf. platensis VP119 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.3 | 5.6 | 5.8 | – | ||||||||||||||
10 | H. “lanceolate-triundulate” VP253 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.3 | 5.6 | 5.9 | 0.0 | – | |||||||||||||
11 | H. “bacilliformis” VP110 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.3 | 5.6 | 5.8 | 0.0 | 0.0 | – | ||||||||||||
12 | H. “bacilliformis” VP108 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.3 | 5.6 | 5.8 | 0.0 | 0.0 | 0.0 | – | |||||||||||
13 | H. “bacilliformis” VP111 | 0.5 | 0.6 | 0.6 | 0.6 | 0.5 | 0.3 | 5.6 | 5.8 | 0.0 | 0.0 | 0.0 | 0.0 | – | ||||||||||
14 | H. “bacilliformis” VP112 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.3 | 5.7 | 5.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | – | |||||||||
15 | H. “bacilliformis” VP114 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.3 | 5.7 | 5.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | – | ||||||||
16 | H. “bacilliformis” VP120 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.3 | 5.7 | 5.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | – | |||||||
17 | H. “bacilliformis” VP161 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.3 | 5.6 | 5.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | – | ||||||
18 | H. “bacilliformis” VP244 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.3 | 5.7 | 5.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | – | |||||
19 | H. “bacilliformis” VP251 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.3 | 5.7 | 5.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | – | ||||
20 | H. sceppacuerciae D300_002 | 4.8 | 5.1 | 4.8 | 4.8 | 4.2 | 4.0 | 4.8 | 6.0 | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 | – | |||
21 | H. sceppacuerciae D300_022 | 4.8 | 5.1 | 4.8 | 4.8 | 4.2 | 4.0 | 4.8 | 6.0 | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 | 0.0 | – | ||
22 | Nupela indonesica Ind121 | 5.7 | 6.0 | 5.8 | 5.8 | 4.8 | 4.7 | 8.9 | 8.1 | 5.1 | 5.2 | 5.1 | 5.2 | 5.1 | 5.2 | 5.2 | 5.2 | 5.1 | 5.2 | 5.2 | 6.5 | 6.5 | – | |
23 | Nupela lesothensis Ind168 | 5.3 | 5.6 | 5.4 | 5.4 | 4.4 | 4.4 | 7.5 | 7.5 | 4.7 | 4.8 | 4.7 | 4.8 | 4.7 | 4.8 | 4.8 | 4.8 | 4.7 | 4.8 | 4.8 | 5.4 | 5.4 | 2.0 | – |
Collection Date | Coordinates, Local Name of the Plot | Sample no., Depth (cm) or Substrate | Total Humidity (%) | pH | Species or Morphotype | Strain | Slide No. | GenBank Accession Number, rbcL, Partial | GenBank Accession Number, 18S rDNA, Partial |
---|---|---|---|---|---|---|---|---|---|
07.06.19 | 11° 25.664′ N 107° 25.543′ E, “Afzelia” | Kt26, 0–1 | 37.90 | 4.8 | H. “bacilliformis” morphotype | VP161 | 06844 | PV393023 | PV387093 |
05.06.19 | 11° 26.490’N 107° 24.063’E, “Vyshka” | Kt9, 0–1 | 41.24 | 5.1 | H. “bacilliformis” morphotype | VP108 | 06771 | PV393015 | PV387085 |
H. “bacilliformis” morphotype | VP110 | 06769 | PV393016 | PV387086 | |||||
H. “bacilliformis” morphotype | VP111 | 06774 | PV393017 | PV387087 | |||||
H. “bacilliformis” morphotype | VP112 | 06775 | PV393018 | PV387088 | |||||
H. “bacilliformis” morphotype | VP114 | 06763 | PV393019 | PV387089 | |||||
H. cf. platensis | VP119 | 06751 | PV393020 | PV387090 | |||||
H. “bacilliformis” morphotype | VP120 | 06756 | PV393021 | PV387091 | |||||
Kt10, 3–10 | 40.58 | 5.0 | H. vietnamica sp. nov. | VP241 | 06999 | PV393025 | PV387095 | ||
05.06.19 | 11° N 26.112′ 107° 25.424′ E, “Ficus” | Kt15, 0–1 | 36.21 | 5.7 | H. cattiensis sp. nov. | VP242 | 07000 | PV393026 | PV387096 |
H. cattiensis sp. nov. | VP243 | 07001 | PV393027 | PV387097 | |||||
Kt16, 5–10 | 58.90 | 6.0 | H. “bacilliformis” morphotype | VP244 | 07002 | PV393028 | PV387098 | ||
H. “bacilliformis” morphotype | VP251 | 07009 | PV393029 | PV387099 | |||||
H. cattiensis sp. nov. | VP252 | 07010 | PV393030 | PV387100 | |||||
H. “lanceolate-triundulate” morphotype | VP253 | 07011 | PV393031 | PV387101 | |||||
Kt18, leaf litter | — | — | H. cattiensis sp. nov. | VP254 | 07012 | PV393032 | PV387102 | ||
16.06.19 | 11° 26.975′ N 107° 21.462′ E | Kt53, basalt | — | — | H. paravietnamica sp. nov. | VP128 | 06766 | PV393022 | PV387092 |
H. concava sp. nov. | VP169 | 06852 | PV393024 | PV387094 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kezlya, E.; Glushchenko, A.; Maltsev, Y.; Genkal, S.; Tseplik, N.; Kulikovskiy, M. Morphological Variability amid Genetic Homogeneity and Vice Versa: A Complicated Case with Humidophila (Bacillariophyceae) from Tropical Forest Soils of Vietnam with the Description of Four New Species. Plants 2025, 14, 1069. https://doi.org/10.3390/plants14071069
Kezlya E, Glushchenko A, Maltsev Y, Genkal S, Tseplik N, Kulikovskiy M. Morphological Variability amid Genetic Homogeneity and Vice Versa: A Complicated Case with Humidophila (Bacillariophyceae) from Tropical Forest Soils of Vietnam with the Description of Four New Species. Plants. 2025; 14(7):1069. https://doi.org/10.3390/plants14071069
Chicago/Turabian StyleKezlya, Elena, Anton Glushchenko, Yevhen Maltsev, Sergei Genkal, Natalia Tseplik, and Maxim Kulikovskiy. 2025. "Morphological Variability amid Genetic Homogeneity and Vice Versa: A Complicated Case with Humidophila (Bacillariophyceae) from Tropical Forest Soils of Vietnam with the Description of Four New Species" Plants 14, no. 7: 1069. https://doi.org/10.3390/plants14071069
APA StyleKezlya, E., Glushchenko, A., Maltsev, Y., Genkal, S., Tseplik, N., & Kulikovskiy, M. (2025). Morphological Variability amid Genetic Homogeneity and Vice Versa: A Complicated Case with Humidophila (Bacillariophyceae) from Tropical Forest Soils of Vietnam with the Description of Four New Species. Plants, 14(7), 1069. https://doi.org/10.3390/plants14071069