Biochemical and Physiological Performance of Seeds of Pentaclethra macroloba (Willd.) Kuntz (Leguminosae, Caesalpinioideae) at Different Phases of Maturation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Ripening Variability and Seeds Water Content
2.2. Physiological Quality of Seeds in the Three Phases of Maturation
2.3. Yield and Chemical Composition of Oils
3. Material and Methods
3.1. Fruit Collection Area
3.2. Collecting and Incorporating Botanical Material
3.3. Seed Extraction
3.4. Determining the Water Content of Seeds
3.5. Vigor Test
3.6. Analysis of Seed Physiological Quality and Seedling Vigor Data
3.7. Methods for Yield Determination and Chemical Analysis of Oils
Oil Extraction
3.8. Analysis of the Chemical Composition of the Oils
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- LPWG A New Subfamily Classification of the Leguminosae Based on a Taxonomically Comprehensive Phylogeny—The Legume Phylogeny Working Group (LPWG). Taxon 2017, 66, 44–77. [CrossRef]
- Dantas, A.R.; Guedes, M.C.; Lira-Guedes, A.C.; Piedade, M.T.F. Phenological Behavior and Floral Visitors of Pentaclethra macroloba, a Hyperdominant Tree in the Brazilian Amazon River Estuary. Trees—Struct. Funct. 2021, 35, 973–986. [Google Scholar] [CrossRef]
- Flora e Funga do Brasil. Flora Do Brasil—Pentaclethra macroloba (Willd.) Kuntze. Available online: http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB83571 (accessed on 25 February 2022).
- Lorenzi, H. Árvores Brasileiras: Manual de Identificação e Cultivo de Plantas Arbóreas Nativas Do Brasil; Instituto Plantarum de estudos da Flora: São Paulo, Brazil, 1992; ISBN 85-86714-07-0. [Google Scholar]
- Román, F.; De Liones, R.; Sautu, A.; Deago, J.; Hall, J.S. Guía Para La Propagación de 120 Especies de Árboles Nativos de Panamá y El Neotrópico; Smithsonian Trocpical Research Institute: Panama City, Panamá, 2012; ISBN 9789962053477. [Google Scholar]
- Condé, T.M.; Tonini, H. Fitossociologia de Uma Floresta Ombrófila Densa Na Amazônia Setentrional, Roraima, Brasil. Acta Amaz. 2013, 43, 247–260. [Google Scholar] [CrossRef]
- Box, W.; Järvelä, J.; Västilä, K. Flow Resistance of Floodplain Vegetation Mixtures for Modelling River Flows. J. Hydrol. 2021, 601, 126593. [Google Scholar] [CrossRef]
- Ielpi, A.; Lapôtre, M.G.A.; Gibling, M.R.; Boyce, C.K. The Impact of Vegetation on Meandering Rivers. Nat. Rev. Earth Environ. 2022, 3, 165–178. [Google Scholar] [CrossRef]
- Dantas, A.R.; Marangon, L.C.; Guedes, M.C.; Feliciano, A.L.P.; Lira-Guedes, A.C. Spatial distribution of a population of Pentaclethra macroloba (Willd.) Kuntze in a floodplain forest of the amazon estuary1. Rev. Árvore 2018, 41, 410406. [Google Scholar] [CrossRef]
- Dantas, A.R.; Guedes, M.C.; Da Cruz Vasconcelos, C.D.C.; Lobo Isacksson, J.G.; Barbosa Pastana, D.N.; Lira-Guedes, A.C.; Fernandez Piedade, M.T. Morphology, Germination, and Geographic Distribution of Pentaclethra macroloba (Fabaceae): A Hyperdominant Amazonian Tree. Rev. Biol. Trop. 2020, 69, 181–196. [Google Scholar] [CrossRef]
- Freitas, J.L.; Malheiros, M.A.B.; Vasconcelos, P.C.S. Processos Fenólicos de Taperebá (Spondias mombin L.) e Pracaxi (Pentaclethra macroloba (Wild) O. Kuntz) Em Ecossitema Floresta de Várzea Na Ilha Do Pará, Afuá, Pará. Rev. Ciências Agráriasde Ciências Agrárias 2003, 163–172. [Google Scholar]
- Joker, D.; Salazar, R. Pentaclethra macroloba (Willd.) Kuntze; Seed Leaflet; Danida Forest Seed Centre: Humlebaek, Denmark, 2000; Volume 35, 2p. [Google Scholar]
- Crespi, B.; Guerra, G. Ocorrência, Coleta, Processamento Primário e Usos Do Pracaxi (Pentaclethra macroloba (Willd.) Kuntze) Na Ilha de Cotijuba, Belém- PA. Rev. Bras. Agroecol. 2013, 8, 176–189. [Google Scholar]
- Giamminola, E.M. Will Global Change Modify the Distribution of the Anadenanthera colubrina (Fabales: Fabaceae) Plant, a Key Species in Dry Tropical Forest? Rev. Biol. Trop. 2020, 68, 227–235. [Google Scholar] [CrossRef]
- Pesce, C.; Rocha, D.A.E.S.; Rocha Filho, D.G.N.; Zoghbi, M.d.G.B. Oleaginosas Da Amazônia, 2nd ed.; Museu Paraense Emílio Goeldi; Núcleo de Estudos Agrários e Desenvolvimento Rural: Belém: Brasília, Brazil, 2009; ISBN 978-85-61377-06-9; 978-85-60548-39-2. [Google Scholar]
- Pereira Lima, R.; Souza da Luz, P.T.; Braga, M.; dos Santos Batista, P.R.; Ferreira da Costa, C.E.; Zamian, J.R.; Santos do Nascimento, L.A.; da Rocha Filho, G.N. Murumuru (Astrocaryum murumuru Mart.) Butter and Oils of Buriti (Mauritia flexuosa Mart.) and Pracaxi (Pentaclethra macroloba (Willd.) Kuntze) Can Be Used for Biodiesel Production: Physico-Chemical Properties and Thermal and Kinetic Studies. Ind. Crops Prod. 2017, 97, 536–544. [Google Scholar] [CrossRef]
- Reyes-Cueva, E.; Nicolalde, J.F.; Martínez-Gómez, J. Characterization of Unripe and Mature Avocado Seed Oil in Different Proportions as Phase Change Materials and Simulation of Their Cooling Storage. Molecules 2020, 26, 107. [Google Scholar] [CrossRef] [PubMed]
- Jonas, M.; Ketlogetswe, C.; Gandure, J. Variation of Jatropha curcas Seed Oil Content and Fatty Acid Composition with Fruit Maturity Stage. Heliyon 2020, 6, e03285. [Google Scholar] [CrossRef] [PubMed]
- Marcos-Filho, J. Fisiologia de Sementes de Plantas Cultivadas; ABRATES: Londrina, Brazil, 2015. [Google Scholar]
- Barbedo, C.J. A New Approach towards the So-Called Recalcitrant Seeds. J. Seed Sci. 2018, 40, 221–236. [Google Scholar] [CrossRef]
- Dietz, K.-J.; Zörb, C.; Geilfus, C.-M. Drought and Crop Yield. Plant Biol. 2021, 23, 881–893. [Google Scholar] [CrossRef]
- Parajuli, R.; Thoma, G.; Matlock, M.D. Environmental Sustainability of Fruit and Vegetable Production Supply Chains in the Face of Climate Change: A Review. Sci. Total Environ. 2019, 650, 2863–2879. [Google Scholar] [CrossRef]
- Guabiraba, I.R.; Lira-Guedes, A.C.; Euler, A.M.C.; Barbosa, R.C.; Abreu, L.F. Óleo de pracaxi (Pentaclethra macroloba (wild.) kuntze): Extração, recomendações técnicas e custos de produção para a comunidade do Limão do Curuá, estado do Amapá, Brasil. In Produtos Florestais Não Madeireiros: Tecnologia, Mercado, Pesquisas e Atualidades; Editora Científica Digital: São Paulo, Brazil, 2021; pp. 252–271. [Google Scholar]
- Almeida, F.A.C.; Jerônimo, E.S.; Alves, N.M.C.; Gomes, J.P.; Silva, A.S. Estudo De Técnicas Para O Armazenamento De Cinco Oleaginosas Em Condições Ambientais E Criogênicas. Rev. Bras. Prod. Agroindustriais 2010, 12, 189–202. [Google Scholar] [CrossRef]
- NIST (National Institute of Standards and Technology). NIST/EPA/NIH Mass Spectral Library (v.2.0d); NIST Mass Spectrometry Data Center: Gaithersburg, MD, USA, 2011. [Google Scholar]
- Do Amaral, D.D.; Vieira, I.C.G.; De Almeida, S.S.; Salomão, R.D.P.; Da Silva, A.S.L.; Jardim, M.A.G. Checklist Da Flora Arbórea de Remanescentes Florestais Da Região Metropolitana de Belém e Valor Histórico Dos Fragmentos, Pará, Brasil. Bol. do Mus. Para. Emílio Goeldi—Ciências Nat. 2009, 4, 231–289. [Google Scholar] [CrossRef]
- Lopes, M.O.; Pietrobom, M.R.; Do Carmo, D.M.; Peralta, D.F. Estudo Comparativo de Comunidades de Briófitas Sujeitas a Diferentes Graus de Inundação No Município de São Domingos Do Capim, PA, Brasil. Hoehnea 2016, 43, 159–171. [Google Scholar] [CrossRef]
- Semensato, L.R.; Vendruscolo, E.P.; Seleguini, A.; Batista Filho, P.A.; da Silva, E.C.M.; Silva, T.P. da Fenologia, Produtividade e Qualidade de Frutos de Jabuticabeiras de Diferentes Idades Das Plantas. Iheringia Série Botânica 2020, 75, e2020013. [Google Scholar] [CrossRef]
- Krupa, T.; Tomala, K. Effect of Oxygen and Carbon Dioxide Concentration on the Quality of Minikiwi Fruits after Storage. Agronomy 2021, 11, 2251. [Google Scholar] [CrossRef]
- Cruz, M.S.F.V.; Malavasi, M.D.M.; Ristau, A.C.P.; Malavasi, U.C.; Dranski, J.A.L. Maturidade de Sementes de Anadenanthera Colubrina (Vell.) Brenan. Ciência Florest. 2021, 31, 515–532. [Google Scholar] [CrossRef]
- Teixeira, F.P.; Faria, J.M.R.; Pereira, W.V.S.; José, A.C. Maturation and Desiccation Tolerance in Seeds of Sesbania virgata (Cav.) Pers. Floresta e Ambient. 2018, 25, e20160419. [Google Scholar] [CrossRef]
- Kundu, M.; Tiwari, S.; Haldkar, M. Collection, Germination and Storage of Seeds of Saraca asoca (Roxb.) Willd. J. Appl. Res. Med. Aromat. Plants 2020, 16, 100231. [Google Scholar] [CrossRef]
- Okada, M.H.; De Oliveira, G.R.F.; Sartori, M.M.P.; Crusciol, C.A.C.; Nakagawa, J.; Amaral Da Silva, E.A. Acquisition of the Physiological Quality of Peanut (Arachis hypogaea L.) Seeds during Maturation under the Influence of the Maternal Environment. PLoS ONE 2021, 16, e0250293. [Google Scholar] [CrossRef]
- Braz, H.; Klein, D.R.; Vitto, D.C.; Ebeling, N.; Malavasi, M.M.; Malavasi, U.C.; Cruz, M.S.F.V.; Ristau, A.C.P.; Rocha, M.E.L.; Coutinho, P.W.R. Physiological Maturity of Parapiptadenia rigida Seeds. J. Agric. Sci. 2018, 10, 485. [Google Scholar] [CrossRef]
- KaiKaiser, D.K.; Malavasi, M.D.M.; Malavasi, U.C.; Dranski, J.A.L.; De Freitas, L.C.N.; Kosmann, C.R.; Andrioli, K.K. Physiological Maturity of Seeds and Colorimetry of the Fruits of Allophylus edulis [(A. St.-Hil., A. Juss. & Cambess.) Hieron. Ex Niederl.]. J. Seed Sci. 2016, 38, 92–100. [Google Scholar] [CrossRef]
- Silva, P.C.D.C.; Alves, E.U.; De Araújo, L.R.; Cruz, J.D.O.; Silva, N.C.D.C. Physiological Maturation in Seeds of Lophantera lactescens Ducke. Rev. Ciência Agronômica 2019, 50, 312–320. [Google Scholar] [CrossRef]
- Barroso, N.D.S.; Fonseca, J.S.T.; Do Nascimento, M.N.; Soares, T.L.; Pelacani, C.R. Physiological Quality of Physalis ixocarpa Brot. Ex Hornem Seeds in Relation to Maturation Stage and Growing Season. Pesqui. Agropecuária Trop. 2023, 53, e74090. [Google Scholar] [CrossRef]
- Figueiredo, J.C.; De Souza David, A.M.S.; Da Silva, C.D.; Amaro, H.T.R.; Alves, D.D. Maturation of Pepper Seeds as a Function of Fruit Harvest Times. Sci. Agrar. 2017, 18, 1–7. [Google Scholar] [CrossRef]
- Santiago, W.R.; Gama, J.S.N.; Torres, S.B.; Bacchetta, G. Physiological Maturity of Physalis angulata L. Seeds. Rev. Ciência Agronômica 2019, 50, 431–438. [Google Scholar] [CrossRef]
- Basso, D.P.; Hoshino-Bezerra, A.A.; Sartori, M.M.P.; Buitink, J.; Leprince, O.; Silva, E.A.A. Da Late Seed Maturation Improves the Preservation of Seedling Emergence during Storage in Soybean. J. Seed Sci. 2018, 40, 185–192. [Google Scholar] [CrossRef]
- Mata, M.F.; Silva, K.B.; Bruno, R.D.L.A.; Felix, L.P.; Medeiros Filho, S.; Alves, E.U. Maturação Fisiológica de Sementes de Ingazeiro (Inga striata) Benth. Semin. Ciências Agrárias 2013, 34, 549–566. [Google Scholar] [CrossRef]
- Nogueira, N.W.; Ribeiro, M.C.C.; de Freitas, R.M.O.; Martins, H.V.G.; Leal, C.C.P. Maturação Fisiológica e Dormência Em Sementes de Sabiá (Mimosa caesalpiniifolia Benth.). Biosci. J. 2013, 29, 876–883. [Google Scholar]
- Schulz, D.G.; Oro, P.; Volkweis, C.; Malavasi, M.d.M.; Malavasi, U.C. Maturidade Fisiológica e Morfometria de Sementes de Inga laurina (Sw.) Willd. X1—Physiological Maturity and Morphometry of Inga laurina (Sw.) Willd. Seeds. Floresta e Ambient. 2014, 21, 45–51. [Google Scholar] [CrossRef]
- Ristau, A.C.P.; Malavasi, M.d.M.; Cruz, M.S.F.V.; Malavasi, U.C.; Dranski, J.A.L. Seed Harvest Moment of Albizia hasslerii (Chod.) Burkart Seeds According to Fruit Color. Cienc. Florest. 2020, 30, 556–564. [Google Scholar] [CrossRef]
- Flores, E.M. Pentaclethra macroloba. Arboles y Semillas del Neotrópico; Museo Nacional de Costa Rica; Herbario Nacional de Costa Rica: San José, Costa Rica, 1994; Volume 3, pp. 1–25. [Google Scholar]
- Baskin CC, B.J. Seeds: Ecology, Biogeography and Evolution of Dormancy and Germination, 2nd ed.; Elsevier: San Diego, CA, USA, 2014; ISBN 978-0-12-416677-6. [Google Scholar]
- Piña-Rodrigues, F.C.M.; Figliolia, M.B. Embryo Immaturity Associated with Delayed Germination in Recalcitrant Seeds of Virola surinamensis (Rol.) Warb. (Myristicaceae). Seed Sci. Technol. 2005, 33, 375–386. [Google Scholar] [CrossRef]
- Kelly, A.A.; Shaw, E.; Powers, S.J.; Kurup, S.; Eastmond, P.J. Suppression of the SUGAR-DEPENDENT1 Triacylglycerol Lipase Family during Seed Development Enhances Oil Yield in Oilseed Rape (Brassica napus L.). Plant Biotechnol. J. 2013, 11, 355–361. [Google Scholar] [CrossRef]
- Teixeira, G.L.; Maciel, L.G.; Mazzutti, S.; Gonçalves, C.B.; Ferreira, S.R.S.; Block, J.M. Composition, Thermal Behavior and Antioxidant Activity of Pracaxi (Pentaclethra macroloba) Seed Oil Obtained by Supercritical CO2. Biocatal. Agric. Biotechnol. 2020, 24, 101521. [Google Scholar] [CrossRef]
- Correia, Z.A.; Gurgel, E.S.C.; Ribeiro, O.; de Andrade Aguiar Dias, A.C.; Kumar, R.; do Nascimento, L.A.S.; de Aguiar Andrade, E.H.; de Oliveira, M.S. New Information of the Anatomy and Phytochemical Screening of Pentaclethra macroloba (Willd.) Kuntze (Caesalpinioideae-Leguminosae) Seeds. Int. J. Food Sci. 2023, 2023, 1–15. [Google Scholar] [CrossRef]
- Brock, T.J.; Browse, J.; Watts, J.L. Genetic Regulation of Unsaturated Fatty Acid Composition in C elegans. PLoS Genet. 2006, 2, e108. [Google Scholar] [CrossRef] [PubMed]
- Piccinin, E.; Cariello, M.; De Santis, S.; Ducheix, S.; Sabbà, C.; Ntambi, J.M.; Moschetta, A. Role of Oleic Acid in the Gut-Liver Axis: From Diet to the Regulation of Its Synthesis via Stearoyl-CoA Desaturase 1 (SCD1). Nutrients 2019, 11, 2283. [Google Scholar] [CrossRef]
- Petraru, A.; Ursachi, F.; Amariei, S. Nutritional Characteristics Assessment of Sunflower Seeds, Oil and Cake. Perspective of Using Sunflower Oilcakes as a Functional Ingredient. Plants 2021, 10, 2487. [Google Scholar] [CrossRef]
- Medeiros Vicentini-Polette, C.; Rodolfo Ramos, P.; Bernardo Gonçalves, C.; Lopes De Oliveira, A. Determination of Free Fatty Acids in Crude Vegetable Oil Samples Obtained by High-Pressure Processes. Food Chem. X 2021, 12, 100166. [Google Scholar] [CrossRef]
- Pereira, E.; Ferreira, M.C.; Sampaio, K.A.; Grimaldi, R.; Meirelles, A.J.D.A.; Maximo, G.J. Physical Properties of Amazonian Fats and Oils and Their Blends. Food Chem. 2019, 278, 208–215. [Google Scholar] [CrossRef]
- Dos Santos, D.D.S.; Klauck, V.; Campigotto, G.; Alba, D.F.; Dos Reis, J.H.; Gebert, R.R.; Souza, C.F.; Baldissera, M.D.; Schogor, A.L.B.; Santos, I.D.; et al. Benefits of the Inclusion of Açai Oil in the Diet of Dairy Sheep in Heat Stress on Health and Milk Production and Quality. J. Therm. Biol. 2019, 84, 250–258. [Google Scholar] [CrossRef]
- Serra, J.L.; Rodrigues, A.M.D.C.; de Freitas, R.A.; Meirelles, A.J.D.A.; Darnet, S.H.; Silva, L.H.M. Da Alternative Sources of Oils and Fats from Amazonian Plants: Fatty Acids, Methyl Tocols, Total Carotenoids and Chemical Composition. Food Res. Int. 2019, 116, 12–19. [Google Scholar] [CrossRef]
- Callau, M.; Sow-Kébé, K.; Nicolas-Morgantini, L.; Fameau, A.-L. Effect of the Ratio between Behenyl Alcohol and Behenic Acid on the Oleogel Properties. J. Colloid Interface Sci. 2020, 560, 874–884. [Google Scholar] [CrossRef]
- Ministerio da Agricultura, Pecuária e Abastecimento. BRASIL Regras Para Analise de Sementes; Ministerio da Agricultura, Pecuária e Abastecimento: Brasilia, Brazil, 2009; Volume 395. [Google Scholar]
- Ribeiro, O.D.; Cruz, E.D.; Da Silva, M.F.; Chaves, B.D.A.; Ribeiro, O.M.D.; Gurgel, E.S.C. Hymenaea parvifolia Huber: Dormancy Breaking, Morphology of Fruit, Seed and Seedling. Rev. Ceres 2021, 68, 105–114. [Google Scholar] [CrossRef]
- Edmond, J.B.; Drapala, W.J. The Effects of Temperature, Sand and Soil, and Acetone on Germination of Okra Seed. Am. Soc. Hortic. Sci. 1958, 71, 428–434. [Google Scholar]
- Maguire, J.D. Speed of Germination—Aid In Selection And Evaluation for Seedling Emergence And Vigor 1. Crop Sci. 1962, 2, 176–177. [Google Scholar] [CrossRef]
- Øyvind, H.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Vasconcelos, B.E.C. Avaliação Das Características Físicas, Químicas e Nutricionais Dos Óleos Do Tucumã (Astrocaryum aculeatum e Astrocaryum vulgare) Obtidos Com CO2 Pressurizado; Universidade Federal Do Pará: Belém, Brazil, 2010. [Google Scholar]
- Khan, G.R.; Scheinmann, F. Some Recent Advances in Physical Methods for Analysis and Characterization of Polyunsaturated Fatty Acids. Prog. Chem. Fats Other Lipids 1978, 15, 343–367. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy, 4th ed.; Stream, C., Ed.; Allured Pub Corp: Carol Stream, IL, USA, 2007. [Google Scholar]
- Mondello, L. Mass Spectra of Flavors and Fragrances of Natural and Synthetic Compounds, 3rd ed.; Wiley Blackwell: Chichester, UK, 2015; ISBN 978-1-119-06984-3. [Google Scholar]
F | p | ω² ** | Tukey | |||
---|---|---|---|---|---|---|
Phase 1 | Phase 2 | Phase 3 | ||||
ISE | 27.710 | 0.0001 | 0.8165 | 28 a * | 25 a | 17 b |
SEI | 60.350 | 6.11 × 10−6 | 0.9081 | 0.03 b | 0.04 b | 0.05 a |
AET | 52.110 | 1.13 × 10−5 | 0.8949 | 28.8 a | 27.2 a | 22.9 b |
E | 19.267 | 0.0006 | 0.7527 | 25 b | 48 b | 99 a |
US | 18.921 | 0.0006 | 0.7491 | 18.75 a | 12.5 a | 0.25 b |
DS | 3.000 | 0.1004 | 0.25 | 0 a | 0.5 a | 0 a |
AS | 3.550 | 0.0730 | 0.2978 | 0.5 a | 0.75 a | 1.5 a |
G | 16.174 | 0.0010 | 0.7166 | 23 b | 45 b | 93 a |
EL | 80.885 | 1.77 × 10−6 | 0.9301 | 4.31 b | 8.46 b | 30.23 a |
MRL | 1.321 | 0.3139 | 0.0508 | 11.16 a | 11.54 a | 13.65 a |
ED | 5.398 | 0.0288 | 0.4229 | 0.38 b | 0.40 ab | 0.48 a |
RCD | 47.114 | 1.71 × 10−5 | 0.8848 | 0.39 c | 0.44 b | 0.54 a |
RDM | 25.684 | 0.0002 | 0.8044 | 3.5059 b | 3.9371 b | 5.0147 a |
APDM | 46.617 | 1.78 × 10−5 | 0.8837 | 2.4206 c | 4.0381 b | 7.2676 a |
F | p | ω² ** | Tukey | |||
---|---|---|---|---|---|---|
Phase 1 | Phase 2 | Phase 3 | ||||
ISE | 40.793 | 3.07 × 10−5 | 0.8689 | 22 a * | 19 b | 12 c |
SEI | 119.884 | 3.26 × 10−7 | 0.9519 | 0.04 b | 0.04 b | 0.06 a |
AET | 111.401 | 4.48 × 10−7 | 0.9484 | 24 b | 26 a | 17 c |
E | 45.857 | 2.12 × 10−5 | 0.9193 | 40 b | 66 b | 99 a |
US | 44.966 | 2.07 × 10−5 | 0.8799 | 15 a | 9 b | 0.3 c |
DS | *** | *** | *** | *** | *** | *** |
AS | 2.590 | 0.129 | 0.2095 | 1 a | 1.25 a | 0 a |
G | 52.047 | 1.13 × 10−5 | 0.8948 | 37 b | 61 b | 99 a |
EL | 80.590 | 1.80 × 10−6 | 0.9299 | 6.49 b | 7.70 b | 33.80 a |
MRL | 20.780 | 0.0004 | 0.7672 | 10.69 b | 12.56 b | 19.08 a |
ED | 7.270 | 0.0130 | 0.511 | 0.42 b | 0.48 ab | 0.57 a |
RCD | 13.130 | 0.0020 | 0.669 | 0.47 b | 0.51 b | 0.62 a |
RDM | 100.96 | 6.85 × 10−7 | 0.9433 | 3.7544 c | 4.6356 b | 6.3029 a |
APDM | 212.46 | 2.66 × 10−8 | 0.9724 | 3.7318 b | 4.5687 b | 10.8596 a |
Place | Phase | Fixed Oil Content (g) | Fixed Oil Content (%) | Code |
---|---|---|---|---|
Belém | 1 | 3.590 | 3.6 | B1 |
Belém | 2 | 8.710 | 8.7 | B2 |
Belém | 3 | 12.818 | 12.8 | B3 |
SDC | 1 | 1.800 | 2.8 | SDC1 |
SDC | 2 | 6.503 | 7.5 | SDC2 |
SDC | 3 | 13.139 | 13.1 | SDC3 |
Fatty Acid, Methyl Ester | Symbolism | B1 | B2 | B3 | SDC1 | SDC2 | SDC2 |
---|---|---|---|---|---|---|---|
Palmitic acid | C16:0 | 1.81 | 1.76 | 1.59 | 2.25 | 2.07 | 2.07 |
Linoleic acid | C18:2 (9,12) ω6 | 8.45 | 7.92 | 6.68 | 5.65 | 7.59 | 5.44 |
Oleic acid | C18:1 (9) ω9 | 54.91 | 54.5 | 65.23 | 49.1 | 52.7 | 51.7 |
Stearic acid | C18:0 | 3.21 | 3.13 | 3.12 | 4.32 | 5.07 | 4.75 |
Gondoic acid | C20:1 (11) | 1.58 | 1.6 | 1.13 | 2.05 | 1.56 | 2.09 |
Arachidic acid | C20:0 | 0.83 | 0.86 | 0.72 | 1.22 | 1.36 | 1.37 |
Erucic acid | C22:1 (13) ω9 | 0.65 | 0.67 | 0.32 | 0.98 | 0.59 | 1.03 |
Behenic acid | C22:0 | 16.02 | 16.38 | 13.24 | 17.71 | 17.17 | 17.22 |
Tricosylic acid | C23:0 | 0.13 | 0.07 | 0.12 | |||
Nervonic acid | C24:1 (15) | 0.13 | 0.17 | ||||
Lignoceric acid | C24:0 | 12.29 | 12.81 | 7.97 | 15.85 | 11.41 | 13.5 |
Cerotic acid | C25:0 | 0.25 | 0.28 | 0.61 | 0.26 | 0.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, O.D.; Santos, R.A.; Jardim, M.A.G.; Benjamim, J.K.F.; Hirosue, T.L.M.R.; Andrade, E.H.d.A.; Oliveira, M.S.d.; Gurgel, E.S.C. Biochemical and Physiological Performance of Seeds of Pentaclethra macroloba (Willd.) Kuntz (Leguminosae, Caesalpinioideae) at Different Phases of Maturation. Plants 2025, 14, 1112. https://doi.org/10.3390/plants14071112
Ribeiro OD, Santos RA, Jardim MAG, Benjamim JKF, Hirosue TLMR, Andrade EHdA, Oliveira MSd, Gurgel ESC. Biochemical and Physiological Performance of Seeds of Pentaclethra macroloba (Willd.) Kuntz (Leguminosae, Caesalpinioideae) at Different Phases of Maturation. Plants. 2025; 14(7):1112. https://doi.org/10.3390/plants14071112
Chicago/Turabian StyleRibeiro, Olívia Domingues, Reynaldo Azevedo Santos, Mário Augusto Gonçalves Jardim, Jaisielle Kelem França Benjamim, Thiara Luana Mamoré Rodrigues Hirosue, Eloisa Helena de Aguiar Andrade, Mozaniel Santana de Oliveira, and Ely Simone Cajueiro Gurgel. 2025. "Biochemical and Physiological Performance of Seeds of Pentaclethra macroloba (Willd.) Kuntz (Leguminosae, Caesalpinioideae) at Different Phases of Maturation" Plants 14, no. 7: 1112. https://doi.org/10.3390/plants14071112
APA StyleRibeiro, O. D., Santos, R. A., Jardim, M. A. G., Benjamim, J. K. F., Hirosue, T. L. M. R., Andrade, E. H. d. A., Oliveira, M. S. d., & Gurgel, E. S. C. (2025). Biochemical and Physiological Performance of Seeds of Pentaclethra macroloba (Willd.) Kuntz (Leguminosae, Caesalpinioideae) at Different Phases of Maturation. Plants, 14(7), 1112. https://doi.org/10.3390/plants14071112