Long-Term Nitrogen Addition Eliminates the Cooling Effect on Climate in a Temperate Peatland
Abstract
:1. Introduction
2. Results
2.1. CO2 Fluxes
2.2. CH4 Fluxes
2.3. Vegetation Cover
2.4. Environmental Factors and Soil Physicochemical Properties
2.5. Extracellular Enzyme Activity Potentials
2.6. Correlation Analysis
2.7. Global Warming Potential
3. Discussion
3.1. Effects of Long-Term Nitrogen Addition on CO2 Fluxes in Peatlands
3.2. Effects of Long-Term Nitrogen Addition on CH4 Fluxes in Peatlands
4. Materials and Methods
4.1. Study Site and Experimental Design
4.2. Measuring Greenhouse Gas Fluxes and Environmental Parameters
4.3. Extracellular Enzyme Activity Potentials
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, Z.; Loisel, J.; Brosseau, D.P.; Beilman, D.W.; Hunt, S.J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 2010, 37, 69–73. [Google Scholar] [CrossRef]
- Alexandrov, G.A.; Brovkin, V.A.; Kleinen, T.; Yu, Z. The capacity of northern peatlands for long-term carbon sequestration. Biogeosciences 2020, 17, 47–54. [Google Scholar] [CrossRef]
- Harenda, K.M.; Lamentowicz, M.; Samson, M.; Chojnicki, B.H. The Role of Peatlands and Their Carbon Storage Function in the Context of Climate Change. In Interdisciplinary Approaches for Sustainable Development Goals: Economic Growth, Social Inclusion and Environmental Protection; Zielinski, T., Sagan, I., Surosz, W., Eds.; Springer: Cham, Switzerland, 2018; pp. 169–187. [Google Scholar] [CrossRef]
- Page, S.E.; Baird, A.J. Peatlands and Global Change: Response and Resilience. Annu. Rev. Environ. Resour. 2016, 41, 35–57. [Google Scholar] [CrossRef]
- Rieley, J.O.; Wüst, R.A.J.; Jauhiainen, J.; Page, S.E.; Eösten, H.; Hooijer, A.; Siegert, F.; Limin, S.H.; Vasander, H.; Stahlhut, M. Tropical peatlands: Carbon stores, carbon gas emissions and contribution to climate change processes. In Peatlands & Climate Change; Peat Society: Calgary, Canada, 2008; Available online: https://edepot.wur.nl/41970 (accessed on 20 February 2025).
- Ribeiro, K.; Pacheco, F.S.; Ferreira, J.W.; de Sousa-Neto, E.R.; Hastie, A.; Krieger Filho, G.C.; Alvalá, P.C.; Forti, M.C.; Ometto, J.P. Tropical peatlands and their contribution to the global carbon cycle and climate change. Glob. Change Biol. 2021, 27, 89–505. [Google Scholar] [CrossRef]
- Bubier, J.L.; Moore, T.R.; Bledzki, L.A. Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog. Glob. Change Biol. 2007, 13, 1168–1186. [Google Scholar] [CrossRef]
- Galloway, J.N.; Townsend, A.R.; Willem Erisman, J.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef]
- Galloway, J.N.; Cowling, E.B. Reactive nitrogen and the world: 200 years of change. Ambio J. Hum. Environ. 2002, 31, 64–71. [Google Scholar] [CrossRef]
- Gong, C.; Tian, H.; Liao, H.; Pan, N.; Pan, S.; Ito, A.; Jain, A.; KouGiesbrecht, S.; Joos, F.; Sun, Q.; et al. Global net climate effects of anthropogenic reactive nitrogen. Nature 2024, 632, 557–563. [Google Scholar] [CrossRef]
- Bodirsky, B.L.; Popp, A.; Lotze-Campen, H.; Dietrich, J.P.; Rolinski, S.; Weindl, I.; Schmitz, C.; Müller, C.; Bonsch, M.; Humpenöder, F.; et al. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nat. Commun. 2014, 5, 3858. [Google Scholar] [CrossRef]
- Bragazza, L.; Freeman, C.; Jones, T.; Toberman, H. Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proc. Natl. Acad. Sci. USA 2006, 103, 19386–19389. [Google Scholar] [CrossRef]
- Luan, J.; Wu, J.; Liu, S.; Roulet, N.; Wang, M. Soil nitrogen determines greenhouse gas emissions from northern peatlands under concurrent warming and vegetation shifting. Commun. Biol. 2019, 2, 132. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Wu, J.; Roulet, N.; Le, T.B.; Ye, C.; Zhang, Q. Vegetation composition regulates the interaction of warming and nitrogen deposition on net carbon dioxide uptake in a boreal peatland. Funct. Ecol. 2024, 38, 417–428. [Google Scholar] [CrossRef]
- Clymo, R.; Hayward, P. The Ecology of Sphagnum. In Bryophyte Ecology; Smith, A.J.E., Ed.; Springer: Dordrecht, The Netherlands, 1982; pp. 229–289. [Google Scholar] [CrossRef]
- LeBauer, D.S.; Treseder, K.K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 2008, 89, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Guo, J.; Peng, C.; Kneeshaw, D.; Roberge, G.; Pan, C.; Ma, X.; Zhou, D.; Wang, W. Nitrogen addition promotes terrestrial plants to allocate more biomass to aboveground organs: A global meta-analysis. Glob. Change Biol. 2023, 29, 3970–3989. [Google Scholar] [CrossRef]
- Quinn Thomas, R.; Canham, C.D.; Weathers, K.C.; Goodale, C.L. Increased tree carbon storage in response to nitrogen deposition in the US. Nat. Geosci. 2010, 3, 13–17. [Google Scholar] [CrossRef]
- Schulte-Uebbing, L.; de Vries, W. Global-scale impacts of nitrogen deposition on tree carbon sequestration in tropical, temperate, and boreal forests: A meta-analysis. Glob. Change Biol. 2018, 24, e416–e431. [Google Scholar] [CrossRef]
- Liu, L.; Greaver, T.L. A review of nitrogen enrichment effects on three biogenic GHGs: The CO2 sink may be largely offset by stimulated N2O and CH4 emission. Ecol. Lett. 2009, 12, 1103–1117. [Google Scholar] [CrossRef]
- Gunnarsson, U.; Rydin, H. Nitrogen fertilization reduces Sphagnum production in bog communities. New Phytol. 2000, 147, 527–537. [Google Scholar] [CrossRef]
- Limpens, J.; Granath, G.; Gunnarsson, U.; Aerts, R.; Bayley, S.; Bragazza, L.; Bubier, J.; Buttler, A.; Van den Berg, L.J.L.; Francez, A.-J.; et al. Climatic modifiers of the response to nitrogen deposition in peat-forming Sphagnum mosses: A meta-analysis. New Phytol. 2011, 191, 496–507. [Google Scholar] [CrossRef]
- Reich, P.B.; Tjoeller, M.G.; Pregitzer, K.S.; Wright, L.J.; Oleksyn, J.; Machado, J.-L. Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecol. Lett. 2008, 11, 793–801. [Google Scholar] [CrossRef]
- Laskowski, R.; Berg, B. Litter decomposition: Guide to carbon and nutrient turnover. In Advances in Ecological Research; Elsevier: Amsterdam, The Netherlands, 2006; Volume 38, pp. 1–421. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, H.; Cheng, X.; Liu, G. Nitrogen addition stimulates litter decomposition rate: From the perspective of the combined effect of soil environment and litter quality. Soil Biol. Biochem. 2023, 179, 108992. [Google Scholar] [CrossRef]
- Hou, S.-L.; Hättenschwiler, S.; Yang, J.-J.; Sistla, S.; Wei, H.-W.; Zhang, Z.-W.; Hu, Y.-Y.; Wang, R.Z.; Cui, S.-Y.; Lü, X.-T.; et al. Increasing rates of long-term nitrogen deposition consistently increased litter decomposition in a semi-arid grassland. New Phytol. 2021, 229, 296–307. [Google Scholar] [CrossRef]
- Chowdhury, T.R.; Dick, R.P. Ecology of aerobic methanotrophs in controlling methane fluxes from wetlands. Appl. Soil Ecol. 2013, 65, 8–22. [Google Scholar] [CrossRef]
- Lai, D. Methane dynamics in northern peatlands: A review. Pedosphere 2009, 19, 409–421. [Google Scholar] [CrossRef]
- Le Mer, J.; Roger, P. Production, oxidation, emission and consumption of methane by soils: A review. Eur. J. Soil Biol. 2001, 37, 25–50. [Google Scholar] [CrossRef]
- Juutinen, S.; Moore, T.R.; Bubier, J.L.; Arnkil, S.; Humphreys, E.; Marincak, B.; Roy, C.; Larmola, T. Long-term nutrient addition increased CH4 emission from a bog through direct and indirect effects. Sci. Rep. 2018, 8, 3838. [Google Scholar] [CrossRef]
- Rydin, H.; Jeglum, J.K. The Biology of Peatlands, 2nd ed.; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Bodelier, P.L.E.; Laanbroek, H.J. Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol. Ecol. 2004, 47, 265–277. [Google Scholar] [CrossRef]
- Nykänen, H.; Vasander, H.; Huttunen, J.T.; Martikainen, P.J. Effect of experimental nitrogen load on methane and nitrous oxide fluxes on ombrotrophic boreal peatland. Plant Soil 2002, 242, 147–155. [Google Scholar] [CrossRef]
- Nie, W.-B.; Xie, G.-J.; Tan, X.; Ding, J.; Lu, Y.; Chen, Y.; Yang, C.; He, Q.; Liu, B.-F.; Xing, D.; et al. Microbial Niche Differentiation during Nitrite-Dependent Anaerobic Methane Oxidation. Environ. Sci. Technol. 2023, 57, 7029–7040. [Google Scholar] [CrossRef]
- Ettwig, K.F.; Butler, M.K.; Paslier, D.L.; Pelletier, E.; Mangenot, S.; Kuypers, M.M.M.; Schreiber, F.; Dutilh, B.E.; Zedelius, J.; de Beer, D.; et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 2010, 464, 543–548. [Google Scholar] [CrossRef]
- Schnell, S.; King, G.M. Mechanistic analysis of ammonium inhibition of atmospheric methane consumption in forest soils. Appl. Environ. Microb. 1994, 60, 3514–3521. [Google Scholar] [CrossRef] [PubMed]
- Turetsky, M.R.; Kotowska, A.; Bubier, J.; Dise, N.B.; Crill, P.; Hornibrook, E.R.C.; Minkkinen, K.; Moore, T.R.; Myers-Smith, I.H.; Nykänen, H.; et al. A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. Glob. Change Biol. 2014, 20, 2183–2197. [Google Scholar] [CrossRef] [PubMed]
- Ward Susan, E.; Ostle, N.J.; Oakley, S.; Quirk, H.; Henrys, P.A.; Bargett, R.D. Warming effects on greenhouse gas fluxes in peatlands are modulated by vegetation composition. Ecol. Lett. 2013, 16, 1285–1293. [Google Scholar] [CrossRef]
- Eriksson, T.; Öquist, M.G.; Nilsson, M.B. Effects of decadal deposition of nitrogen and sulfur, and increased temperature, on methane emissions from a boreal peatland. J. Geophys. Res.-Biogeosci. 2010, 115, G04036. [Google Scholar] [CrossRef]
- Bellisario, L.M.; Bubier, J.L.; Moore, T.R.; Chanton, J.P. Controls on CH4 emissions from a northern peatland. Glob. Biogeochem. Cycles 1999, 13, 81–91. [Google Scholar] [CrossRef]
- Eriksson, T.; Öquist, M.G.; Nilsson, M.B. Production and oxidation of methane in a boreal mire after a decade of increased temperature and nitrogen and sulfur deposition. Glob. Change Biol. 2010, 16, 2130–2144. [Google Scholar] [CrossRef]
- Lamers Leon, P.M.; Bobbink, R.; Roelofs Jan, G.M. Natural nitrogen filter fails in polluted raised bogs. Glob. Change Biol. 2001, 6, 583–586. [Google Scholar] [CrossRef]
- Wang, S.-N.; Chen, X.; Ma, J.-X.; Liu, X.; Mallik, A.; Wang, M.; Liu, S.; Zhang, M.; Bu, Z.-J. Additions of nitrogen and phosphorus do not reduce storage but stability of soil carbon in a northern peatland. Plant Soil, 2025; Under Review after revision. [Google Scholar]
- Larmola, T.; Bubier, J.L.; Kobyljanec, C.; Basiliko, N.; Juutinen, S.; Humphreys, E.; Preston, M.; Moore, T.R. Vegetation feedbacks of nutrient addition lead to a weaker carbon sink in an ombrotrophic bog. Glob. Change Biol. 2013, 19, 3729–3739. [Google Scholar] [CrossRef]
- Lu, B.; Wu, X.; Song, L.; Sun, L.; Xie, R.; Zang, S. Nitrogen Addition Increased the Greenhouse Gas Emissions of Permafrost Peatland Due to the Abundance of Soil Microbial Functional Genes Increasing in the Great Khingan Mountains, Northeast China. Forests 2024, 15, 1985. [Google Scholar] [CrossRef]
- Hu, S.; Chapin III, F.S.; Firestone, M.K.; Field, C.B.; Chiariello, N.R. Nitrogen limitation of microbial decomposition in a grassland under elevated CO2. Nature 2001, 409, 188–191. [Google Scholar] [CrossRef]
- Limpens, J.; Berendse, F. Growth reduction of Sphagnum magellanicum subjected to high nitrogen deposition: The role of amino acid nitrogen concentration. Oecologia 2003, 135, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Mack, M.C.; Schuur, E.A.G.; Syndonia Bret-Harte, M.; Shaver, D.R.; Stuart Chapin lll, F. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 2004, 431, 440–443. [Google Scholar] [CrossRef] [PubMed]
- Mason-Jones, K.; Schmücker, N.; Kuzyakov, Y. Contrasting effects of organic and mineral nitrogen challenge the N-Mining Hypothesis for soil organic matter priming. Soil Biol. Biochem. 2018, 124, 38–46. [Google Scholar] [CrossRef]
- Freeman, C.; Ostle, N.J.; Fenner, N.; Kang, H. A regulatory role for phenol oxidase during decomposition in peatlands. Soil Biol. Biochem. 2004, 36, 1663–1667. [Google Scholar] [CrossRef]
- Tian, L.; Dell, E.; Shi, W. Chemical composition of dissolved organic matter in agroecosystems: Correlations with soil enzyme activity and carbon and nitrogen mineralization. Appl. Soil Ecol. 2010, 46, 426–435. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, S.; Wang, Z.; Dong, Y.; Zhang, Y.; Liu, S.; Li, J. Effect of drainage on microbial enzyme activities and communities dependent on depth in peatland soil. Biogeochemistry 2021, 155, 323–341. [Google Scholar] [CrossRef]
- Mentges, A.; Feenders, C.; Deutsh, C.; Blasius, B.; Dittmar, T. Long-term stability of marine dissolved organic carbon emerges from a neutral network of compounds and microbes. Sci. Rep. 2019, 9, 17780. [Google Scholar] [CrossRef]
- Stanley, E.H.; Powers, S.M.; Lottig, N.R.; Buffam, I.; Crawford, J.T. Contemporary changes in dissolved organic carbon (DOC) in human-dominated rivers: Is there a role for DOC management? Freshwater Biol. 2012, 57, 26–42. [Google Scholar] [CrossRef]
- Fan, X.; Bai, E.; Zhang, J.; Wang, X.; Yuan, W.; Piao, S. The carbon transfer from plant to soil is more efficient in less productive ecosystems. Glob. Biogeochem. Cycles 2023, 37, e2023GB007727. [Google Scholar] [CrossRef]
- Peterson, F.S.; Lajtha, K.J. Linking aboveground net primary productivity to soil carbon and dissolved organic carbon in complex terrain. J. Geophys. Res.-Biogeosci. 2013, 118, 1225–1236. [Google Scholar] [CrossRef]
- Keller, J.K.; Bridgham, S.D.; Chapin, C.T.; Iversen, C. Limited effects of six years of fertilization on carbon mineralization dynamics in a Minnesota fen. Soil Biol. Biochem. 2005, 37, 1197–1204. [Google Scholar] [CrossRef]
- Gong, Y.; Wu, J.; Sey, A.A.; Le, T.B. Nitrogen addition (NH4NO3) mitigates the positive effect of warming on methane fluxes in a coastal bog. Catena 2021, 203, 105356. [Google Scholar] [CrossRef]
- Strack, M.; Waddington, J.M.; Rochefort, L.; Tuittila, E.-S. Response of vegetation and net ecosystem carbon dioxide exchange at different peatland microforms following water table drawdown. J. Geophys. Res.-Biogeosci. 2006, 111, G02006. [Google Scholar] [CrossRef]
- Pearson, M.; Penttilä, T.; Harjunpää, L.; Laiho, R.; Laine, J.; Sarjala, T.; Silvan, K.; Silvan, N. Effects of temperature rise and water-table-level drawdown on greenhouse gas fluxes of boreal sedge fens. Boreal Environ. Res. 2015, 20, 489–505. [Google Scholar]
- Munir, T.M.; Strack, M. Methane flux influenced by experimental water table drawdown and soil warming in a dry boreal continental bog. Ecosystems 2014, 17, 1271–1285. [Google Scholar] [CrossRef]
- Pelletier, L.; Moore, T.R.; Roulet, N.T.; Garneau, M.; Beaulieu-Audy, V. Methane fluxes from three peatlands in the La Grande Riviere watershed, James Bay lowland, Canada. J. Geophys. Res.-Biogeosci. 2007, 112, G01018. [Google Scholar] [CrossRef]
- Ostrovsky, I.; McGinnis, L.; Lapidus, W.; Eckert, W. Quantifying gas ebullition with echosounder: The role of methane transport by bubbles in a medium-sized lake. Limnol. Oceanogr.-Meth. 2008, 6, 105–118. [Google Scholar] [CrossRef]
- Żygadłowska, O.M.; Venetz, J.; Lenstra, W.K.; van Helmond, N.A.G.M.; Klomp, R.; Röckmann, T.; Veraart, A.J.; Jetten, M.S.M.; Slomp, C.P. Ebullition drives high methane emissions from a eutrophic coastal basin. Geochim. Cosmochim. Acta 2024, 384, 1–13. [Google Scholar] [CrossRef]
- Bu, Z.-J.; Rydin, H.; Chen, X. Direct and interaction-mediated effects of environmental changes on peatland bryophytes. Oecologia 2011, 166, 555–563. [Google Scholar] [CrossRef]
- Zhou, W.; Guo, Y.; Zhu, B.; Wang, X.; Zhou, L.; Yu, D.; Dai, L. Seasonal variations of nitrogen flux and composition in a wet deposition forest ecosystem on Changbai Mountain. Acta Ecol. Sin. 2015, 35, 158–164. [Google Scholar]
- Voigt, C.; Lamprecht, R.E.; Marushchak, M.E.; Lind, S.E.; Novakovskiy, A.; Aurela, M.; Martikainen, P.J.; Biasi, C. Warming of subarctic tundra increases emissions of all three important greenhouse gases—Carbon dioxide, methane, and nitrous oxide. Glob. Change Biol. 2017, 23, 3121–3138. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Wu, J.; Yi, B.; Xu, Z.; Wang, M.; Sundberg, S.; Bu, Z.-J. Long-term phosphorus addition strongly weakens the carbon sink function of a temperate peatland. Ecosystems 2023, 26, 201–216. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Saiya-Cork, K.R.; Sinsabaugh, R.L.; Zak, D.R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol. Biochem. 2022, 34, 1309–1315. [Google Scholar] [CrossRef]
- Naser, H.M.; Nagata, O.; Hatano, R. Greenhouse gas fluxes and global warming potentials in crop fields on soil-dressed peatland in Hokkaido, Japan. Phyton 2005, 4, 285–293. [Google Scholar]
Vegetation Cover | F | p | Greenhouse Gas | F | p | Enzyme Activity | F | p |
---|---|---|---|---|---|---|---|---|
To-C | 4.302 | 0.049 | GPP | 3.594 | 0.031 | PHO | 3.297 | 0.090 |
Sp-C | 3.314 | 0.083 | ER | 1.482 | 0.233 | NAG | 6.388 | 0.026 |
Gr-C | 1.628 | 0.249 | NEE | 10.996 | 0.000 | BDG | 1.750 | 0.228 |
Sh-C | 1.392 | 0.297 | CH4 | 4.913 | 0.009 | PPO | 3.894 | 0.060 |
Treatment | Tsoil, 5 cm (°C) | Tsoil, 20 cm (°C) | WTD (cm) | SM (%) | TC (%) | TN (%) | TP (g/kg) | C:N Ratio | N:P Ratio | DOC (mg/L) |
---|---|---|---|---|---|---|---|---|---|---|
Control | 18.25 ± 1.14 a | 11.72 ± 0.97 a | 29.83 ± 1.36 a | 9.93 ± 0.88 b | 37.79 ± 0.33 a | 1.11 ± 0.03 b | 0.54 ± 0.04 a | 34.04 ± 0.96 a | 20.78 ± 1.37 a | 3.71 ± 0.47 b |
N1 | 15.15 ± 0.81 b | 9.62 ± 0.90 a | 12.89 ± 0.88 b | 37.47 ± 4.72 a | 35.11 ±2.15 a | 1.43 ± 0.14 ab | 0.53 ± 0.06 a | 24.87 ± 1.25 b | 27.27 ± 1.66 a | 7.54 ± 1.48 a |
N2 | 16.53 ± 1.06 a | 10.67 ± 1.06 a | 15.73 ± 0.76 b | 32.60 ± 4.37 a | 32.96 ± 1.79 a | 1.50 ± 0.06 a | 0.61 ± 0.09 a | 22.15 ± 1.85 b | 25.90 ± 2.56 a | 7.29 ± 0.79 a |
Treatments | GWP (g CO2 m−2 yr−1) | ||
---|---|---|---|
CO2 | CH4 | Net GWP | |
Control | −1492 | 130 | −1361 |
N1 | −582 (0.0) | 893 (100.0) | 311 |
N2 | 1537 (71) | 632 (29) | 2169 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, F.; Yi, B.; Qin, K.; Bu, Z.-J. Long-Term Nitrogen Addition Eliminates the Cooling Effect on Climate in a Temperate Peatland. Plants 2025, 14, 1183. https://doi.org/10.3390/plants14081183
Lu F, Yi B, Qin K, Bu Z-J. Long-Term Nitrogen Addition Eliminates the Cooling Effect on Climate in a Temperate Peatland. Plants. 2025; 14(8):1183. https://doi.org/10.3390/plants14081183
Chicago/Turabian StyleLu, Fan, Boli Yi, Kai Qin, and Zhao-Jun Bu. 2025. "Long-Term Nitrogen Addition Eliminates the Cooling Effect on Climate in a Temperate Peatland" Plants 14, no. 8: 1183. https://doi.org/10.3390/plants14081183
APA StyleLu, F., Yi, B., Qin, K., & Bu, Z.-J. (2025). Long-Term Nitrogen Addition Eliminates the Cooling Effect on Climate in a Temperate Peatland. Plants, 14(8), 1183. https://doi.org/10.3390/plants14081183