Combining Linkage and Association Mapping Approaches to Study the Genetic Architecture of Verticillium Wilt Resistance in Sunflower
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mapping Populations and SVW Phenotypic Data
2.2. Genotypic Data
2.3. Genotyping of the BMP
2.4. Genome-Wide Association Studies (GWAS)
2.5. Composite Interval Mapping (CIM) on the Biparental Population
2.6. SNP Matrices Alignment to New Versions of Sunflower Reference Genomes
2.7. Candidate Gene (CG) Analysis
3. Results
3.1. GWAS Analysis for SVW Resistance
3.2. Genotyping and Composite Interval Mapping on the BMP
3.3. Cross-Reference Assignment of Associated SNPs and Mining of Candidate Genes
3.4. Candidate Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gulya, T.J.; Rashid, K.Y.; Masirevic, S.M. Sunflower diseases. In Sunflower Technology and Production, 1st ed.; Schneiter, A.A., Ed.; American Society of Agronomy: Madison, WI, USA, 1997; pp. 263–380. [Google Scholar]
- Zhang, Y.; Zhang, J.; Gao, J.; Zhang, G.; Yu, Y.; Zhou, H.; Chen, W.; Zhao, J. The Colonization Process of Sunflower by a Green Fluorescent Protein-Tagged Isolate of Verticillium dahliae and Its Seed Transmission. Plant Dis. 2018, 102, 1772–1778. [Google Scholar] [CrossRef] [PubMed]
- Mestries, E. Maladies du tournesol: Le Verticillium, très presént dans le soud-ouest. Perspect. Agric. 2017, 444, 18–22. [Google Scholar]
- Martín-Sanz, A.; Rueda, S.; García-Carneros, A.B.; González-Fernández, S.; Miranda-Fuentes, P.; Castuera-Santacruz, S.; Gulya, T.J. Genetics, Host Range, and Molecular and Pathogenic Characterization of Verticillium dahliae From Sunflower Reveal Two Differentiated Groups in Europe. Front. Plant. Sci. 2018, 9, 288. [Google Scholar] [CrossRef] [PubMed]
- Sadras, V.O.; Quiroz, F.; Echarte, L.; Escande, A.; Pereyra, V.R. Effect of Verticillium dahliae on photosynthesis, leaf expansion and senescence of field-grown sunflower. Ann. Bot. 2020, 86, 1007–1015. [Google Scholar] [CrossRef]
- Creus, C.; Bazzalo, M.E.; Grondona, M.; Andrade, F.; León, A.J. Disease expression and ecophysiological yield components in sunflower isohybrids with and without Verticillium dahliae resistance. Crop Sci. 2007, 47, 703–710. [Google Scholar] [CrossRef]
- Pereyra, V.; Quiroz, F.; Agüero, M.; Escande, A. Relación del rendimiento de girasol con la intensidad de síntomas provocados por V. dahliae. In Proceedings of the X Jornadas Fitosanitarias Argentinas, Jujuy, Argentina, 7–9 April 1999; Volume 35. [Google Scholar]
- Quiroz, F.; Erreguerena, I.; Clemente, G.; Escande, A. Impacto de la marchitez por Verticillium dahliae sobre el rendimiento de girasol. In Proceedings of the XIV Jornadas Fitosanitarias Argentinas, San Luis, Argentina, 3–5 October 2012; Volume 165. [Google Scholar]
- Fick, G.N.; Zimmer, D.E. Monogenic resistance to Verticillium wilt in sunflowers 1. Crop Sci. 1974, 14, 895–896. [Google Scholar] [CrossRef]
- Gulya, T. New strain of Verticillium dahliae in North America. Helia 2007, 30, 115–120. [Google Scholar] [CrossRef]
- Hoes, J.; Putt, E. Breeding for resistance to rust and Verticillium. In Proceedings of the 2nd International Sunflower Conference, Morden, MB, Canada, 17–18 August 1966. [Google Scholar]
- Hoes, J.; Putt, E.; Enns, H. Resistance to Verticillium wilt in collections of wild Helianthus in North America. Phytopathology 1973, 63, 1517–1520. [Google Scholar] [CrossRef]
- Bertero de Romano, A.B.; Vázquez, A. A new race of Verticillium dahliae Kleb. In Proceedings of the 10th International Sunflower Conference, Surfers Paradise, Australia, 14–18 March 1982. [Google Scholar]
- Galella, M.T.; Bazzalo, M.E.; León, A. Compared pathogenicity of Verticillium dahliae isolates from Argentina and the USA. In Proceedings of the 16th International Sunflower Conference, Fargo, ND, USA, 29 August–2 September 2004; pp. 177–180. [Google Scholar]
- Radi, S.; Gulya, T. Sources of resistance to a new strain of Verticillium dahliae on sunflower in North America. In Proceedings of the 29th Sunflower Research Workshop, Fargo, ND, USA, 10–11 January 2007. [Google Scholar]
- García-Carneros, A.B.; García-Ruiz, R.; Molinero-Ruiz, L. Genetic and molecular approach to Verticillium dahliae infecting sunflower. Helia 2014, 37, 205–214. [Google Scholar] [CrossRef]
- Castaño, F.D. The sunflower crop in Argentina: Past, present and potential future. OCL 2018, 25, D105. [Google Scholar] [CrossRef]
- Pilorgé, E. Sunflower in the global vegetable oil system: Situation, specificities and perspectives. OCL 2020, 27, 34. [Google Scholar] [CrossRef]
- Clemente, G.E.; Bazzalo, M.E.; Escande, A.R. New variants of Verticillium dahliae causing sunflower leaf mottle and wilt in Argentina. J. Plant Pathol. 2017, 99, 445–451. [Google Scholar] [CrossRef]
- Colombo, D.; Fass, M.; Errenguerena, I.; Filippi, C.; Martínez, M.; Dominguez, M.; Martínez, A.; Aguilera, P.; Deperi, S.; Heinz, N.; et al. Update on Sunflower Diseases in Argentina. Helia 2024, 47, 47–67. [Google Scholar]
- Galella, M.T.; Bazzalo, M.E.; Morata, M.; Cimmino, C.; Kaspar, M.; Grondona, M.; Reid, R.; Zambelli, A.; León, A. Pyramiding QTLs for Verticillium dahliae resistance. In Proceedings of the 18th International Sunflower Conference, Mar del Plata, Argentina, 26 February–1 March 2012. [Google Scholar]
- Molinero-Ruiz, L. Recent advances on the characterization and control of sunflower soilborne pathogens under climate change conditions. OCL 2019, 26, 2. [Google Scholar] [CrossRef]
- Aguilera, P.; Colombo, D.; Ben Guerrero, E.; Montecchia, J.F.; Troglia, C.; Corro Molas, A.; Maringolo, C.; Deperi, S.; Lia, V.; Martínez, M.C.; et al. Genetic diversity of Vericillium dahliae isolates infecting sunflower in Argentina. In Proceedings of the 21st International Sunflower Conference, Inner Mongolia, China, 21–24 August 2024. [Google Scholar]
- Montecchia, J.F. Identificación y Caracterización de Fuentes de Resistencia Genética a la Marchitez Anticipada Causada por Verticillium dahliae en Girasol. Ph.D. Thesis, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina, 2019. [Google Scholar]
- Montecchia, J.F.; Fass, M.I.; Cerrudo, I.; Quiroz, F.J.; Nicosia, S.; Maringolo, C.A.; Di Rienzo, J.; Troglia, C.; Hopp, H.E.; Escande, A.; et al. On-field phenotypic evaluation of sunflower populations for broad-spectrum resistance to Verticillium leaf mottle and wilt. Sci. Rep. 2021, 11, 11644. [Google Scholar] [CrossRef]
- Mandel, J.R.; Nambeesan, S.; Bowers, J.E.; Marek, L.F.; Ebert, D.; Rieseberg, L.H.; Knapp, S.J.; Burke, J.M. Association Mapping and the Genomic Consequences of Selection in Sunflower. PLoS Genet. 2013, 9, e1003378. [Google Scholar] [CrossRef]
- Fusari, C.M.; Di Rienzo, J.A.; Troglia, C.; Nishinakamasu, V.; Moreno, M.V.; Maringolo, C.; Quiroz, F.; Álvarez, D.; Escande, A.; Hopp, E.; et al. Association mapping in sunflower for sclerotinia head rot resistance. BMC Plant Biol. 2012, 12, 93. [Google Scholar] [CrossRef]
- Badouin, H.; Gouzy, J.; Grassa, C.J.; Murat, F.; Staton, S.E.; Cottret, L.; Lelandais-Brière, C.; Owens, G.L.; Carrère, S.; Mayjonade, B.; et al. The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature 2017, 546, 148–152. [Google Scholar] [CrossRef]
- Huang, K.; Jahani, M.; Gouzy, J.; Legendre, A.; Carrere, S.; Lázaro-Guevara, J.M.; González Segovia, E.G.; Todesco, M.; Mayjonade, B.; Rodde, N.; et al. The genomics of linkage drag in inbred lines of sunflower. Proc. Natl. Acad. Sci. USA 2023, 120, e2205783119. [Google Scholar] [CrossRef]
- Yu, Y.; Yang, J.; Zhang, J.; Rieseberg, L.H.; Zhao, J. Genomic Insights into Disease Resistance in Sunflower (Helianthus annuus): Identifying Key Regions and Candidate Genes for Verticillium dahliae Resistance. Plants 2024, 13, 2582. [Google Scholar] [CrossRef]
- Filippi, C.V.; Merino, G.A.; Montecchia, J.F.; Aguirre, N.C.; Rivarola, M.; Naamati, G.; Fass, M.I.; Álvarez, D.; Di Rienzo, J.; Heinz, R.A.; et al. Genetic Diversity, Population Structure and Linkage Disequilibrium Assessment among International Sunflower Breeding Collections. Genes 2020, 11, 283. [Google Scholar] [CrossRef] [PubMed]
- Filippi, C.V.; Aguirre, N.; Rivas, J.G.; Zubrzycki, J.; Puebla, A.; Cordes, D.; Moreno, V.M.; Fusari, C.M.; Alvarez, D.; Heinz, R.A.; et al. Population structure and genetic diversity characterization of a sunflower association mapping population using SSR and SNP markers. BMC Plant Biol. 2015, 15, 52. [Google Scholar] [CrossRef] [PubMed]
- Filippi, C.V.; Zubrzycki, J.E.; Di Rienzo, J.A.; Quiroz, F.J.; Puebla, A.F.; Alvarez, D.; Maringolo, C.A.; Escande, A.R.; Hopp, H.E.; Heinz, R.A.; et al. Unveiling the genetic basis of Sclerotinia head rot resistance in sunflower. BMC Plant Biol. 2020, 20, 322. [Google Scholar] [CrossRef] [PubMed]
- Filippi, C.V.; Zubrzycki, J.E.; Di Rienzo, J.A.; Quiroz, F.J.; Fusari, C.M.; Alvarez, D.; Maringolo, C.A.; Escande, A.R.; Hopp, H.E.; Heinz, R.A.; et al. Phenotyping sunflower genetic resources for sclerotinia head rot response: Assesing variability for disease resistance breeding. Plant Dis. 2017, 101, 1941–1948. [Google Scholar] [CrossRef]
- Filippi, C.; Molas, A.; Dominguez, M.; Colombo, D.; Heinz, N.; Troglia, C.; Maringolo, C.; Quiroz, F.; Lia, V.; Paniego, N. Genome-Wide Association Studies in Sunflower: Towards Sclerotinia sclerotiorum and Diaporthe/Phomopsis Resistance Breeding. Genes 2022, 13, 2357. [Google Scholar] [CrossRef]
- Moschen, S.; Marino, J.; Nicosia, S.; Higgins, J.; Alseekh, S.; Astigueta, F.; Bengoa Luoni, S.; Rivarola, M.; Fernie, A.R.; Blanchet, N.; et al. Exploring gene networks in two sunflower lines with contrasting leaf senescence phenotype using a system biology approach. BMC Plant Biol. 2019, 19, 446. [Google Scholar] [CrossRef]
- Moreno, M.V.; Nishinakamasu, V.; Loray, M.; Alvarez, D.; Gieco, J.; Vicario, A.; Hopp, H.E.; Heinz, R.A.; Paniego, N.; Lia, V.V. Genetic characterization of sunflower breeding resources from Argentina: Assessing diversity in key open-pollinated and composite populations. Plant Genet. Res. 2013, 11, 238–249. [Google Scholar] [CrossRef]
- Heinz, N.; Mazzalay, A.; Filippi, C.; Di Rienzo, J.; Paniego, N.; Lia, V.; Álvarez, D. Field evaluation of INTA’s Association Mapping Population in Argentina and use of indices for drought tolerance in sunflower. In Proceedings of the 21st International Sunflower Conference, Inner Mongolia, China, 21–24 August 2024. [Google Scholar]
- Aguirre, N.C.; Filippi, C.V.; Vera, P.A.; Puebla, A.F.; Zaina, G.; Lia, V.V.; Marcucci Poltri, S.N.; Paniego, N.B. Double Digest Restriction-Site Associated DNA Sequencing (ddRADseq) Technology. Methods Mol. Biol. 2023, 2638, 37–57. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. Gigascience 2021, 10, giab008. [Google Scholar] [CrossRef]
- Catchen, J.; Hohenlohe, P.A.; Bassham, S.; Amores, A.; Cresko, W.A. Stacks: An analysis tool set for population genomics. Mol. Ecol. 2013, 22, 3124–3140. [Google Scholar] [CrossRef] [PubMed]
- Merino, G. SNPsRFImputation. GitHub Repository. Available online: https://github.com/gamerino/SNPsRFImputation (accessed on 12 March 2025).
- van Rossum, B.J. statgenGWAS: Genome Wide Association Studies. R Package Version 1.0.10. Available online: https://cran.r-project.org/web/packages/statgenGWAS (accessed on 12 March 2025).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria. 2025. Available online: https://www.r-project.org/ (accessed on 14 February 2025).
- Kang, H.M.; Sul, J.H.; Service, S.K.; Zaitlen, N.A.; Kong, S.Y.; Freimer, N.B.; Sabatti, C.; Eskin, E. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 2010, 42, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Alexander, D.H.; Novembre, J.; Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009, 19, 1655–1664. [Google Scholar] [CrossRef] [PubMed]
- VanRaden, P. Efficient methods to compute genomic predictions. J. Dairy Sci. 2008, 91, 4414–4423. [Google Scholar] [CrossRef]
- Wang, M.; Yan, J.; Zhao, J.; Song, W.; Zhang, X.; Xiao, Y.; Zheng, Y. Genome-wide association study (GWAS) of resistance to head smut in maize. Plant Sci. 2012, 196, 125–131. [Google Scholar] [CrossRef]
- Margarido, G.R.A.; Souza, A.P.; Garcia, A.A.F. OneMap: Software for genetic mapping in outcrossing species. Hereditas 2007, 144, 78–79. [Google Scholar] [CrossRef]
- Kosambi, D.D. The estimation of map distances from recombination values. Ann. Eugen. 1943, 12, 172–175. [Google Scholar] [CrossRef]
- Van Os, H.; Stam, P.; Visser, R.G.F.; Van Eck, H.J. RECORD: A novel method for ordering loci on a genetic linkage map. Theor. App. Genet. 2005, 112, 30–40. [Google Scholar] [CrossRef]
- Broman, K.W.; Wu, H.; Sen, Ś.; Churchill, G.A. R/qtl: QTL mapping in experimental crosses. Bioinformatics 2003, 19, 889–890. [Google Scholar] [CrossRef]
- Broman, K.W.; Kim, S.; Sen, S.; Ané, C.; Payseur, B.A. Mapping quantitative trait loci onto a phylogenetic tree. Genetics 2012, 192, 267–279. [Google Scholar] [CrossRef]
- Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.; Binns, D.; Chang, H.Y.; Fraser, M.; Li, W.; McAnulla, C.; McWilliam, H.; Maslen, J.; Mitchell, A.; Nuka, G.; et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 2014, 30, 1236–1240. [Google Scholar] [CrossRef] [PubMed]
- Ribone, A.I.; Fass, M.; Gonzalez, S.; Lia, V.; Paniego, N.; Rivarola, M. Co-Expression Networks in Sunflower: Harnessing the Power of Multi-Study Transcriptomic Public Data to Identify and Categorize Candidate Genes for Fungal Resistance. Plants 2023, 12, 2767. [Google Scholar] [CrossRef] [PubMed]
- Supek, F.; Bošnjak, M.; Škunca, N.; Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 2011, 6, e21800. [Google Scholar] [CrossRef]
- Erreguerena, I.; Rojo, R.; Quiroz, F.; Clemente, G.; Escande, A. Relationship between Verticillium dahliae inoculum and sunflower wilt in Argentina. Can. J. Plant Pathol. 2019, 41, 576–584. [Google Scholar] [CrossRef]
- Peterson, B.K.; Weber, J.; Delaney, E.; Fisher, H.S.; Hoekstra, H. Double digest RADseq: An inexpensive method for de Novo SNP discovery and genotyping in model and non-model species. PLoS ONE 2012, 7, e37135. [Google Scholar] [CrossRef]
- Aguirre, N.C.; Filippi, C.V.; Zaina, G.; Rivas, J.G.; Acuña, C.V.; Villalba, P.V.; García, M.N.; González, S.; Rivarola, M.; Martínez, M.C.; et al. Optimizing ddRADseq in Non-Model Species: A Case Study in Eucalyptus dunnii Maiden. Agronomy 2019, 9, 484. [Google Scholar] [CrossRef]
- Hussain, W.; Baenziger, P.S.; Belamkar, V.; Guttieri, M.J.; Venegas, J.P.; Easterly, A.; Sallam, A.; Poland, J. Genotyping-by-Sequencing Derived High-Density Linkage Map and its Application to QTL Mapping of Flag Leaf Traits in Bread Wheat. Sci. Rep. 2017, 7, 16394. [Google Scholar] [CrossRef]
- Segura, V.; Vilhjálmsson, B.; Platt, A.; Korte, A.; Seren, Ü.; Long, Q.; Nordborg, M. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat. Genet. 2012, 44, 825–830. [Google Scholar] [CrossRef]
- Aggarwal, R.; Cantore, M.A.; Paz, N.M. Methods and Compositions for Identifying Verticillium Wilt Resistant Sunflower Plants. US Patent 10,477,788, 19 November 2019. [Google Scholar]
- Fradin, E.F.; Thomma, B.P. Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol. Plant Pathol. 2006, 17, 71–86. [Google Scholar] [CrossRef]
- de Jonge, R.; van Esse, H.P.; Maruthachalam, K.; Bolton, M.D.; Santhanam, P.; Saber, M.K.; Zhang, Z.; Usami, T.; Lievens, B.; Subbarao, K.V.; et al. Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. Proc. Natl. Acad. Sci. USA 2012, 27, 5110–5115. [Google Scholar] [CrossRef] [PubMed]
- Fradin, E.F.; Abd-El-Haliem, A.; Masini, L.; van den Berg, G.C.; Joosten, M.H.; Thomma, B.P. Interfamily transfer of tomato Ve1 mediates Verticillium resistance in Arabidopsis. Plant Physiol. 2011, 156, 2255–2265. [Google Scholar] [CrossRef] [PubMed]
- Hübner, S.; Kantar, M.B. Tapping Diversity From the Wild: From Sampling to Implementation. Front. Plant Sci. 2021, 12, 626565. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.M.; Tang, Y.; Chen, J.Q.; Shao, Z.Q. The evolution of plant NLR immune receptors and downstream signal components. Curr. Opin. Plant Biol. 2023, 73, 102363. [Google Scholar] [CrossRef] [PubMed]
- Locci, F.; Wang, J.; Parker, J.E. TIR-domain enzymatic activities at the heart of plant immunity. Curr. Opin. Plant Biol. 2023, 74, 102373. [Google Scholar] [CrossRef]
- DeYoung, B.J.; Innes, R.W. Plant NBS-LRR proteins in pathogen sensing and host defense. Nat. Immunol. 2006, 7, 1243–1249. [Google Scholar] [CrossRef]
- Seifi, H.S.; Curvers, K.; De Vleesschauwer, D.; Delaere, I.; Aziz, A.; Höfte, M. Concurrent overactivation of the cytosolic glutamine synthetase and the GABA shunt in the ABA-deficient sitiens mutant of tomato leads to resistance against Botrytis cinerea. New Phytol. 2013, 199, 490–504. [Google Scholar] [CrossRef]
- Laureano, G.; Figueiredo, J.; Cavaco, A.R.; Duarte, B.; Caçador, I.; Malhó, R.; Sousa Silva, M.; Matos, A.R.; Figueiredo, A. The interplay between membrane lipids and phospholipase A family members in grapevine resistance against Plasmopara viticola. Sci. Rep. 2018, 8, 14538. [Google Scholar] [CrossRef]
- He, M.; Ding, N.Z. Plant Unsaturated Fatty Acids: Multiple Roles in Stress Response. Front. Plant Sci. 2020, 11, 562785. [Google Scholar] [CrossRef]
- Kuźniak, E.; Gajewska, E. Lipids and Lipid-Mediated Signaling in Plant–Pathogen Interactions. Int. J. Mol. Sci. 2024, 25, 7255. [Google Scholar] [CrossRef]
- Seth, T.; Asija, S.; Umar, S.; Gupta, R. The Intricate Role of Lipids in Orchestrating Plant Defense Responses. Plant Sci. 2024, 338, 111904. [Google Scholar] [CrossRef] [PubMed]
- Li, W. Bringing Bioactive Compounds into Membranes: The UbiA Superfamily of Intramembrane Aromatic Prenyltransferases. Trends Biochem. Sci. 2016, 41, 356–370. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Jia, Y.; Huang, X.; Chen, Z.; Xiang, T.; Han, N.; Bian, H.; Li, C. Transcriptional and protein structural characterization of homogentisate phytyltransferase genes in barley, wheat, and oat. BMC Plant Biol. 2023, 23, 528. [Google Scholar] [CrossRef] [PubMed]
- Kue Foka, I.C.; Ketehouli, T.; Zhou, Y.; Li, X.-W.; Wang, F.-W.; Li, H. The Emerging Roles of Diacylglycerol Kinase (DGK) in Plant Stress Tolerance, Growth, and Development. Agronomy 2020, 10, 1375. [Google Scholar] [CrossRef]
- Li-Beisson, Y.; Verdier, G.; Xu, L.; Beisson, F. Cutin and Suberin Polyesters; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016. [Google Scholar] [CrossRef]
- Macgregor, D.R.; Deak, K.I.; Ingram, P.A.; Malamy, J.E. Root system architecture in Arabidopsis grown in culture is regulated by sucrose uptake in the aerial tissues. Plant Cell 2008, 20, 2643–2660. [Google Scholar] [CrossRef]
- Jirage, D.; Tootle, T.L.; Reuber, T.L.; Frost, L.N.; Feys, B.J.; Parker, J.E.; Ausubel, F.M.; Glazebrook, J. Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proc. Natl. Acad. Sci. USA 1999, 96, 13583–13588. [Google Scholar] [CrossRef]
- Dongus, J.A.; Bhandari, D.D.; Patel, M.; Archer, L.; Dijkgraaf, L.; Deslandes, L.; Shah, J.; Parker, J.E. The Arabidopsis PAD4 Lipase-Like Domain Is Sufficient for Resistance to Green Peach Aphid. Mol. Plant-Microbe Interact. 2020, 33, 328–335. [Google Scholar] [CrossRef]
Trait | Chromosome | SNP | Position (HanXRQ.v1) | Minor Allele Frequency | p-Value | LOD | Effect | Effect S.E. | Proportion of Phenotypic Variance |
---|---|---|---|---|---|---|---|---|---|
DI.Flw | 10 | 10511 | 201,901,887 | 0.136 | 1.24 × 10−5 | 4.907 | −0.905 | 0.214 | 0.282 |
DI.Flw | 10 | 10561 | 209,211,855 | 0.129 | 4.19 × 10−5 | 4.378 | −0.840 | 0.211 | 0.239 |
DI.Flw | 10 | 9300 | 59,101,609 | 0.114 | 6.65 × 10−5 | 4.177 | −0.863 | 0.223 | 0.142 |
DI.AUDPC | 10 | 10511 | 201,901,887 | 0.136 | 8.46 × 10−6 | 5.073 | −0.408 | 0.095 | 0.307 |
DI.AUDPC | 10 | 10561 | 209,211,855 | 0.129 | 2.42 × 10−5 | 4.616 | −0.381 | 0.093 | 0.263 |
DI.AUDPC | 10 | 10513 | 201,944,131 | 0.144 | 3.49 × 10−5 | 4.457 | −0.392 | 0.097 | 0.296 |
DI.AUDPC | 9 | 8537 | 137,675,420 | 0.091 | 4.47 × 10−5 | 4.350 | −0.325 | 0.082 | 0.141 |
DI.AUDPC | 8 | 6824 | 19,474,689 | 0.102 | 4.49 × 10−5 | 4.348 | −0.307 | 0.077 | 0.131 |
DI.AUDPC | 8 | 7394 | 76,546,603 | 0.091 | 4.74 × 10−5 | 4.324 | −0.343 | 0.086 | 0.157 |
DI.AUDPC | 10 | 10484 | 199,022,192 | 0.076 | 5.85 × 10−5 | 4.233 | −0.675 | 0.172 | 0.236 |
DI.AUDPC | 10 | 10452 | 196,358,971 | 0.144 | 8.65 × 10−5 | 4.063 | −0.364 | 0.095 | 0.264 |
DS.Gf | 10 | 10511 | 201,901,887 | 0.136 | 1.09 × 10−5 | 4.964 | −0.357 | 0.084 | 0.270 |
DS.Gf | 10 | 9300 | 59,101,609 | 0.114 | 2.87 × 10−5 | 4.542 | −0.373 | 0.092 | 0.162 |
bDS.Gf | 8 | 6824 | 19,474,689 | 0.102 | 1.13 × 10−5 | 4.945 | −0.883 | 0.208 | 0.143 |
bDS.Gf | 10 | 10511 | 201,901,887 | 0.136 | 1.99 × 10−5 | 4.701 | −1.039 | 0.253 | 0.262 |
PC1 | 10 | 10511 | 201,901,887 | 0.136 | 6.20 × 10−5 | 4.208 | −3.105 | 0.800 | 0.294 |
Trait | QTL Name | Chr | SNP Closest to Refined QTL Peak | Pos (cM) | LOD | p-Value | % Variance Add. Model | Estimated Additive Effects | S.E of Estimated Effects | Pos Closest SNP HanXRQ v1 | CI Left Marker Position (−1 LOD Drop) | CI Right Marker Position (−1 LOD Drop) | Interval (cM) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DI.Flw | qSVW-10.1 | 10 | 86706_53 | 59 | 7.8 | 0,00 | 20.22% | −0.374 | 0.054 | 207,502,682 | 57.75 | 76.72 | 18.98 |
DI.Flw | qSVW-17.1 | 17 | 159418_28 | 259 | 5.96 | 2.00 × 10−4 | 11.70% | −0.296 | 0.056 | 171,251,880 | 255.23 | 269.18 | 13.94 |
DI.Flw | qSVW-14.1 | 14 | 129783_18 | 119 | 4.77 | 2.80 × 10−3 | 12.89% | −0.300 | 0.054 | 47,885,041 | 115.36 | 123.01 | 7.65 |
DI.Flw | qSVW-08.1 | 8 | 63838_12 | 238 | 4.04 | 1.14 × 10−2 | 9.44% | −0.257 | 0.055 | 127,207,823 | 117.84 | 270.69 | 152.84 |
DI.AUDPC | qSVW-10.1 | 10 | 86780_47 | 58 | 7.74 | 0,00 | 20.28% | −0.229 | 0.034 | 208,801,335 | 52.00 | 76.72 | 24.72 |
DI.AUDPC | qSVW-17.1 | 17 | 159430_35 | 257 | 5.7 | 2.00 × 10−4 | 13.36% | −0.185 | 0.033 | 171,446,989 | 134.61 | 262.59 | 127.98 |
DI.AUDPC | qSVW-08.2 | 8 | 63166_57 | 264 | 4.7 | 3.60 × 10−3 | 10.82% | −0.203 | 0.041 | 115,257,798 | 251.68 | 270.69 | 19.01 |
DI.AUDPC | qSVW-14.1 | 14 | 129783_18 | 119 | 3.49 | 3.64 × 10−2 | 8.78% | −0.149 | 0.033 | 47,885,041 | 115.36 | 123.01 | 7.65 |
DS.Gf | qSVW-10.1 | 10 | 86780_47 | 57.74 | 5.62 | 4.00 × 10−4 | 15.24% | −0.164 | 0.034 | 208,801,335 | 45.00 | 78.73 | 33.73 |
DS.Gf | qSVW-17.1 | 17 | 159418_28 | 258 | 4.13 | 9.60 × 10−3 | 11.27% | −0.132 | 0.032 | 171,251,880 | 125.00 | 262.00 | 137.00 |
bDS.Gf | qSVW-10.1 | 10 | 86923_8 | 75.71 | 7.33 | 0.00 | 20.67% | −0.460 | 0.071 | 211,290,639 | 48.00 | 78.73 | 30.73 |
bDS.Gf | qSVW-17.1 | 17 | 159418_28 | 258.90 | 7 | 0.00 | 18.73% | −0.445 | 0.072 | 171,251,880 | 255.23 | 262.59 | 7.35 |
bDS.Gf | qSVW-14.1 | 14 | 129783_18 | 119.82 | 3.78 | 2.04 × 10−2 | 8.40% | −0.295 | 0.071 | 47,885,041 | 60.47 | 127.43 | 66.96 |
PC1 | qSVW-10.1 | 10 | 86780_47 | 57.75 | 7.06 | 0.00 | 17.60% | −1.578 | 0.258 | 208,801,335 | 48.00 | 78.73 | 30.73 |
PC1 | qSVW-17.1 | 17 | 159418_28 | 259 | 5.8 | 2.00 × 10−4 | 15.59% | −1.502 | 0.261 | 171,251,880 | 242.64 | 329.77 | 87.13 |
PC1 | qSVW-14.1 | 14 | 129783_18 | 119.83 | 3.84 | 1.72 × 10−2 | 7.47% | −1.034 | 0.259 | 47,885,041 | 115.36 | 123.01 | 7.65 |
PC1 | qSVW-13.1 | 13 | 121588_42 | 53 | 3.36 | 4.70 × 10−2 | 6.33% | 0.942 | 0.257 | 72,945,739 | 15.23 | 114.12 | 98.89 |
Mapping Method | SNP | XRQ2.0_pos | Number of CG |
---|---|---|---|
GWAS | 7394 | HanXRQr2Chr08_60565151 | 12 |
9300 | HanXRQr2Chr08_154480883 | 2 | |
8537 | HanXRQr2Chr09_124441742 | 18 | |
10452 | HanXRQr2Chr10_155523039 | 17 | |
10484 | HanXRQr2Chr10_151936129 | 18 | |
10511 | HanXRQr2Chr10_154638964 | 14 | |
10513 | HanXRQr2Chr10_154681208 | 13 | |
10561 | HanXRQr2Chr10_159899673 | 12 | |
6824 | HanXRQr2Chr11_89733249 | 3 | |
CIM | 63166_57 | HanXRQChr08-97375604 | 7 |
63838_12 | HanXRQChr08-110174623 | 12 | |
86706_53 | HanXRQChr10-158829261 | 23 | |
86780_47 | HanXRQChr10-159456303 | 10 | |
86923_8 | HanXRQChr10-162279227 | 23 | |
121588_42 | HanXRQChr13-69318860 | 6 | |
129783_18 | HanXRQChr14-48685578 | 5 | |
159430_35 | HanXRQChr17-159580342 | 3 | |
159418_28 | HanXRQChr17-160161466 | 10 |
Mapping Method | Associated SNP | Trait | CG ID (HanXRQv2.0) | R Class | Domain | Start of Domain | End of Domain |
---|---|---|---|---|---|---|---|
GWAS | |||||||
8537 | DI.AUDPC | HanXRQr2_Chr09g0388961 | RLP | TM | 1 | 15 | |
HanXRQr2_Chr09g0388961 | RLP | TM | 124 | 138 | |||
HanXRQr2_Chr09g0388961 | RLP | LRR | 36 | 49 | |||
10484 | DI.AUDPC | HanXRQr2_Chr10g0452681 | CN | NBS | 157 | 172 | |
HanXRQr2_Chr10g0452681 | CN | CC | 4 | 24 | |||
HanXRQr2_Chr10g0452681 | CN | TM | 170 | 189 | |||
10511 10513 | All Traits DI.AUDPC | HanXRQr2_Chr10g0453571 | KIN | Kinase | 19 | 40 | |
HanXRQr2_Chr10g0453571 | KIN | Kinase | 50 | 113 | |||
HanXRQr2_Chr10g0453571 | KIN | Kinase | 115 | 225 | |||
HanXRQr2_Chr10g0453581 | T | TM | 74 | 87 | |||
HanXRQr2_Chr10g0453581 | T | TM | 150 | 179 | |||
HanXRQr2_Chr10g0453581 | T | TIR | 16 | 97 | |||
HanXRQr2_Chr10g0453581 | T | TIR | 103 | 125 | |||
HanXRQr2_Chr10g0453581 | T | TIR | 143 | 157 | |||
HanXRQr2_Chr10g0453591 | KIN | TM | 13 | 25 | |||
HanXRQr2_Chr10g0453591 | KIN | TM | 361 | 384 | |||
HanXRQr2_Chr10g0453591 | KIN | Kinase | 246 | 308 | |||
HanXRQr2_Chr10g0453591 | KIN | Kinase | 317 | 420 | |||
HanXRQr2_Chr10g0453591 | KIN | Kinase | 446 | 491 | |||
HanXRQr2_Chr10g0453601 | CK | CC | 1 | 21 | |||
HanXRQr2_Chr10g0453601 | CK | TM | 26 | 37 | |||
HanXRQr2_Chr10g0453601 | CK | Kinase | 20 | 42 | |||
HanXRQr2_Chr10g0453601 | CK | Kinase | 51 | 113 | |||
HanXRQr2_Chr10g0453601 | CK | Kinase | 116 | 133 | |||
10452 | DI.AUDPC | HanXRQr2_Chr10g0453851 | RLK | TM | 6 | 20 | |
HanXRQr2_Chr10g0453851 | RLK | TM | 234 | 253 | |||
HanXRQr2_Chr10g0453851 | RLK | Kinase | 287 | 389 | |||
HanXRQr2_Chr10g0453851 | RLK | Kinase | 390 | 499 | |||
HanXRQr2_Chr10g0453851 | RLK | Kinase | 517 | 571 | |||
HanXRQr2_Chr10g0453851 | RLK | LRR | 84 | 211 | |||
10452 | DI.AUDPC | HanXRQr2_Chr10g0453961 | N | NBS | 152 | 162 | |
HanXRQr2_Chr10g0453961 | N | TM | 12 | 22 | |||
HanXRQr2_Chr10g0453961 | N | TM | 94 | 104 | |||
CIM | |||||||
86706_53 | DI.Flw | HanXRQr2_Chr10g0454871 | KIN | Kinase | 137 | 164 | |
HanXRQr2_Chr10g0455011 | KIN | Kinase | 1 | 42 | |||
HanXRQr2_Chr10g0455011 | KIN | Kinase | 47 | 155 | |||
HanXRQr2_Chr10g0455011 | KIN | Kinase | 177 | 225 | |||
159418_28 | DI.Flw, Ds.Gf, bDS.Gf, PC1 | HanXRQr2_Chr17g0822011 | KIN | TM | 230 | 245 | |
HanXRQr2_Chr17g0822011 | KIN | Kinase | 91 | 136 | |||
HanXRQr2_Chr17g0822011 | KIN | Kinase | 168 | 202 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montecchia, J.F.; Fass, M.I.; Domínguez, M.; González, S.A.; García, M.N.; Filippi, C.V.; Ben Guerrero, E.; Maringolo, C.; Troglia, C.; Quiroz, F.J.; et al. Combining Linkage and Association Mapping Approaches to Study the Genetic Architecture of Verticillium Wilt Resistance in Sunflower. Plants 2025, 14, 1187. https://doi.org/10.3390/plants14081187
Montecchia JF, Fass MI, Domínguez M, González SA, García MN, Filippi CV, Ben Guerrero E, Maringolo C, Troglia C, Quiroz FJ, et al. Combining Linkage and Association Mapping Approaches to Study the Genetic Architecture of Verticillium Wilt Resistance in Sunflower. Plants. 2025; 14(8):1187. https://doi.org/10.3390/plants14081187
Chicago/Turabian StyleMontecchia, Juan F., Mónica I. Fass, Matías Domínguez, Sergio A. González, Martín N. García, Carla V. Filippi, Emiliano Ben Guerrero, Carla Maringolo, Carolina Troglia, Facundo J. Quiroz, and et al. 2025. "Combining Linkage and Association Mapping Approaches to Study the Genetic Architecture of Verticillium Wilt Resistance in Sunflower" Plants 14, no. 8: 1187. https://doi.org/10.3390/plants14081187
APA StyleMontecchia, J. F., Fass, M. I., Domínguez, M., González, S. A., García, M. N., Filippi, C. V., Ben Guerrero, E., Maringolo, C., Troglia, C., Quiroz, F. J., González, J. H., Alvarez, D., Heinz, R. A., Lia, V. V., & Paniego, N. B. (2025). Combining Linkage and Association Mapping Approaches to Study the Genetic Architecture of Verticillium Wilt Resistance in Sunflower. Plants, 14(8), 1187. https://doi.org/10.3390/plants14081187