Genetic and Phenotypic Diversity and Evaluation of Total Phenolics and Antioxidant Properties of Garlic Landraces from Lazio Region (Central Italy): “Aglio Rosso di Proceno” and “Aglio Rosso di Castelliri”
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. DNA Extraction and Molecular Markers Analysis
2.3. Field Trial
2.4. Morphological Analysis of Bulbs and Cloves
2.5. Total Phenolics and Antioxidant Activity
2.6. Data Analysis
2.6.1. Molecular Data
2.6.2. Morphological and Color Data
2.6.3. Phenolic and Antioxidant Data
3. Results
3.1. Genetic Analysis by SSR and ISSR Markers
3.1.1. SSR and ISSR Markers Polymorphism and Their Informativeness
3.1.2. Genetic Relationship Among Garlic Accessions
3.1.3. Population Structure of Garlic Accessions
3.1.4. Genetic Diversity Among and Within “Aglio Rosso di Castelliri” and “Aglio Rosso di Proceno” Landraces
3.2. Phenotypic Diversity of Bulbs and Cloves Among and Within the “Aglio Rosso di Castelliri” and “Aglio Rosso di Proceno” Landraces, and Comparison with Red-Type Garlic Reference Genotypes
3.2.1. Variation in Qualitative Traits Among Garlic Accessions
3.2.2. Variation in Quantitative Weight and Dimensional Traits Among Garlic Accessions
3.2.3. Variation in Flesh Clove Color Parameters Among Garlic Landraces
3.2.4. Cluster and Principal Component Analysis
3.3. Variation in Total Phenolics and Antioxidant Activity of Bulbs Among and Within “Aglio Rosso di Castelliri” and “Aglio Rosso di Proceno” Landraces, Compared to Red-Type Garlic Reference Genotypes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zohary, D.; Hopf, M.; Weiss, E. Domestication of Plants in the Old World: The Origin and Spread of Domesticated Plants in Southwest Asia, Europe, and the Mediterranean Basin, 4th ed.; Oxford Academic: Oxford, UK, 2012. [Google Scholar] [CrossRef]
- Rabinowitch, H.D.; Currah, L. Allium Crop Science: Recent Advances; Cabi Publishing: Wallingford, UK, 2002. [Google Scholar]
- Etoh, T.; Simon, P.W. Diversity, fertility, and seed production of garlic. In Allium Crop Science: Recent Advances; Rabinowitch, H.D., Currah, L., Eds.; Cabi Publishing: Wallingford, UK, 2002; pp. 101–117. [Google Scholar]
- Parreño, R.; Rodríguez-Alcocer, E.; Martínez-Guardiola, C.; Carrasco, L.; Castillo, P.; Arbona, V.; Jover-Gil, S.; Candela, H. Turning Garlic into a Modern Crop: State of the Art and Perspectives. Plants 2023, 12, 1212. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.-F.; Ding, Z.-S.; Liu, N.-B. Allium Vegetables and Risk of Prostate Cancer: Evidence from 132,192 Subjects. Asian Pac. J. Cancer Prev. 2013, 14, 4131–4134. [Google Scholar] [CrossRef]
- Banerjee, S.K.; Maulik, S.K. Effect of Garlic on Cardiovascular Disorders: A Review. Nutr. J. 2002, 1, 4. [Google Scholar] [CrossRef] [PubMed]
- Peinado, M.J.; Ruiz, R.; Echávarri, A.; Aranda-Olmedo, I.; Rubio, L.A. Garlic Derivative PTS-O Modulates Intestinal Microbiota Composition and Improves Digestibility in Growing Broiler Chickens. Anim. Feed Sci. Technol. 2013, 181, 87–92. [Google Scholar] [CrossRef]
- Wilson, E.A.; Demmig-Adams, B. Antioxidant, Anti-inflammatory, and Antimicrobial Properties of Garlic and Onions. Nutr. Food Sci. 2007, 37, 178–183. [Google Scholar] [CrossRef]
- Santhosha, S.G.; Jamuna, P.; Prabhavathi, S.N. Bioactive Components of Garlic and Their Physiological Role in Health Maintenance: A Review. Food Biosci. 2013, 3, 59–74. [Google Scholar] [CrossRef]
- Amagase, H.; Petesch, B.L.; Matsuura, H.; Kasuga, S.; Itakura, Y. Intake of Garlic and Its Bioactive Components. J. Nutr. 2001, 131, 955S–962S. [Google Scholar] [CrossRef]
- Diretto, G.; Rubio-Moraga, A.; Argandoña, J.; Castillo, P.; Gómez-Gómez, L.; Ahrazem, O. Tissue-Specific Accumulation of Sulfur Compounds and Saponins in Different Parts of Garlic Cloves from Purple and White Ecotypes. Molecules 2017, 22, 1359. [Google Scholar] [CrossRef]
- Petropoulos, S.; Di Gioia, F.; Ntatsi, G. Vegetable organosulfur compounds and their health promoting effects. Curr. Pharm. Des. 2017, 23, 2850–2875. [Google Scholar] [CrossRef]
- Touloupakis, E.; Ghanotakis, D.F. Nutraceutical Use of Garlic Sulfur-Containing Compounds. In Bio-Farms for Nutraceuticals; Giardi, M.T., Rea, G., Berra, B., Eds.; Advances in Experimental Medicine and Biology; Springer: Boston, MA, USA, 2010; Volume 698, pp. 110–121. [Google Scholar] [CrossRef]
- Abe, K.; Hori, Y.; Myoda, T. Volatile Compounds of Fresh and Processed Garlic (Review). Exp. Ther. Med. 2019, 19, 1585–1593. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Kumagai, H. Characteristics, Biosynthesis, Decomposition, Metabolism and Functions of the Garlic Odour Precursor, S-allyl-l-cysteine Sulfoxide (Review). Exp. Ther. Med. 2019, 19, 1528–1535. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, Y.S.; Ishimoto, E.Y.; Bastos, D.H.M.; Sampaio, G.R.; Torres, E.A.F.S. Garlic (Allium sativum L.) and Ready-to-Eat Garlic Products: In Vitro Antioxidant Activity. Food Chem. 2009, 115, 371–374. [Google Scholar] [CrossRef]
- Beretta, H.V.; Bannoud, F.; Insani, M.; Berli, F.; Hirschegger, P.; Galmarini, C.R.; Cavagnaro, P.F. Relationships between bioactive compound content and the antiplatelet and antioxidant activities of six Allium vegetable species. Food Technol. Biotechnol. 2017, 55, 266–275. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAOSTAT). Available online: http://www.fao.org/faostat (accessed on 30 January 2025).
- Italian National Institute of Statistics (ISTAT). Available online: http://dati.istat.it/Index.aspx?DataSetCode=DCSP_COLTIVAZ&Lang=en (accessed on 30 January 2025).
- Egea, L.A.; Mérida-García, R.; Kilian, A.; Hernandez, P.; Dorado, G. Assessment of Genetic Diversity and Structure of Large Garlic (Allium sativum) Germplasm Bank, by Diversity Arrays Technology “Genotyping-by-Sequencing” Platform (DArTseq). Front. Genet. 2017, 8, 98. [Google Scholar] [CrossRef]
- Bhusal, R.; Islam, S.; Khar, A.; Singh, S.; Jain, N.; Tomar, B.S. Diversity Analysis and Trait Association Study for Antioxidants and Quality Traits in Landraces, Farmers’ Varieties and Commercial Varieties of Indian Short Day Garlic (Allium sativum L.). Genet. Resour. Crop Evol. 2019, 66, 1843–1859. [Google Scholar] [CrossRef]
- Mohammadi, B.; Khodadadi, M.; Karami, E.; Shaaf, S. Variation in Agro-Morphological Characters in Iranian Garlic Landraces. Int. J. Veg. Sci. 2014, 20, 202–215. [Google Scholar] [CrossRef]
- Negri, V.; Maxted, N. European landrace conservation: An introduction. In European Landraces: On-Farm Conservation, Management and Use; Negri, V., Maxted, N., Veteläinen, M., Eds.; Bioversity International: Rome, Italy, 2009; pp. 1–22. [Google Scholar]
- Casals, J.; Rivera, A.; Campo, S.; Aymerich, E.; Isern, H.; Fenero, D.; Garriga, A.; Palou, A.; Monfort, A.; Howad, W.; et al. Phenotypic Diversity and Distinctiveness of the Belltall Garlic Landrace. Front. Plant Sci. 2023, 13, 1004069. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Aceituno, L.; Lázaro, A. Physicochemical and Textural Properties of a Spanish Traditional Garlic (Allium sativum L.) Variety: Characterizing Distinctive Properties of “Fino de Chinchón” Garlic. Eur. Food Res. Technol. 2021, 247, 2399–2408. [Google Scholar] [CrossRef]
- Brandolini, V.; Tedeschi, P.; Cereti, E.; Maietti, A.; Barile, D.; Coïsson, J.D.; Mazzotta, D.; Arlorio, M.; Martelli, A. Chemical and Genomic Combined Approach Applied to the Characterization and Identification of Italian Allium sativum L. J. Agric. Food Chem. 2005, 53, 678–683. [Google Scholar] [CrossRef]
- Lisciani, S.; Gambelli, L.; Durazzo, A.; Marconi, S.; Camilli, E.; Rossetti, C.; Gabrielli, P.; Aguzzi, A.; Temperini, O.; Marletta, L. Carbohydrates Components of Some Italian Local Landraces: Garlic (Allium sativum L.). Sustainability 2017, 9, 1922. [Google Scholar] [CrossRef]
- Bonasia, A.; Conversa, G.; Lazzizera, C.; Loizzo, P.; Gambacorta, G.; Elia, A. Evaluation of Garlic Landraces from Foggia Province (Puglia Region; Italy). Foods 2020, 9, 850. [Google Scholar] [CrossRef] [PubMed]
- Costanza, M.T.; Barbagiovanni Miracolo, I.; Taviani, P.; Paoletti, S.; Rea, R.; Lelli, L.; Garzia, J.H.; Porfiri, O.; Nardi, P.; Tanca, M. On Farm Conservation of Plant Genetic Resources in Lazio Region, Italy. Implementation of the Regional Act 1st March 2000 N°15. In Agrobiodiversity Conservation: Securing the Diversity of Crop Wild Relatives and Landraces; Maxted, N., Dulloo, E.M., Ford-Lloyd, B.V., Frese, L., Iriondo, J., Pinheiro de Carvalho, M.A.A., Eds.; CABI: Wallingford, UK, 2012; Volume 365, pp. 161–172. ISBN 13 9781845938512. [Google Scholar]
- Karakan, F.Y. Relationship between Volatile Sulfur Compounds, Mineral Content, Morphological and Molecular Characterization of Local Garlic Genotypes. Bangladesh J. Bot. 2022, 51, 147–155. [Google Scholar] [CrossRef]
- Hirata, S.; Abdelrahman, M.; Yamauchi, N.; Shigyo, M. Diversity Evaluation Based on Morphological, Physiological and Isozyme Variation in Genetic Resources of Garlic (Allium sativum L.) Collected Worldwide. Genes Genet. Syst. 2016, 91, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, X.; Shen, D.; Oiu, Y.; Song, J. Diversity Evaluation of Morphological Traits and Allicin Content in Garlic (Allium sativum L.) from China. Euphytica 2014, 198, 243–254. [Google Scholar] [CrossRef]
- Benke, A.P.; Khar, A.; Mahajan, V.; Gupta, A.; Singh, M. Study on Dispersion of Genetic Variation among Indian Garlic Ecotypes Using Agro Morphological Traits. Indian J. Genet. Plant Breed. 2020, 80, 94–102. [Google Scholar] [CrossRef]
- Barboza, K.; Salinas, M.C.; Acuña, C.V.; Bannoud, F.; Beretta, V.; García-Lampasona, S.; Burba, J.L.; Galmarini, C.R.; Cavagnaro, P.F. Assessment of Genetic Diversity and Population Structure in a Garlic (Allium sativum L.) Germplasm Collection Varying in Bulb Content of Pyruvate, Phenolics, and Solids. Sci. Hortic. 2020, 261, 108900. [Google Scholar] [CrossRef]
- Chen, S.; Chen, W.; Shen, X.; Yang, Y.; Qi, F.; Liu, Y.; Meng, H. Analysis of the Genetic Diversity of Garlic (Allium sativum L.) by Simple Sequence Repeat and Inter Simple Sequence Repeat Analysis and Agro-Morphological Traits. Biochem. Syst. Ecol. 2014, 55, 260–267. [Google Scholar] [CrossRef]
- Shen, X.; Sun, X.; Cao, M.; Zhang, Y.; Hang, Y.; Chen, M. Molecular Markers for Authentification of Allium sativum L. Cultivar ‘Taicangbaisuan’ and Genetic Relationships among 9 Chinese Garlic Cultivars. Genet. Resour. Crop Evol. 2021, 68, 1961–1970. [Google Scholar] [CrossRef]
- Stavelíková, H. Morphological Characteristics of Garlic (Allium sativum L.) Genetic Resources Collection–Information. Hortic. Sci. 2008, 35, 130–135. [Google Scholar] [CrossRef]
- Panthee, D.R.; Kc, R.B.; Regmi, H.N.; Subedi, P.P.; Bhattarai, S.; Dhakal, J. Diversity Analysis of Garlic (Allium sativum L.) Germplasms Available in Nepal Based on Morphological Characters. Genet. Resour. Crop Evol. 2006, 53, 205–212. [Google Scholar] [CrossRef]
- Kaushik, S.; Kumar, M.; Prakash, S.; Kumar, V.; Singh, M.K.; Singh, B.; Malik, S.; Singh, K. Study of Genetic Diversity in Garlic (Allium sativum L.) by Using Morphological Characters. Progress. Agric. 2016, 16, 204. [Google Scholar] [CrossRef]
- Nadeem, M.A.; Nawaz, M.A.; Shahid, M.Q.; Doğan, Y.; Comertpay, G.; Yıldız, M.; Hatipoğlu, R.; Ahmad, F.; Alsaleh, A.; Labhane, N.; et al. DNA molecular markers in plant breeding: Current status and recent advancements in genomic selection and genome editing. Biotechnol. Biotechnol. Equip. 2017, 32, 261–285. [Google Scholar] [CrossRef]
- Bradley, K.F.; Rieger, M.A.; Collins, G.G. Classification of Australian Garlic Cultivars by DNA Fingerprinting. Aust. J. Exp. Agric. 1996, 36, 613–618. [Google Scholar] [CrossRef]
- Khar, A.; Devi, A.A.; Lawande, K.E. Analysis of genetic diversity among Indian garlic (Allium sativum L.) cultivars and breeding lines using RAPD markers. Indian J. Genet. Plant Breed. 2008, 68, 52–57. [Google Scholar]
- Chen, S.; Zhou, J.; Chen, Q.; Chang, Y.; Du, J.; Meng, H. Analysis of the Genetic Diversity of Garlic (Allium sativum L.) Germplasm by SRAP. Biochem. Syst. Ecol. 2013, 50, 139–146. [Google Scholar] [CrossRef]
- Volk, G.M.; Henk, A.D.; Richards, C.M. Genetic Diversity among U.S. Garlic Clones as Detected Using AFLP Methods. J. Am. Soc. Hortic. Sci. Jashs 2004, 129, 559–569. [Google Scholar] [CrossRef]
- García Lampasona, S.; Martínez, L.; Burba, J.L. Genetic diversity among selected Argentinean garlic clones (Allium sativum L.) using AFLP (Amplified Fragment Length Polymorphism). Euphytica 2003, 132, 115–119. [Google Scholar] [CrossRef]
- Ipek, M.; Ipek, A.; Simon, P.W. Molecular Characterization of Kastamonu Garlic: An Economically Important Garlic Clone in Turkey. Sci. Hortic. 2008, 115, 203–208. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Liu, X.; Oiu, Y.; Song, J.; Zhang, X. Genetic Diversity of Garlic (Allium sativum L.) Germplasm from China by Fluorescent-Based AFLP, SSR and InDel Markers. Plant Breed. 2016, 135, 743–750. [Google Scholar] [CrossRef]
- Kıraç, H.; Dalda Şekerci, A.; Coşkun, Ö.F.; Gülşen, O. Morphological and Molecular Characterization of Garlic (Allium sativum L.) Genotypes Sampled from Turkey. Genet. Resour. Crop Evol. 2022, 69, 1833–1841. [Google Scholar] [CrossRef]
- Rakesh Sharma, V.; Malik, S.; Kumar, M.; Sirohi, A.; Nagaraju, K. Assessment of Genetic Diversity in Garlic (Allium sativum L.) Genotypes Based on ISSR Markers. Plant Arch. 2016, 16, 88–95. [Google Scholar]
- Ma, K.-H.; Kwag, J.-G.; Zhao, W.; Dixit, A.; Lee, G.-A.; Kim, H.-H.; Chung, I.-M.; Kim, N.-S.; Lee, J.-S.; Ji, J.-J.; et al. Isolation and Characteristics of Eight Novel Polymorphic Microsatellite Loci from the Genome of Garlic (Allium sativum L.). Sci. Hortic. 2009, 122, 355–361. [Google Scholar] [CrossRef]
- Cunha, C.P.; Hoogerheide, E.S.S.; Zucchi, M.I.; Monteiro, M.; Pinheiro, J.B. New Microsatellite Markers for Garlic, Allium sativum (Alliaceae). Am. J. Bot. 2012, 99, e17–e19. [Google Scholar] [CrossRef] [PubMed]
- Ipek, M.; Sahin, N.; Ipek, A.; Cansev, A.; Simon, P.W. Development and Validation of New SSR Markers from Expressed Regions in the Garlic Genome. Sci. Agric. 2015, 72, 41–46. [Google Scholar] [CrossRef]
- Kumar, M.; Rakesh Sharma, V.; Kumar, V.; Sirohi, U.; Chaudhary, V.; Sharma, S.; Saripalli, G.; Naresh, R.K.; Yadav, H.K.; Sharma, S. Genetic Diversity and Population Structure Analysis of Indian Garlic (Allium sativum L.) Collection Using SSR Markers. Physiol. Mol. Biol. Plants 2019, 25, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Poljuha, D.; Franić, M.; Kralj, I.; Weber, T.; Šatović, Z.; Ban, D.; Toth, N.; Dumičić, G.; Kereša, S.; Da Cunha, C.P.; et al. Genetic Diversity and Structure Analysis of Croatian Garlic Collection Assessed by SSR Markers. Folia Hortic. 2021, 33, 157–171. [Google Scholar] [CrossRef]
- Li, X.; Qiao, L.; Chen, B.; Zheng, Y.; Zhi, C.; Zhang, S.; Pan, Y.; Cheng, Z. SSR Markers Development and Their Application in Genetic Diversity Evaluation of Garlic (Allium sativum) Germplasm. Plant Divers. 2022, 44, 481–491. [Google Scholar] [CrossRef]
- Papaioannou, C.; Fassou, G.; Petropoulos, S.A.; Lamari, F.N.; Bebeli, P.J.; Papasotiropoulos, V. Evaluation of the Genetic Diversity of Greek Garlic (Allium sativum L.) Accessions Using DNA Markers and Association with Phenotypic and Chemical Variation. Agriculture 2023, 13, 1408. [Google Scholar] [CrossRef]
- Da Cunha, C.P.; Resende, F.V.; Zucchi, M.I.; Pinheiro, J.B. SSR-Based Genetic Diversity and Structure of Garlic Accessions from Brazil. Genetica 2014, 142, 419–431. [Google Scholar] [CrossRef]
- Azzini, E.; Durazzo, A.; Foddai, M.S.; Temperini, O.; Venneria, E.; Valentini, S.; Maiani, G. Phytochemicals content in Italian garlic bulb (Allium sativum L.) varieties. J. Food Res. 2014, 3, 26–31. [Google Scholar] [CrossRef]
- Gambelli, L.; Marconi, S.; Durazzo, A.; Camilli, E.; Aguzzi, A.; Gabrielli, P.; Marletta, L.; Lisciani, S. Vitamins and Minerals in Four Traditional Garlic Ecotypes (Allium sativum L.) from Italy: An Example of Territorial Biodiversity. Sustainability 2021, 13, 7405. [Google Scholar] [CrossRef]
- Biancolillo, A.; Aloia, R.; Rossi, L.; D’Archivio, A.A. Organosulfur Volatile Profiles in Italian Red Garlic (Allium sativum L.) Varieties Investigated by HS-SPME/GC-MS and Chemometrics. Food Control 2022, 131, 108477. [Google Scholar] [CrossRef]
- Alicandri, E.; Vettraino, A.M.; Agrimi, M.; Ciaffi, M.; Kuzminsky, E. Molecular Markers Dataset to Assess the Genetic Diversity of Oriental Plane Trees from Historical Sites in Lazio (Central Italy). Data Brief 2022, 42, 108100. [Google Scholar] [CrossRef]
- Ciaffi, M.; Alicandri, E.; Vettraino, A.M.; Paolacci, A.R.; Tamantini, M.; Tomao, A.; Agrimi, M.; Kuzminsky, E. Conservation of Veteran Trees within Historical Gardens (COVE): A Case Study Applied to Platanus orientalis L. in Central Italy. Urban For. Urban Green. 2018, 34, 336–347. [Google Scholar] [CrossRef]
- Ciaffi, M.; Vettraino, A.M.; Alicandri, E.; Tomao, A.; Adducci, F.; Kuzminsky, E.; Agrimi, M. Dimensional and Genetic Characterization of the Last Oriental Plane Trees (Platanus orientalis L.) of Historical Sites in Lazio (Central Italy). Urban For. Urban Green. 2022, 69, 127506. [Google Scholar] [CrossRef]
- Alicandri, E.; Paolacci, A.R.; Catarcione, G.; Del Lungo, A.; Iacoponi, V.; Pati, F.; Scarascia Mugnozza, G.; Ciaffi, M. Morphological, Molecular, and Nutritional Characterisation of the Globe Artichoke Landrace “Carciofo Ortano”. Plants 2023, 12, 1844. [Google Scholar] [CrossRef]
- UPOV Descriptors. Guidelines for the Conduct of Tests for Distinctness, Uniformity and Stability on Garlic (Allium sativum L.); Report nº TG/162/3; International Union for the Protection of New Varieties of Plants: Genève, Switzerland, 2001. [Google Scholar]
- IPGRI Descriptors for Allium (Allium spp.); International Plant Genetic Resources Institute: Rome, Italy, 2001.
- Bahnasawy, A.H. Some Physical and Mechanical Properties of Garlic. Int. J. Food Eng. 2007, 3. [Google Scholar] [CrossRef]
- McGuire, R.G. Reporting of Objective Color Measurements. HortSci 1992, 27, 1254–1255. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Blois, M. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Weber, J.L. Informativeness of human (dC-dA)n-(dGdT)n polymorphisms. Genomics 1990, 7, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Muse, S.V. PowerMarker: An Integrated Analysis Environment for Genetic Marker Analysis. Bioinformatics 2005, 21, 2128–2129. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GenAlEx6: Genetic Analysis in Excel. Population Genetic Software for Teaching and Research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
- Serrote, C.M.L.; Reiniger, L.R.S.; Silva, K.B.; Rabaiolli, S.M.D.S.; Stefanel, C.M. Determining the Polymorphism Information Content of a Molecular Marker. Gene 2020, 726, 144175. [Google Scholar] [CrossRef]
- Nei, M. The theory and estimation of genetic distance. In Genetic Structure of Populations; Morton, N.E., Ed.; University Press of Hawaii: Honolulu, HI, USA, 1973; pp. 45–54. [Google Scholar]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Wilgenbusch, J.C.; Swofford, D. Inferring Evolutionary Trees with PAUP *. CP Bioinform. 2003, 1, 6.4.1–6.4.28. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of Population Structure Using Multilocus Genotype Data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef] [PubMed]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the Number of Clusters of Individuals Using the Software structure: A Simulation Study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef]
- Earl, D.A.; vonHoldt, B.M. STRUCTURE HARVESTER: A Website and Program for Visualizing STRUCTURE Output and Implementing the Evanno Method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Wen, X.; Falush, D. Documentation for Structure Software: Version 2.3. University of Chicago, Chicago, IL, 1, 37. Available online: https://pic.biodiscover.com/files/c/9p/biodiscover1385456414.7278405.pdf (accessed on 30 January 2025).
- Weir, B.S.; Cockerham, C.C. Estimating F-Statistics for the Analysis of Population Structure. Evolution 1984, 38, 1358–1370. [Google Scholar] [CrossRef]
- Yeh, F.C.; Yang, R.C.; Boyle, T. POPGENE. Microsoft Windows Based Freeware for Population Genetic Analysis; Release 1.31; University of Alberta: Edmonton, AB, Canada, 1999. [Google Scholar]
- Wright, S. Evolution and the genetics of populations. In Variability Within and Among Natural Populations; University of Chicago Press: Chicago, IL, USA, 1978; Volume 4. [Google Scholar]
- Prakash, P.; Prakash, K. Quality Assessment of Promising Garlic (Allium sativum L.) Varieties Based on Principal Component Analysis. Int. Food Res. J. 2023, 30, 1540–1552. [Google Scholar] [CrossRef]
- Abd-Alla, H.E.S. Effect of coating process on seeds viability and some physio-mechanical properties of Egyptian cotton. J. Agric. Sci. 1993, 18, 2384–2396. [Google Scholar]
- Liu, J.; Liu, L.; Guo, W.; Fu, M.; Yang, M.; Huang, S.; Zhang, F.; Liu, Y. A New Methodology for Sensory Quality Assessment of Garlic Based on Metabolomics and an Artificial Neural Network. RSC Adv. 2019, 9, 17754–17765. [Google Scholar] [CrossRef]
- Figliuolo, G.; Candido, V.; Logozzo, G.; Miccolis, V.; Zeuli, P.L.S. Genetic Evaluation of Cultivated Garlic Germplasm (Allium sativum L. and A. ampeloprasum L.). Euphytica 2001, 121, 325–334. [Google Scholar] [CrossRef]
- Modesti, M.; Ferri, S.; Alicandri, E.; Cardarelli, M.; Ciaffi, M.; Santis, D.D. Unraveling Genetic, Compositional, and Organoleptic Traits of Elephant Garlic of Different Geographical Origins. Food Chem. 2024, 460, 140643. [Google Scholar] [CrossRef]
- Durazzo, A. The Close Linkage between Nutrition and Environment through Biodiversity and Sustainability: Local Foods, Traditional Recipes, and Sustainable Diets. Sustainability 2019, 11, 2876. [Google Scholar] [CrossRef]
- Zhao, W.-G.; Chung, J.-W.; Lee, G.-A.; Ma, K.-H.; Kim, H.-H.; Kim, K.-T.; Chung, I.-M.; Lee, J.-K.; Kim, N.-S.; Kim, S.-M.; et al. Molecular Genetic Diversity and Population Structure of a Selected Core Set in Garlic and Its Relatives Using Novel SSR Markers. Plant Breed. 2011, 130, 46–54. [Google Scholar] [CrossRef]
- Pagnotta, M.A.; Fernández, J.A.; Sonnante, G.; Egea-Gilabert, C. Genetic Diversity and Accession Structure in European Cynara cardunculus Collections. PLoS ONE 2017, 12, e0178770. [Google Scholar] [CrossRef]
- Pooler, M.R.; Simon, P.W. Characterization and Classification of Isozyme and Morphological Variation in a Diverse Collection of Garlic Clones. Euphytica 1993, 68, 121–130. [Google Scholar] [CrossRef]
- Jabbes, N.; Arnault, I.; Auger, J.; Al Mohandes Dridi, B.; Hannachi, C. Agro-Morphological Markers and Organo-Sulphur Compounds to Assess Diversity in Tunisian Garlic Landraces. Sci. Hortic. 2012, 148, 47–54. [Google Scholar] [CrossRef]
- Petropoulos, S.; Fernandes, Â.; Ntatsi, G.; Petrotos, K.; Barros, L.; Ferreira, I. Nutritional Value, Chemical Characterization and Bulb Morphology of Greek Garlic Landraces. Molecules 2018, 23, 319. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, S.; Fernandes, Â.; Barros, L.; Ciric, A.; Sokovic, M.; Ferreira, I.C.F.R. Antimicrobial and Antioxidant Properties of Various Greek Garlic Genotypes. Food Chem. 2018, 245, 7–12. [Google Scholar] [CrossRef]
- Polyzos, N.; Papasotiropoulos, V.; Lamari, F.N.; Petropoulos, S.A.; Bebeli, P.J. Phenotypic Characterization and Quality Traits of Greek Garlic (Allium sativum L.) Germplasm Cultivated at Two Different Locations. Genet. Resour. Crop Evol. 2019, 66, 1671–1689. [Google Scholar] [CrossRef]
- Pardo, J.E.; Escribano, J.; Gómez, R.; Alvarruiz, A. Physical–chemical and sensory quality evaluation of garlic cultivars. J. Food Qual. 2007, 30, 609–622. [Google Scholar] [CrossRef]
- Geleta, D.S.; Woldetsadik, K.; Nigussie-Dechassa, R.; Tabor, G.; Sharma, J.J. Postharvest quality and shelf life of garlic bulb as influenced by storage season, soil type and different compound fertilizers. J. Post. Harvest. Technol. 2013, 1, 69–83. [Google Scholar]
- Avgeri, I.; Zeliou, K.; Petropoulos, S.A.; Bebeli, P.J.; Papasotiropoulos, V.; Lamari, F.N. Variability in Bulb Organosulfur Compounds, Sugars, Phenolics, and Pyruvate among Greek Garlic Genotypes: Association with Antioxidant Properties. Antioxidants 2020, 9, 967. [Google Scholar] [CrossRef]
- Hirata, S.; Abdelrahman, M.; Yamauchi, N.; Shigyo, M. Characteristics of Chemical Components in Genetic Resources of Garlic Allium sativum Collected from All over the World. Genet. Resour. Crop Evol. 2016, 63, 35–45. [Google Scholar] [CrossRef]
- Nencini, C.; Menchiari, A.; Franchi, G.G.; Micheli, L. In Vitro Antioxidant Activity of Aged Extracts of Some Italian Allium Species. Plant Foods Hum. Nutr. 2011, 66, 11–16. [Google Scholar] [CrossRef]
- Ovesná, J.; Leišová-Svobodová, L.; Kučera, L. Microsatellite Analysis Indicates the Specific Genetic Basis of Czech Bolting Garlic. Czech J. Genet. Plant Breed. 2014, 50, 226–234. [Google Scholar] [CrossRef]
- Beato, V.M.; Orgaz, F.; Mansilla, F.; Montaño, A. Changes in Phenolic Compounds in Garlic (Allium sativum L.) Owing to the Cultivar and Location of Growth. Plant Foods Hum. Nutr. 2011, 66, 218–223. [Google Scholar] [CrossRef]
- Barboza, K.; Salinas, M.C.; Pérez, M.B.; Dhall, R.K.; Cavagnaro, P.F. Genotypic and Environmental Effects on the Compounds Associated with Garlic Flavor, Health-enhancing Properties, and Postharvest Conservation. Crop Sci. 2022, 62, 1807–1820. [Google Scholar] [CrossRef]
- Gimenez, M.D.; García Lampasona, S. Before-after Analysis of Genetic and Epigenetic Markers in Garlic: A 13-Year Experiment. Sci. Hortic. 2018, 240, 23–28. [Google Scholar] [CrossRef]
- Gimenez, M.D.; Yañez-Santos, A.M.; Paz, R.C.; Quiroga, M.P.; Marfil, C.F.; Conci, V.C.; García-Lampasona, S.C. Assessment of Genetic and Epigenetic Changes in Virus-Free Garlic (Allium sativum L.) Plants Obtained by Meristem Culture Followed by in Vitro Propagation. Plant Cell Rep. 2016, 35, 129–141. [Google Scholar] [CrossRef] [PubMed]
SSR | No. Allele | MAF | He | PIC | Ho | ||
---|---|---|---|---|---|---|---|
GB_ASM_040 | 5 (5) | 0.66 (0.68) | 0.65 (0.63) | 0.51 (0.48) | 0.91 (0.94) | ||
GB_ASM_078 | 6 (4) | 0.80 (0.82) | 0.59 (0.58) | 0.33 (0.29) | 1.00 (1.00) | ||
GB_ASM_059 | 4 (3) | 0.86 (0.85) | 0.60 (0.60) | 0.24 (0.24) | 1.00 (1.00) | ||
Asa_24 | 5 (3) | 0.46 (0.47) | 0.67 (0.65) | 0.49 (0.45) | 0.97 (1.00) | ||
Asa_17 | 4 (4) | 0.89 (0.91) | 0.19 (0.14) | 0.21 (0.16) | 0.03 (0.03) | ||
Asa_25 | 5 (4) | 0.89 (0.91) | 0.19 (0.14) | 0.21 (0.16) | 0.06 (0.06) | ||
Asa_10 | 5 (5) | 0.71 (0.74) | 0.38 (0.35) | 0.45 (0.41) | 0.11 (0.12) | ||
AS_5944 | 7 (5) | 0.46 (0.47) | 0.56 (0.54) | 0.60 (0.57) | 0.20 (0.18) | ||
AS_739 | 5 (5) | 0.54 (0.56) | 0.73 (0.74) | 0.54 (0.51) | 0.94 (0.97) | ||
AS_589 | 4 (4) | 0.57 (0.59) | 0.53 (0.50) | 0.47 (0.44) | 0.03 (0.03) | ||
AS_11065 | 6 (6) | 0.57 (0.59) | 0.65 (0.63) | 0.57 (0.54) | 0.86 (0.88) | ||
AS_987 | 7 (6) | 0.49 (0.50) | 0.68 (0.67) | 0.58 (0.55) | 0.97 (0.97) | ||
AS_30 | 5 (3) | 0.91 (0.94) | 0.14 (0.09) | 0.16 (0.11) | 0.06 (0.06) | ||
MEAN | 5.23 (4.38) | 0.68 (0.69) | 0.50 (0.48) | 0.41 (0.38) | 0.55 (0.56) | ||
ST. DEV. | 0.17 (0.18) | 0.21 (0.23) | 0.16 (0.16) | 0.45 (0.46) | |||
ISSR | TB | PB | % Pol | MAF | He | PIC | |
UBC_832 | 20 (17) | 20 (17) | 100% (100%) | 0.86 (0.86) | 0.20 (0.21) | 0.20 (0.21) | |
UBC_834 | 16 (13) | 16 (13) | 100% (100%) | 0.93 (0.93) | 0.14 (0.13) | 0.14 (0.13) | |
UBC_842 | 17 (13) | 17 (12) | 100% (92%) | 0.90 (0.88) | 0.16 (0.18) | 0.16 (0.18) | |
UBC_840 | 17 (14) | 17 (13) | 100% (93%) | 0.86 (0.87) | 0.19 (0.20) | 0.19 (0.20) | |
UBC_850 | 17 (14) | 17 (10) | 100% (71%) | 0.90 (0.89) | 0.15 (0.15) | 0.15 (0.15) | |
UBC_851 | 22 (20) | 22 (20) | 100% (100%) | 0.84 (0.83) | 0.23 (0.23) | 0.23 (0.23) | |
UBC_857 | 16 (10) | 16 (9) | 100% (90%) | 0.92 (0.91) | 0.12 (0.16) | 0.12 (0.16) | |
UBC_881 | 22 (17) | 22 (14) | 100% (82%) | 0.95 (0.94) | 0.08 (0.09) | 0.08 (0.09) | |
UBC_848 | 20 (17) | 20 (15) | 100% (88%) | 0.77 (0.75) | 0.30 (0.33) | 0.30 (0.33) | |
UBC_860 | 14 (11) | 14 (8) | 100% (73%) | 0.94 (0.94) | 0.10 (0.09) | 0.10 (0.09) | |
TOT | 181 (146) | 181 (131) | |||||
MEAN | 18.1 (14.6) | 18.1 (13.1) | 100% (89%) | 0.89 (0.88) | 0.17 (0.18) | 0.17 (0.18) | |
ST. DEV. | 2.73 (3.10) | 0.06 (0.06) | 0.06 (0.08) | 0.06 (0.08) |
SSR Markers | ||||||
---|---|---|---|---|---|---|
Pop | N | Ne | Npa | I | He | Ho |
Castelliri | 9 | 1.684 | 4.000 | 0.485 | 0.311 | 0.548 |
Proceno | 9 | 1.720 | 5.000 | 0.515 | 0.326 | 0.556 |
p-value Kruskal–Wallis Test | >0.01 | >0.01 | >0.01 | >0.01 | ||
ISSR Markers | ||||||
Pop | N | Ne | Npa | I | He | |
Castelliri | 9 | 1.023 | 0.000 | 0.026 | 0.016 | |
Proceno | 9 | 1.199 | 9.000 | 0.150 | 0.105 | |
p-value Kruskal–Wallis Test | <0.01 * | <0.01 * | <0.01 * |
SSR Markers | df | SS | MS | Est. Var. | % | Fst | Φ-Statistic | p (Φ) |
---|---|---|---|---|---|---|---|---|
Among pops | 1 | 43.389 | 43.389 | 4.674 | 78% | 0.227 | 0.780 | <0.001 |
Within pops | 16 | 21.111 | 1.319 | 1.319 | 22% | |||
Total | 17 | 64.500 | 5.994 | 100% | ||||
ISSR Markers | df | SS | MS | Est. Var. | % | Fst | Φ-Statistic | p (Φ) |
Among pops | 1 | 28.500 | 28.500 | 2.792 | 45% | 0.345 | 0.453 | <0.001 |
Within pops | 16 | 54.000 | 3.375 | 3.375 | 55% | |||
Total | 17 | 82.500 | 6.167 | 100% |
GD vs. Phenotypic a | GD vs. W | GD vs. De | GD vs. Dp | GD vs. T | GD vs. NCLBulb | GD vs. CLW | GD vs. DM | GD vs. L* | GD vs. a* | GD vs. b* | |
---|---|---|---|---|---|---|---|---|---|---|---|
r(xy) b | 0.512 | 0.45 | 0.44 | 0.40 | 0.42 | 0.40 | 0.18 | 0.38 | 0.29 | 0.29 | 0.18 |
p-value c | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.00 | 0.08 |
W | De | Dp | T | NCLBulb | CLW | DM | L* | a* | b* | |
---|---|---|---|---|---|---|---|---|---|---|
CLI | 23.60 ± 0.41 b | 40.30 ± 1.53 b | 32.55 ± 1.24 b | 36.00 ± 1.00 b | 10.86 ± 0.45 b | 2.18 ± 0.11 a | 41.15 ± 2.23 bc | 72.05 ± 0.64 b | −1.75 ± 0.16 b | 24.29 ± 2.15 a |
CLII | 26.16 ± 0.55 a | 42.27 ± 0.96 a | 33.98 ± 0.78 a | 38.02 ± 1.39 a | 12.15 ± 0.42 a | 2.15 ± 0.13 a | 39.96 ± 2.77 c | 70.13 ± 2.48 c | −1.07 ± 0.21 a | 21.95 ± 0.90 b |
CLIII | 17.01 ± 0.62 c | 36.10 ± 0.47 c | 29.57 ± 1.05 c | 31.06 ± 0.34 c | 9.50 ± 0.29 c | 1.79 ± 0.05 b | 43.95 ± 0.90 ab | 72.85 ± 0.06 b | −1.69 ± 0.15 b | 25.34 ± 1.09 a |
CLIV | 17.69 ± 0.40 c | 36.10 ± 0.47 c | 30.06 ± 0.51 c | 32.16 ± 0.74 c | 10.37 ± 0.76 bc | 1.72 ± 0.11 b | 44.60 ± 1.10 a | 77.76 ± 0.94 a | −1.20 ± 0.09 a | 22.28 ± 0.70 b |
Accession | Total Phenolics mg GAE/100 g fw | Antioxidant Activity mM TE/g fw |
---|---|---|
R_PROC_3 | 38.69 ± 1.21 e,f | 3.05 ± 0.26 e–g |
R_PROC_5 | 76.24 ± 4.38 a | 7.81 ± 0.28 a |
R_PROC_6 | 45.75 ± 1.23 c,d | 5.87 ± 0.51 c,d |
R_PROC_7 | 38.61 ± 1.59 e,f | 3.47 ± 0.23 e–h |
R_PROC_8 | 56.18 ± 1.36 b | 6.09 ± 0.41 b |
R_PROC_9 | 38.14 ± 1.96 e,f | 4.85 ± 0.50 e,f |
R_CAST_1 | 33.02 ± 1.56 f | 1.96 ± 0.23 h |
R_CAST_3 | 37.99 ± 1.40 e,f | 4.69 ± 0.38 e,f |
R_CAST_4 | 37.82 ± 1.38 e,f | 3.77 ± 0.34 d,e |
R_CAST_5 | 48.46 ± 2.23 c | 6.08 ± 0.29 b,c |
R_CAST_6 | 48.92 ± 3.57 c | 4.59 ± 0.27 d |
R_CAST_8 | 33.09 ± 2.01 f | 2.33 ± 0.40 g,h |
R_CAST_9 | 40.21 ± 1.82 d,e | 4.27 ± 0.26 d,e |
R_SULM_4 | 40.61 ± 1.82 d,e | 3.85 ± 0.64 f,g |
R_SULM_3 | 37.79 ± 2.36 e,f | 3.61 ± 0.44 e,f |
R_SORA_1 | 40.69 ± 1.06 d,e | 2.9 ± 0.41 f–h |
R_SPA_2 | 38.41 ± 1.49 e,f | 3.63 ± 0.58 f–h |
R_SPA_4 | 35.52 ± 2.13 e,f | 3.62 ± 0.35 f–h |
CV | 24.07 | 39.67 |
p | *** | *** |
AO (TE/g fw) | TPC (GAE/100 g fw) | |
---|---|---|
“Aglio Rosso di Proceno” | 5.19 ± 1.77 ns | 48.93 ± 1.96 a |
“Aglio Rosso di Castelliri” | 3.95 ± 1.47 ns | 42.76 ± 2.32 b |
Control red-type garlic | 3.52 ± 0.36 ns | 37.02 ± 2.12 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alicandri, E.; De Santis, D.; Modesti, M.; Ferri, S.; Paolacci, A.R.; Rea, R.; Ciaffi, M. Genetic and Phenotypic Diversity and Evaluation of Total Phenolics and Antioxidant Properties of Garlic Landraces from Lazio Region (Central Italy): “Aglio Rosso di Proceno” and “Aglio Rosso di Castelliri”. Plants 2025, 14, 1189. https://doi.org/10.3390/plants14081189
Alicandri E, De Santis D, Modesti M, Ferri S, Paolacci AR, Rea R, Ciaffi M. Genetic and Phenotypic Diversity and Evaluation of Total Phenolics and Antioxidant Properties of Garlic Landraces from Lazio Region (Central Italy): “Aglio Rosso di Proceno” and “Aglio Rosso di Castelliri”. Plants. 2025; 14(8):1189. https://doi.org/10.3390/plants14081189
Chicago/Turabian StyleAlicandri, Enrica, Diana De Santis, Margherita Modesti, Serena Ferri, Anna Rita Paolacci, Roberto Rea, and Mario Ciaffi. 2025. "Genetic and Phenotypic Diversity and Evaluation of Total Phenolics and Antioxidant Properties of Garlic Landraces from Lazio Region (Central Italy): “Aglio Rosso di Proceno” and “Aglio Rosso di Castelliri”" Plants 14, no. 8: 1189. https://doi.org/10.3390/plants14081189
APA StyleAlicandri, E., De Santis, D., Modesti, M., Ferri, S., Paolacci, A. R., Rea, R., & Ciaffi, M. (2025). Genetic and Phenotypic Diversity and Evaluation of Total Phenolics and Antioxidant Properties of Garlic Landraces from Lazio Region (Central Italy): “Aglio Rosso di Proceno” and “Aglio Rosso di Castelliri”. Plants, 14(8), 1189. https://doi.org/10.3390/plants14081189