Persistent Habitat Instability and Patchiness, Sexual Attraction, Founder Events, Drift and Selection: A Recipe for Rapid Diversification of Orchids
Abstract
:1. Introduction
2. Models of Diversification
2.1. Proposed Conditions Driving the Evolution of Orchid Diversity
2.2. Where Are Orchids Most Diverse and Have High Rates of Diversification?
2.3. What Patterns of Orchid Natural History Are Related to Diversification?
2.3.1. Specificity for Pollinators
2.3.2. Hybridization
2.3.3. Obligate Mycorrhizal Associations
2.4. Reproductive Morphology
2.5. Vegetative Morphology
2.6. Physiology
2.7. Genomic Architecture
2.8. Epiphytism
3. Correlates of Diversification
3.1. Persistent Instability
3.2. Geographic Variation in Habitat Instabilities and Diversification Rates
3.3. Climate Instabilities and Diversification in Terrestrial Orchids
3.4. Patterns and Processes
4. Future Directions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schluter, D.; Pennell, M.W. Speciation gradients and the distribution of biodiversity. Nature 2017, 546, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, R.L.; Ackerman, J.D. Gene flow and effective population size in Lepanthes (Orchidaceae): A case for genetic drift. Biol. J. Linn. Soc. 2001, 72, 47–62. [Google Scholar] [CrossRef]
- Wright, S. Evolution in Mendelian populations. Genetics 1931, 16, 97–159. [Google Scholar] [CrossRef] [PubMed]
- Carson, H.L.; Templeton, A.R. Genetic revolutions in relation to speciation phenomena: The founding of new populations. Annu. Rev. Ecol. Syst. 1984, 15, 97–131. [Google Scholar] [CrossRef]
- Christenhusz, M.J.M.; Byng, J.W. The number of known plants species in the world and its annual increase. Phytotaxa 2016, 261, 201–217. [Google Scholar] [CrossRef]
- Givnish, T.J.; Spalink, D.; Ames, M.; Lyon, A.P.; Hunter, S.J.; Zuluaga, A.; Iles, W.J.D.; Clements, M.A.; Arroyo, M.T.K.; Leebens-Mack, J.; et al. Orchid phylogenomics and multiple drivers of their extraordinary diversification. Proc. R. Soc. B-Biol. Sci. 2015, 282, 20151553. [Google Scholar] [CrossRef]
- Givnish, T.J.; Spalink, D.; Ames, M.; Lyon, A.P.; Hunter, S.J.; Zuluaga, A.; Doucette, A.; Caro, G.G.; McDaniel, J.; Clements, M.A.; et al. Orchid historical biogeography, diversification, Antarctica and the paradox of orchid dispersal. J. Biogeogr. 2016, 43, 1905–1916. [Google Scholar] [CrossRef]
- Pérez-Escobar, O.A.; Bogarín, D.; Przelomska, N.A.S.; Ackerman, J.D.; Balbuena, J.A.; Bellot, S.; Bühlmann, R.P.; Cabrera, B.; Cano, J.A.; Charitonidou, M.; et al. The origin and speciation of orchids. New Phytol. 2024, 242, 700–716. [Google Scholar] [CrossRef]
- Thompson, J.B.; Davis, K.E.; Dodd, H.O.; Wills, M.A.; Priest, N.K. Speciation across the earth driven by global cooling in terrestrial orchids. Proc. Natl. Acad. Sci. USA 2023, 120, e2102408120. [Google Scholar] [CrossRef]
- Anghelescu, N.E.D.G.; Bygrave, A.; Georgescu, M.I.; Petra, S.A.; Toma, F. A history of orchids. A history of discovery, lust and wealth. Sci. Papers Ser. B Hort. 2020, 64, 519–530. [Google Scholar]
- Darwin, C. On the Various Contrivances by which British and ForeignOorchids Are Fertilised by Insects and the Good Effects of Intercrossing; John Murray: London, UK, 1862. [Google Scholar]
- Darwin, C. On the Various Contrivances by which British and Foreign Orchids Are Fertilised by Insects, 2nd ed.; John Murray: London, UK, 1877. [Google Scholar]
- Nilsson, L.A. The evolution of flowers with deep corolla tubes. Nature 1988, 334, 147–149. [Google Scholar] [CrossRef]
- Johnson, S.D.; Peter, C.I.; Ågren, J. The effects of nectar addition on pollen removal and geitonogamy in the non-rewarding orchid Anacamptis morio. P. Roy. Soc. B-Biol. Sci. 2003, 271, 803–809. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Otero, C.; Hedrén, M.; Friberg, M.; Opedal, O.H. Analysis of trait-performance-fitness relationships reveals pollinator-mediated selection on orchid pollination traits. Am. J. Bot. 2022, 110, e16128. [Google Scholar] [CrossRef] [PubMed]
- Sletvold, N.; Grindeland, J.M.; Ågren, J. Pollinator-mediated selection on floral display, spur length and flowering phenology in the deceptive orchid Dactylorhiza lapponica. New Phytol. 2010, 188, 385–392. [Google Scholar] [CrossRef]
- van der Pijl, L.; Dodson, C.H. Orchid Flowers: Their Pollination and Evolution; University of Miami Press: Coral Gables, FL, USA, 1966. [Google Scholar]
- Stebbins, G.L. Adaptive radiation of reproductive characteristics in Angiosperms, I: Pollination mechanisms. Annu. Rev. Ecol. Syst. 1970, 1, 307–326. [Google Scholar] [CrossRef]
- Johnson, S.D.; Linder, H.P.; Steiner, K.E. Phylogeny and radiation of pollination systems in Disa (Orchidaceae). Am. J. Bot. 1998, 85, 402–411. [Google Scholar] [CrossRef]
- Johnson, S.D. Pollination of Disa engleriana (Orchidaceae): Floral modifications for deposition of pollinaria on three abdomen of large bees and wasps. Flora 2024, 314, 152491. [Google Scholar] [CrossRef]
- Tremblay, R.L. Trends in the pollination ecology of the Orchidaceae: Evolution and systematics. Can. J. Bot. 1992, 70, 642–650. [Google Scholar] [CrossRef]
- Ackerman, J.D.; Phillips, R.D.; Tremblay, R.L.; Karremans, A.; Reiter, N.; Peter, C.I.; Bogarín, D.; Pérez-Escobar, O.A.; Liu, H. Beyond the various contrivances by which orchids are pollinated: Global patterns in orchid pollination biology. Bot. J. Linn. Soc. 2023, 202, 295–324. [Google Scholar] [CrossRef]
- Chomicki, G.; Bidel, L.P.R.; Ming, F.; Coiro, M.; Zhang, X.; Wang, Y.; Baissac, Y.; Jay-Allemand, C.; Renner, S.S. The velamen protects photosynthetic orchid roots against UV-B damage, and a large dated phylogeny implies multiple gains and losses of this function during the Cenozoic. New Phytol. 2015, 205, 1330–1341. [Google Scholar] [CrossRef]
- Gustafsson, A.L.S.; Verola, C.F.; Antonelli, A. Reassessing the temporal evolution of orchids with new fossils and a Bayesian relaxed clock, with implications for the diversification of the rare South American genus Hoffmannseggella (Orchidaceae: Epidendroideae). BMC Evol. Biol. 2010, 10, 177. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-X.; Li, Z.-H.; Schuiteman, A.; Chase, M.W.; Li, J.-W.; Huang, W.-C.; Hidayat, A.; Wu, S.-S.; Jin, X.-H. Phylogenomics of Orchidaceae based on plastid and mitochondrial genomes. Mol. Phylogenet. Evol. 2019, 139, 106540. [Google Scholar] [CrossRef]
- Ramirez, S.R.; Gravendeel, B.; Singer, R.B.; Marshall, C.R.; Pierce, N.E. Dating the origin of the Orchidaceae from a fossil orchid with its pollinator. Nature 2007, 448, 1042–1045. [Google Scholar] [CrossRef] [PubMed]
- Serna-Sánchez, M.; Pérez-Escobar, O.A.; Bogarín, D.; Torres-Jimenez, M.F.; Alvarez-Yela, A.C.; Arcila-Galvis, E.; Hall, C.; de Barros, D.; Pinheiro, F.; Dodsworth, S.; et al. Plastid phylogenomics resolves ambiguous relationships within the orchid family and provides a solid timeframe for biogeography and macroevolution. Sci. Rep. 2021, 11, 6858. [Google Scholar]
- Dressler, R.L. The orchids: Natural history and classification; Harvard University Press: Cambridge, MA, USA, 1981. [Google Scholar]
- Gentry, A.H.; Dodson, C.H. Diversity and biogeography of Neotropical vascular epiphytes. Ann. Missouri Bot. Gard. 1987, 74, 205–233. [Google Scholar] [CrossRef]
- Wright, S. Evolution and the Genetics of Populations: Variability within and among Natural Populations; University of Chicago Press: Chicago, IL, USA, 1978; Volume 4. [Google Scholar]
- Templeton, A.R. The theory of speciation via the founder principle. Genetics 1980, 94, 1011–1038. [Google Scholar] [CrossRef]
- Zimmerman, J.K.; Aide, T.M. Patterns of fruit production in a Neotropical orchid: Pollinator vs. resource limitation. Am. J. Bot. 1989, 76, 67–73. [Google Scholar] [CrossRef]
- Roughgarden, J. Theory of Population Genetics and Evolutionary Ecology: An Introduction; MacMillian: New York, NY, USA, 1979. [Google Scholar]
- Bokomak, A.J. Dispersal, gene flow, and population structure. Q. Rev. Biol. 1999, 74, 21–45. [Google Scholar]
- Merrell, D.J. Ecological Genetics; University of Minnesota Press: Minneapolis, MN, USA, 1981. [Google Scholar]
- Wade, M.J.; Goodnight, C.J. Perspective: The theories of Fisher and Wright in the context of metapopulations: When nature does many small experiments. Evolution 1998, 52, 1537–1553. [Google Scholar] [CrossRef]
- Tremblay, R.L.; Meléndez-Ackerman, E.; Kapan, D. Do epiphytic orchids behave as metapopulations? Evidence from colonization, extinction rates and asynchronous population dynamics. Biol. Conserv. 2006, 129, 70–81. [Google Scholar] [CrossRef]
- Acevedo, M.A.; Fletcher, R.J.; Tremblay, R.L.; Melendez-Ackerman, E.J. Spatial asymmetries in connectivity influence colonization− extinction dynamics. Oecologia 2015, 179, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Acevedo, M.A.; Beaudrot, L.; Meléndez-Ackerman, E.J.; Tremblay, R.L. Local extinction risk under climate change in a neotropical asymmetrically dispersed epiphyte. J. Ecol. 2020, 10, 1553–1564. [Google Scholar] [CrossRef]
- Kindlmann, P.; Meléndez-Ackerman, E.J.; Tremblay, R.L. Disobedient epiphytes: Colonization and extinction rates in a metapopulation of (Orchidaceae) contradict theoretical predictions based on patch connectivity. Bot. J. Linn. Soc. 2014, 175, 598–606. [Google Scholar] [CrossRef]
- Laube, S.; Zotz, G. A metapopulation approach to the analysis of long-term changes in the epiphyte vegetation on the host tree Annona glabra. J. Veg. Sci. 2007, 18, 613–624. [Google Scholar]
- Lind, H.; Franzén, M.; Pettersson, B.; Nilsson, L.A. Metapopulation pollination in the deceptive orchid Anacamptis pyramidalis. Nordic J. Bot. 2007, 25, 176–182. [Google Scholar] [CrossRef]
- Oostermeijer, J.G.B.; Hartman, Y. Inferring population and metapopulation dynamics of Liparis loeselii from single-census and inventory data. Acta Oecol. 2014, 60, 30–39. [Google Scholar] [CrossRef]
- Švecová, M.; Štípková, Z.; Traxmandlová, I.; Kindlmann, P. Difficulties in determining distribution of population sizes within different orchid metapopulations. Eur. J. Environ. Sci. 2023, 13, 96–109. [Google Scholar] [CrossRef]
- Winkler, M.; Hülber, K.; Hietz, P. Population dynamics of epiphytic orchids in a metapopulation context. Ann. Bot. 2009, 104, 995–1004. [Google Scholar] [CrossRef]
- Tremblay, R.L. Morphological variance among populations of three tropical orchids with restricted gene flow. Plant Species Biol. 1997, 12, 85–96. [Google Scholar] [CrossRef]
- Cintrón-Berdecía, S.T.; Tremblay, R.L. Spatial variation in phenotypic selection on floral characteristics in an epiphytic orchid. Folia Geobot. 2006, 41, 33–46. [Google Scholar] [CrossRef]
- Chung, M.Y.; Nason, J.D.; Chung, M.G. Implications of clonal structure for effective population size and genetic drift in a rare terrestrial orchid, Cremastra appendiculata. Conserv. Biol. 2004, 18, 1515–1524. [Google Scholar] [CrossRef]
- Pellegrino, G.; Palermo, A.M.; Noce, M.E.; Bellusci, F.; Musacchio, A. Genetic population structure in the Mediterranean Serapias vomeracea, a nonrewarding orchid group. Interplay of pollination strategy and stochastic forces? Plant Syst. Evol. 2007, 263, 145–157. [Google Scholar] [CrossRef]
- Rojas-Méndez, K.J.; Peñaloza-Ramírez, J.; Rocha-Ramírez, V.; Corés-Palomec, A.; McCauley, R.A.; Oyama, K. Massive extraction of the orchid Laelia speciosa (HBK) Schltr. for trading in local markets affect its population genetic structure in a fragmented landscape in Central Mexico. Trop. Conserv. Sci. 2017, 10, 1–14. [Google Scholar] [CrossRef]
- Trapnell, D.W.; Smallwood, P.A.; Dixon, K.W.; Phillips, R.D. Are small populations larger than they seem? Genetic insights into patchily distributed populations of Drakaea glyptodon (Orchidaceae). Bot. J. Linn. Soc. 2022, 198, 99–116. [Google Scholar] [CrossRef]
- Tremblay, R.L. The effect of population structure, plant size, herbivory and reproductive potential on effective population size in the temperate epiphytic orchid, Sarcochilus australis. Cunninghamia 2006, 9, 529–535. [Google Scholar]
- Tremblay, R.L.; Ackerman, J.D.; Zimmerman, J.K.; Calvo, R.N. Variation in sexual reproduction in orchids and its evolutionary consequences: A spasmodic journey to diversification. Biol. J. Linn. Soc. 2005, 84, 1–54. [Google Scholar] [CrossRef]
- Phillips, R.D.; Dixon, K.W.; Peakall, R. Low population genetic differentiation in the Orchidaceae: Implications for the diversification of the family. Mol. Ecol. 2012, 221, 5208–5220. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, S.; Widmer, A. Orchid diversity: An evolutionary consequence of deception? Trends Ecol. Evol. 2005, 20, 487–494. [Google Scholar] [CrossRef]
- Waterman, R.J.; Bidartondo, M.I. Deception above, deception below: Linking pollination and mycorrhizal biology of orchids. J. Exp. Bot. 2008, 59, 1085–1096. [Google Scholar] [CrossRef]
- Dodson, C.H. Why are there so many orchid species? Lankesteriana 2003, 7, 99–103. [Google Scholar] [CrossRef]
- Vizentin-Bugoni, J.; Maruyama, P.K.; de Souza, C.S.; Ollerton, J.; Rech, A.R.; Sazima, M. Plant-pollinator networks in the tropics: A review. In Ecological Networks in the Tropics; Dáttilo, W., Rico-Gray, V., Eds.; Springer International Publishing AG: Cham, Switzerland, 2018. [Google Scholar]
- 59. Mikryukov, V.; Dulya, O.; Zizka, A.; Bahram, M.; Hagh-Doust, N.; Anslan, S.; Prylutskyi, O.; Delgado-Baquerizo, M.; Maestre, F.T.; Nilsson, H.; et al. Connecting the multiple dimensions of global soil fungal diversity. Sci. Adv. 2023, 9, eadj8016. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.; Kaur, J.; Kumar, P.; Karremans, A.P.; Sharma, J. Distinct orchid mycorrhizal fungal communities among co-occurring Vanilla species in Costa Rica: Root substrate and population-based segregation. Mycorrhiza 2024, 34, 229–250. [Google Scholar] [CrossRef] [PubMed]
- Gravendeel, B.; Smithson, A.; Silk, F.J.W.; Schuiteman, A. Epiphytism and pollinator specialization: Drivers for orchid diversity? Philos. Trans. R. Soc. B-Biol. Sci. 2004, 359, 1523–1535. [Google Scholar] [CrossRef] [PubMed]
- Whitney, K.D.; Ahern, J.R.; Campbell, L.G.; Albert, L.P.; King, M.S. Patterns of hybridization in plants. Perspect. Plant Ecol. Evol. Syst. 2010, 12, 175–182. [Google Scholar] [CrossRef]
- Lagou, L.J.; Kadereit, G.G.; Morales-Briones, D.F. Phylogenomic analysis of target enrichment and transcriptome data uncovers rapid radiation and extensive hybridization in the slipper orchid genus Cypripedium. Ann. Bot. 2024, 37, 1229–1250. [Google Scholar] [CrossRef]
- Otero, J.T.; Flanagan, N.S. Orchid diversity - beyond deception. Trends Ecol. Evol. 2006, 21, 64–65. [Google Scholar] [PubMed]
- Voyron, S.; Ercole, E.; Ghignone, S.; Pereotto, S.; Girlanda, M. Fine-scale spatial distribution of orchid mycorrhizal fungi in the soil of host-rich grasslands. New Phytol. 2017, 213, 1428–1439. [Google Scholar] [CrossRef]
- McCormick, M.K.; Whigham, D.F.; Canchani-Viruet, A. Mycorrhizal fungi affect orchid distribution and population dynamics. New Phytol. 2018, 219, 1207–1215. [Google Scholar] [CrossRef]
- Cook, K.; Sharma, J.; Taylor, A.D.; Herriot, I.; Taylor, D.L. Epiphytic fungal communities vary by substrate type and at submetre spatial scales. Mol. Ecol. 2022, 31, 1879–1891. [Google Scholar] [CrossRef]
- Ackerman, J.D. Orchids and the persistent instability principle. In Proceedings of the 22nd World Orchid Conference, Guayaquil, Ecuador, 8–12 November 2017; Pridgeon, A.M., Arosemena, A.R., Eds.; Asociación Ecuatoriana de Orquideología: Guayaquil, Ecuador, 2019; Volume 1, pp. 42–51. [Google Scholar]
- Collobert, G.; Perez-Lamarque, B.; Dubuisson, J.-Y.; Martos, F. Gains and losses of the epiphytic lifestyle in epidendroid orchids: Review and new analyses with succulent traits. Ann. Bot. 2023, 132, 787–800. [Google Scholar] [CrossRef]
- Silvera, K.; Santiago, L.S.; Cushman, J.C.; Winter, K. Crassulacean acid metabolism and epiphytism linked to adaptive radiations in the Orchidaceae. Plant Physiol. 2009, 149, 1838–1847. [Google Scholar] [CrossRef]
- Chase, M.W.; Hanson, L.; Albert, V.A.; Whitten, W.M.; Williams, N.H. Life history evolution and genome size in subtribe Oncidiinae (Orchidaceae). Ann. Bot. 2005, 95, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Leitch, I.J.; Kahandawala, I.; Suda, J.; Hanson, L.; Ingrouille, M.J.; Chase, M.W.; Fay, M.F. Genome size diversity in orchids: Consequences and evolution. Ann. Bot. 2009, 104, 469–481. [Google Scholar] [CrossRef] [PubMed]
- Benzing, D.H. Bark surfaces and the origin and maintenance of diversity among angiosperm epiphytes: A hypothesis. Selbyana 1981, 5, 248–255. [Google Scholar]
- Parra-Sanchez, E.; Pérez-Escobar, O.A.; Edwards, D.P. Neutral-based processes overrule niche-based processes in shaping tropical montane orchid communities across spatial scales. J. Ecol. 2023, 111, 1614–1628. [Google Scholar] [CrossRef]
- Antonelli, A.; Verola, C.F.; Parisod, C.; Gustafsson, A.L.S. Climate cooling promoted the expansion and radiation of a threatened group of South American orchids (Epidendroideae: Laeliinae). Biol. J. Linn. Soc. 2010, 100, 597–607. [Google Scholar] [CrossRef]
- Nargar, K.; Molina, S.; Wagner, N.; Nauheimer, L.; Micheneau, C.; Clements, M.A. Australiasian orchid diversification in time and space: Molecular phylogenetic insights from the beard orchids (Calochilus, Diurideae). Aust. Syst. Bot. 2018, 31, 389–408. [Google Scholar]
- Nargar, K.; O’Hara, K.; Mertin, A.; Bent, S.J.; Nauheimer, L.; Simpson, L.; Zimmer, H.; Molloy, B.P.J.; Clements, M.A. Evolutionary relationships and range evolution of greenhood orchids (subtribe Pterostylidinae): Insights from plastid phylogenomics. Front. Plant Sci. 2022, 13, 912089. [Google Scholar] [CrossRef]
- Russo, A.; Alessandrini, M.; Baidouri, M.E.; Frei, D.; Galise, T.R.; Gaidusch, L.; Oerte, H.F.; Garcia Morales, S.E.; Potente, G.; Tian, Q.; et al. Genome of the early spider-orchid Ophrys sphegodes provides insights into sexual deception and pollinator adaptation. Nat. Commun. 2024, 15, 6308. [Google Scholar] [CrossRef]
- Kreft, H.; Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Natl. Acad. Sci. USA 2007, 104, 5925–5930. [Google Scholar] [CrossRef]
- POWO. Plants of the World Online. Available online: http://www.plantsoftheworldonline.org/ (accessed on 26 September 2024).
- Chase, M.W.; Cameron, K.M.; Freudenstein, J.V.; Pridgeon, A.M.; Salazar, G.; van den Berg, C.; Schuiteman, A. An updated classification of Orchidaceae. Bot. J. Linn. Soc. 2015, 177, 151–174. [Google Scholar] [CrossRef]
- van der Cingel, N.A. An Atlas of Orchid Pollination: European Orchids; AA Balkema: Rotterdam, The Netherlands, 1995. [Google Scholar]
- van der Cingel, N.A. An Atlas of Orchid Pollination: America, Africa, Asia and Australia; AA Balkema: Rotterdam, The Netherlands, 2001. [Google Scholar]
- Schiestl, F.P.; Schlüter, P.M. Floral isolation, specialized pollination, and pollinator behavior in orchids. Annu. Rev. Entomol. 2009, 54, 425–446. [Google Scholar] [CrossRef] [PubMed]
- Peakall, R.; Ebert, D.; Poldy, J.; Barro, R.A.; Francke, W.; Bower, C.C.; Schiestl, F.P. Pollinator specificity, floral odour chemistry and the phylogeny of Australian sexually deceptive Chiloglottis orchids: Implications for pollinator-driven speciation. New Phytol. 2010, 188, 437–450. [Google Scholar] [CrossRef]
- Xu, S.; Schlüter, P.M.; Scopece, G.; Breitkopf, H.; Gross, K.; Cozzolino, S.; Schiestl, F.P. Floral isolation is the main reproductive barrier among closely related sexually deceptive orchids. Evolution 2011, 65, 2606–2620. [Google Scholar] [CrossRef]
- Breitkopf, H.; Onstein, R.E.; Cafasso, D.; Schlüter, P.M.; Cozzolino, S. Multiple shifts to different pollinators fueled rapid diversification in sexually deceptive Ophrys orchids. New Phytol. 2015, 207, 377–389. [Google Scholar] [CrossRef]
- Henske, J.; Saleh, N.W.; Chouvenc, T.; Ramírez, S.R.; Eltz, T. Function of environment-derived male perfumes in orchid bees. Curr. Biol. 2023, 33, 1–6. [Google Scholar] [CrossRef]
- Ackerman, J.D. Specificity and mutual dependency of the orchid-euglossine bee interaction. Biol. J. Linn. Soc. 1983, 20, 301–314. [Google Scholar] [CrossRef]
- Ackerman, J.D.; Roubik, D.W. Can extinction risk help explain plant-pollinator specificity among euglossine bee pollinated plants? Oikos 2012, 121, 1821–1827. [Google Scholar] [CrossRef]
- Hetherington-Rauth, M.C.; Ramírez, S.R. Evolution and diversity of floral scent chemistry in the euglossine bee-pollinated orchid genus Gongora. Ann. Bot. 2016, 118, 135–148. [Google Scholar] [CrossRef]
- Hills, H.G.; Williams, N.H.; Dodson, C.H. Floral fragrances and isolating mechanisms in the genus Catasetum (Orchidaceae). Biotropica 1972, 4, 61–76. [Google Scholar] [CrossRef]
- Liu, J.W.; Millet-Pinheiro, P.; Gerlach, G.; Ayasse, M.; Nunes, C.E.P.; Alves-dos-Santos, I.; Ramírez, S.R. Macroevolution of floral scent chemistry across radiations of male euglossine bee-pollinated plants. Evolution 2024, 78, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Anderson, E.; Stebbins, G.L. Hybridization as an evolutionary stimulus. Evolution 1954, 8, 378–388. [Google Scholar] [CrossRef]
- Soltis, P.S.; Soltis, D.E. The role of hybridization in plant speciation. Annu. Rev. Plant Biol. 2009, 60, 561–588. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-X.; Huang, C.-H.; Morales-Briones, D.F.; Wang, X.-Y.; Hu, Y.; Zhang, N.; Zhao, P.-G.; Wei, X.-M.; Wei, K.-H.; Hemu, X.; et al. Phytotranscriptomics reveals the phylogeny of Asparagales and the evolution of allium flavor biosynthesis. Nat. Commun. 2024, 15, 9663. [Google Scholar] [CrossRef]
- Johnson, S.D. Natural hybridization in the orchid flora of South Africa: Comparisons among genera and floristic regions. S. Afr. J. Bot. 2018, 118, 290–298. [Google Scholar] [CrossRef]
- Stebbins, G.L. Population variability, hybridization, and introgression in some species of Ophrys. Evolution 1956, 10, 32–46. [Google Scholar] [CrossRef]
- Jacquemyn, H.; Brys, R.; Honnay, O.; Roldán-Ruiz, I. Asymmetric gene introgression in two closely related Orchis species: Evidence from morphometric and genetic analyses. BMC Evol. Biol. 2012, 12, 178. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, C. Promiscuidade generalizada em Cattleya (Orchidaceae): Importância da hibridação e introgressão na evolução do gênero. In Evolução, Biologiae Sistemática de Populações de Orquídeas; Oliveira, G.C.X.O., Bandel, G., Veasey, E.A., Pinheiro, J.B., Koehler, S., Azevedo, R.A., Eds.; Departamento de Genética ESALQ/USP: Piracicaba, Brasil, 2013; pp. 18–24. [Google Scholar]
- Pinheiro, F.; de Barros, F.; Palma-Silva, C.; Meyer, D.; Fay, M.F.; Suzuki, R.M.; Lexer, C.; Cozzolino, S. Hybridization and introgression across different ploidy levels in the Neotropical orchids Epidendrum fulgens and E. puniceoluteum (Orchidaceae). Mol. Ecol. 2010, 19, 3981–3994. [Google Scholar] [CrossRef]
- Fiorini, C.F.; Smidt, E.C.; Knowles, L.L.; Borba, E.L. Hybridization boosters diversification in a Neotropical Bulbophyllum (Orchidaceae) group. Mol. Phylogenet. Evol. 2023, 186, 107858. [Google Scholar] [CrossRef]
- Soliva, M.; Widmer, A. Gene flow across species boundaries in sympatric, sexually deceptive Ophrys (Orchidaceae) species. Evolution 2003, 57, 2252–2261. [Google Scholar]
- Devey, D.S.; Bateman, R.M.; Fay, M.F.; Hawkins, J.A. Friends or relatives? Phylogenetics and species delimitation in the controversial European orchid genus Ophrys. Ann. Bot. 2008, 101, 385–402. [Google Scholar] [CrossRef]
- Clements, M.A.; Howard, C.G.; Miller, J.T. Caladenia revisited: Results of molecular phylogenetic analyses of Caladeniinae plastid and nuclear loci. Am. J. Bot. 2015, 102, 581–597. [Google Scholar] [CrossRef]
- Bateman, R.M. Two bees or not two bees? An overview of Ophrys systematics. Ber. Arbeitskreisen Heimische Orchid. 2018, 35, 5–46. [Google Scholar]
- Baguette, M.; Bertrand, J.A.M.; Stevens, V.M.; Schatz, B. Why are there so many bee-orchid species? Adaptive radiation by intra-specific competition for mnesic pollinators. Biol. Rev. 2020, 95, 1630–1663. [Google Scholar] [CrossRef]
- Taylor, D.L.; Bruns, T.D.; Hodges, S.A. Evidence for mycorrhizal races in a cheating orchid. Proc. R. Soc. B Biol. Sci. 2004, 271, 35–43. [Google Scholar] [CrossRef]
- Tedersoo, L.; Anslan, S.; Bahram, M.; Drenkhan, R.; Pritsch, K.; Buegger, F.; Padari, A.; Hagh-Doust, N.; Mikryukov, V.; Gohar, D.; et al. Regional-scale in-depth analysis of soil fungal diversity reveals strong pH and plant species effects in northern Europe. Front. Microbiol. 2020, 11, 1953. [Google Scholar] [CrossRef]
- Geml, J.; Wagner, M.R. Out of sight, but no longer out of mind — towards an increased recognition of the role of soil microbes in plant speciation. New Phytol. 2018, 217, 965–967. [Google Scholar] [CrossRef]
- Nieder, J.; Engwald, S.; Klawun, M.; Barthlott, W. Spatial distribution of vascular epiphytes (including Hemiepiphytes) in a lowland Amazonian rain forest (Surumoni Crane Plot) of southern Venezuela. Biotropica 2000, 32, 385–396. [Google Scholar] [CrossRef]
- Budke, J.C.; Giehl, E.L.H.; Athayde, E.A.; Záchia, R.A. Distribuição espacial de Mesadenella cuspidata (Lindl.) Garay (Orchidaceae) em uma floresta ribeirinha em Santa Maria, RS, Brasil. Acta Bot. Bras. 2004, 18, 31–35. [Google Scholar] [CrossRef]
- Raventós, J.; Mujica, E.; Wiegand, T.; Bonet, A. Analyzing the spatial structure of Broughtonia cubensis (Orchidaceae) populations in the dry forests of Guanahacabibes, Cuba. Biotropica 2011, 43, 173–182. [Google Scholar] [CrossRef]
- Brewster, L.B.; Ackerman, J.D. Spatial distribution of orchid species in the Luquillo Mountains, Puerto Rico. Caribb. J. Sci. 2013, 47, 50–56. [Google Scholar] [CrossRef]
- Osborne, O.G.; De-Kayne, R.; Bidartondo, M.I.; Hutton, I.; Baker, W.J.; Turnbull, G.; Savolainen, V. Arbuscular mycorrhizal fungi promote coexistence and niche divergence of sympatric palm species on a remote oceanic island. New Phytol. 2018, 217, 1254–1266. [Google Scholar] [CrossRef]
- Kaur, J.; Andrews, L.; Sharma, J. High specificity of a rare terrestrial orchid toward a rare fungus within the North American tallgrass prairie. Fungal Biol. 2019, 123, 895–904. [Google Scholar] [CrossRef]
- Kaur, J.; Sharma, J. Orchid root associated bacteria: Linchpins or accessories? Front. Plant Sci. 2021, 12, 661966. [Google Scholar] [CrossRef]
- Bayman, P.; Mosquera-Espinosa, A.T.; Saladini-Aponte, C.M.; Hurtado-Guevara, N.C.; Viera-Ruiz, N.L. Age-dependent mycorrhizal specificity in an invasive orchid, Oeceoclades maculata. Am. J. Bot. 2016, 103, 1880–1889. [Google Scholar] [CrossRef]
- Otero, J.T.; Flanagan, N.S.; Herre, E.A.; Ackerman, J.D.; Bayman, P. Widespread mycorrhizal specificity correlates to mycorrhizal function in the Neotropical, epiphytic orchid Ionopsis utricularioides (Orchidaceae). Am. J. Bot. 2007, 94, 1944–1950. [Google Scholar] [CrossRef]
- Reiter, N.; Phillips, R.D.; Swarts, N.D.; Wright, M.; Holmes, G.; Sussmilch, F.C.; Davis, B.J.; Whitehead, M.R.; Linde, C.C. Specific mycorrhizal associations involving the same fungal taxa in common and threatened Caladenia (Orchidaceae): Implications for conservation. Ann. Bot. 2020, 126, 943–955. [Google Scholar] [CrossRef]
- Jacquemyn, H.; Brys, R.; Lievens, B.; Wiegand, T. Spatial variation in below-ground seed germination and divergent mycorrhizal associations correlate with spatial segregation of three co-occurring orchid species. J. Ecol. 2012, 100, 1328–1337. [Google Scholar] [CrossRef]
- Li, T.; Wu, S.; Yang, W.; Selosse, M.-A.; Gao, J. How mycorrhizal associations influence orchid distribution and population dynamics. Front. Plant Sci. 2021, 12, 647114. [Google Scholar] [CrossRef]
- Rasmussen, H.N.; Dixon, K.W.; Jersáková, J.; Tesitelová, T. Germination and seedling establishment in orchids: A complex of requirements. Ann. Bot. 2015, 116, 391–402. [Google Scholar] [CrossRef]
- Frei, J.K.; Dodson, C.H. The chemical effect of certain bark substrates on the germination and early growth of epiphytic orchids. Bull. Torrey Bot. Club 1972, 99, 307–314. [Google Scholar] [CrossRef]
- García-Cancel, J.G.; Meléndez-Ackerman, E.J.; Olaya-Arenas, P.; Merced, A.; Flores, N.P.; Tremblay, R.L. Associations between Lepanthes rupestris orchids and bryophyte presence in the Luquillo Experimental Forest, Puerto Rico. Caribb. Nat. 2013, 4, 1–14. [Google Scholar]
- Davey, M.L.; Heimdal, R.; Ohlson, M.; Kauserud, H. Host-and tissue-specificity of moss-associated Galerina and Mycena determined from amplicon pyrosequencing data. Fungal Ecol. 2013, 6, 179–186. [Google Scholar] [CrossRef]
- González-Orellana, N.; Salazar Mendoza, A.; Tremblay, R.L.; Ackerman, J.D. Best microsites for germination are not predicted by where established individuals occur for a rare epiphytic orchid. Lankesteriana 2024, 24, 93–114. [Google Scholar]
- Kartzinel, T.R.; Trapnell, D.W.; Shefferson, R.P. Highly diverse and spatially heterogeneous mycorrhizal symbiosis in a rare epiphyte is unrelated to broad biogeographic or environmental features. Mol. Ecol. 2013, 22, 5949–5961. [Google Scholar] [CrossRef]
- Otero, J.T.; Ackerman, J.D.; Bayman, P. Differences in mycorrhizal preferences between two tropical orchids. Mol. Ecol. 2004, 13, 2393–2404. [Google Scholar] [CrossRef]
- Petrolli, R.; Zinger, L.; Perez-Lamarque, B.; Collobert, G.; Griveau, C.; Pailler, T.; Selosse, M.-A.; Martos, F. Spatial turnover of fungi and partner choice shape mycorrhizal networks in epiphytic orchids. J. Ecol. 2022, 110, 2568–2584. [Google Scholar] [CrossRef]
- Suárez, J.P.; Eguiguren, J.S.; Jost, L. Do mycorrhizal fungi drive speciation in Teagueia (Orchidaceae) in the upper Pastaza watershed of Ecuador? Symbiosis 2016, 67, 161–168. [Google Scholar] [CrossRef]
- Fernández, M.; Kaur, J.; Sharma, J. Co-occurring epiphytic orchids have specialized mycorrhizal fungal niches that are also linked to ontogeny. Mycorrhiza 2023, 33, 87–105. [Google Scholar] [CrossRef]
- Bachelot, B.; Uriarte, M.; McGuire, K.L.; Thompson, J.; Zimmerman, J. Arbuscular mycorrhizal fungal diversity and natural enemies promote coexistence of tropical tree species. Ecology 2017, 98, 712–720. [Google Scholar] [CrossRef]
- Swarts, N.D.; Sinclair, E.A.; Francis, A.; Dixon, K.W. Ecological specialization in mycorrhizal symbiosis leads to rarity in an endangered orchid. Mol. Ecol. 2010, 19, 3226–3242. [Google Scholar] [CrossRef]
- Hoeksema, J.D.; Bever, J.D.; Chakraborty, S.; Chaudhary, V.B.; Gardes, M.; Gehring, C.A.; Hart, M.M.; Housworth, E.A.; Kaonongbua, W.; Klironomos, J.N.; et al. Evolutionary history of plant hosts and fungal symbionts predicts the strength of mycorrhizal mutualism. Commun. Biol. 2018, 1, 116. [Google Scholar] [CrossRef]
- Vaingankar, J.D.; Rodrigues, B.F. Effect of arbuscular mycorrhizal (AM) inoculation on growth and flowering in Crossandra infundibuliformis (L.) Nees. J. Plant Nutr. 2015, 38, 1478–1488. [Google Scholar] [CrossRef]
- Derelle, D.; Courty, P.-E.; Dajoz, I.; Declerck, S.; van Aarle, I.M.; Carmignac, D.; Genet, P. Plant identity and density can influence arbuscular mycorrhizal fungi colonization, plant growth, and reproduction investment in coculture. Botany 2015, 93, 405–412. [Google Scholar] [CrossRef]
- Varga, S.; Vega-Frutis, R.; Kytöviita, M.M. Transgenerational effects of plant sex and arbuscular mycorrhizal symbiosis. New Phytol. 2013, 199, 812–821. [Google Scholar] [CrossRef]
- Liu, S.; Guo, H.; Xu, J.; Song, Z.; Song, S.; Tang, J.; Chen, X. Arbuscular mycorrhizal fungi differ in affecting the flowering of a host plant under two soil phosphorus conditions. J. Plant Ecol. 2018, 11, 623–631. [Google Scholar] [CrossRef]
- Sharon, G.; Segal, D.; Ringo, J.M.; Hefetz, A.; Zilber-Rosenberg, I.; Rosenberg, E. Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 2010, 107, 20051–209956l. [Google Scholar] [CrossRef]
- Brucker, R.M.; Bordenstein, S.R. The hologenomic basis of speciation: Gut bacteria cause hybrid lethality in the genus Nasonia. Science 2013, 341, 667–669. [Google Scholar] [CrossRef] [PubMed]
- Neiland, M.R.; Wilcock, C.C. Fruit set, nectar reward, and rarity in the Orchidaceae. Am. J. Bot. 1998, 85, 1657–1671. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Barney, E.; Ackerman, J.D. The cost of selfing in Encyclia cochleata (Orchidaceae). Plant Syst. Evol. 1999, 219, 55–64. [Google Scholar] [CrossRef]
- Sramkó, G.; Paun, O.; Brundrud, M.K.; Laczkó, L.; Molnár, A.; Bateman, R.M. Iterative allogamy-autogamy transitions drive actual and incipient speciation during the ongoing evolutionary radiation within the orchid genus Epipactis (Orchidaceae). Ann. Bot. 2019, 124, 481–497. [Google Scholar] [CrossRef]
- Folsom, J.P. A systematic monograph of Dichaea section Dichaea (Orchidaceae). Ph.D. Dissertation, University of Texas, Austin, TX, USA, 1987. [Google Scholar]
- Nilsson, L.A.; Rabakonandrianina, E.; Pettersson, B. Exact tracking of pollen transfer and mating in plants. Nature 1992, 360, 666–668. [Google Scholar] [CrossRef]
- Salguero-Faría, J.A.; Ackerman, J.D. A nectar reward: Is more better? Biotropica 1999, 31, 303–311. [Google Scholar] [CrossRef]
- Tremblay, R.L. Frequency and consequences of multi-parental pollinations in a population of Cypripedium calceolus var. pubescens (Orchidaceae). Lindleyana 1994, 9, 161–167. [Google Scholar]
- Mayer, J.L.S.; Scopece, G.; Lumaga, M.R.B.; Coiro, M.; Pinheiro, F.; Cozzolino, S. Ecological and phylogenetic constraints determine the stage of anthetic ovule development in orchids. Am. J. Bot. 2021, 108, 2405–2415. [Google Scholar] [CrossRef] [PubMed]
- Arditti, J.; Ghani, A.K.A. Numerical and physical properties of orchid seeds and their biological implications. New Phytol. 2000, 145, 367–421. [Google Scholar] [CrossRef]
- Meléndez-Ackerman, E.J.; Ackerman, J.D. Density-dependent variation in reproductive success in a terrestrial orchid. Plant Syst. Evol. 2001, 227, 27–36. [Google Scholar] [CrossRef]
- Karremans, A.P.; Bogarín, D.; Fernández Otárola, M.; Sharma, J.; Watteyn, C.; Warner, J.; Rodríguez Herrera, B.; Chinchilla, I.F.; Carman, E.; Rojas Valerio, E.; et al. First evidence for multimodal animal seed dispersal in orchids. Curr. Biol. 2023, 33, 1–8. [Google Scholar] [CrossRef]
- Pansarin, E.R.; Suetsugu, K. Mammal-mediated seed dispersal in Vanilla: Its rewards and clues to the evolution of fleshy fruits in orchids. Ecology 2022, 103, e3701. [Google Scholar] [CrossRef]
- Suetsugu, K. Seed dispersal in the mycoheterotrophic orchid Yoania japonica: Further evidence for endozoochory by camel crickets. Plant Biol. 2018, 20, 707–712. [Google Scholar] [CrossRef]
- Barthlott, W.; Große-Veldmann, B.; Korotkova, N. Orchid seed diversity: A scanning electron microscopy survey. Englera 2014, 32, 1–245. [Google Scholar]
- Chaudhary, B.; Chattopadhyay, P.; Banerjee, N. Modulations in seed micromorphology reveal signature of adaptive species-diversification in Dendrobium (Orchidaceae). Open J. Ecol. 2014, 2, 33–42. [Google Scholar] [CrossRef]
- Gamarra, R.; Ortúñez, E.; Galán Cela, P.; Merencio, Á. Seed micromorphology of Orchidaceae in the Gulf of Guinea (West Tropical Africa). Plant Syst. Evol. 2018, 304, 665–677. [Google Scholar] [CrossRef]
- Chase, M.W.; Pippen, J.S. Seed morophology in the Oncidiinae and relaed subtribes (Orchidaceae). Syst. Bot. 1988, 13, 313–323. [Google Scholar] [CrossRef]
- Ortúñez, E.; Gamarra, R. Seed morphology, life form and distribution in three Bromheadia species (Epidendroideae, Orchidaceae). Diversity 2023, 15, 195. [Google Scholar] [CrossRef]
- Tsutsumi, C.; Yukawa, T.; Lee, N.S.; Lee, C.S.; Kato, M. Phylogeny and comparative seed morphology of epiphyti and terrestrial species of Liparis (Orchidaceae) in Japan. J. Plant Res. 2007, 120, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, J.D.; Sabat, A.; Zimmerman, J.K. Seedling establishment in an epiphytic orchid: An experimental study of seed limitation. Oecologia 1996, 106, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Brzosko, E.; Ostrowiecka, B.; Kotowicz, J.; Bolesta, M.; Gromotowicz, A.; Gromotowicz, M.; Orzechowska, A.; Orzołek, J.; Wojdalska, M. Seed dispersal in six species of terrestrial orchids in Biebrza National Park (NE Poland). Acta Soc. Bot. Pol. 2017, 86, 3357. [Google Scholar] [CrossRef]
- Murren, C.J.; Ellison, A.M. Seed dispersal characteristics of Brassavola nodosa (Orchidaceae). Am. J. Bot. 1998, 85, 675–680. [Google Scholar] [CrossRef]
- Madison, M. Distribution of epiphytes in a rubber plantation in Sarawak. Selbyana 1979, 5, 207–213. [Google Scholar]
- Givnish, T.J.; Barfuss, M.H.J.; Van Ee, B.; Riina, R.; Schulte, K.; Horres, R.; Gonsiska, P.A.; Jabaily, R.S.; Crayn, D.M.; Smith, J.A.C.; et al. Adaptive radiation, correlated and contingent evolution and net species diversification in Bromeliaceae. Mol. Phylogenet. Evol. 2014, 71, 55–78. [Google Scholar] [CrossRef] [PubMed]
- Hietz, P.; Wagner, K.; Nunes Ramos, F.; Cabral, J.S.; Agudelo, C.; Benavides, A.M.; Cach-Pérez, M.J.; Cardelús, C.L.; Chilpa Galván, N.; Costa, L.E.N.; et al. Putting vascular epiphytes on the traits map. J. Ecol. 2022, 110, 340–358. [Google Scholar] [CrossRef]
- Torres-Morales, G.; Lasso, E.; Silvera, K.; Turner, B.L.; Winter, K. Occurrence of crassulacean acid metabolism in Colombian orchids determined by leaf carbon isotope ratios. Bot. J. Linn. Soc. 2020, 193, 431–477. [Google Scholar] [CrossRef]
- Zotz, G.; Andrade, J.L.; Einzmann, H.J.R. CAM plants: Their importance in epiphyte communities and prospects with global change. Ann. Bot. 2023, 132, 685–698. [Google Scholar] [CrossRef] [PubMed]
- Winter, K.; Medina, E.; García, V.; Mayoral, M.L.; Muñiz, R. Crassulacean acid metabolism in roots of a leafless orchid, Campylocentrum tyrridion Garay & Dunsterv. J. Plant Physiol. 1985, 118, 73–78. [Google Scholar]
- Suetsugu, K.; Sugita, R.; Yoshihara, A.; Okada, H.; Akita, K.; Nagata, N.; Tanoi, K.; Kobayashi, K. Aerial roots of the leafless epiphytic orchid Taeniophyllum are specialized for performing crassulacean acid metabolism photosynthesis. New Phytol. 2023, 238, 932–937. [Google Scholar] [CrossRef] [PubMed]
- Winter, K.; Smith, J.A.C. An introduction to crassulacean acid metabolism: Biochemical principles and biological diversity. In Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution; Winter, K., Smith, J.A.C., Eds.; Springer: Berlin, Germany, 1996; pp. 1–13. [Google Scholar]
- Silvera, K.; Neubig, K.M.; Whitten, W.M.; Williams, N.H.; Winter, K.; Cushman, J.C. Evolution along the crassulacean acid metabolism continuum. Funct. Plant Biol. 2010, 37, 995–1010. [Google Scholar] [CrossRef]
- Li, M.-H.; Liu, D.-K.; Zhang, G.-Q.; Deng, H.; Tu, X.-D.; Wang, Y.; Lan, S.-R.; Liu, Z.-J. A perspective on crassulacean acid metabolism photosynthesis evolution of orchids on different continents: Dendrobium as a case study. J. Exp. Bot. 2019, 70, 6611–6619. [Google Scholar] [CrossRef]
- Gamisch, A.; Winter, K.; Fischer, G.A.; Comes, H.P. Evolution of crassulacean acid metabolism (CAM) as an escape from ecological niche conservatism in Malagasy Bulbophyllum (Orchidaceae). New Phytol. 2021, 231, 1236–1248. [Google Scholar] [CrossRef]
- Hu, A.-Q.; Gale, S.W.; Liu, Z.-J.; Fischer, G.A.; Saunders, R.M.K. Diversification slowdown in the Cirrhopetalum Alliance (Bulbophyllum, Orchidaceae): Insights from the evolutionary dynamics of Crassulacean Acid Metabolism. Front. Plant Sci. 2022, 13, 794171. [Google Scholar] [CrossRef]
- Trávnícek, P.; Certner, M.; Ponert, J.; Chumová, Z.; Jersáková, J.; Suda, J. Diversity in genome size and GC content shows adaptive potential in orchies and is closely linked to partial endoreplication, plant life-history traits and climatic conditions. New Phytol. 2019, 224, 1642–1656. [Google Scholar] [CrossRef] [PubMed]
- Kocjan, D.; Dolenc Koce, J.; Etl, F.; Dermastia, M. Genome size of life forms of Araceae—A new piece in the C-value puzzle. Plants 2022, 11, 334. [Google Scholar] [CrossRef]
- Beaulieu, J.M.; Leitch, I.J.; Patel, S.; Pendharkar, A.; Knight, C.A. Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytol. 2008, 179, 975–986. [Google Scholar] [CrossRef]
- Moraes, A.P.; Engel, T.B.J.; Forni-Martins, E.R.; de Barros, F.; Felix, L.P.; Cabral, J.S. Are chromosome number and genome size associated with habit and environmental niche variables? Insights from the Neotropical orchids. Ann. Bot. 2022, 130, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Simonin, K.A.; Roddy, A.B. Genome downsizing, physiological novelty, and the global dominance of flowering plants. PLoS Biol. 2018, 16, e2003706. [Google Scholar] [CrossRef]
- Puttick, M.N.; Clark, J.; Donoghue, P.C.J. Size is not everything: Rates of genome size evolution, not C-value, correlate with speciation in angiosperms. P. Roy. Soc. B-Biol. Sci. 2015, 282, 20152289. [Google Scholar] [CrossRef]
- Chumová, Z.; Záveská, E.; Hlousková, P.; Ponert, J.; Schmidt, P.-A.; Certner, M.; Mandáková, T.; Trávnícek, P. Repeat proliferation and partial endoreplication jointly shape the patterns of genome size evolution in orchids. Plant J. 2021, 107, 511–524. [Google Scholar] [CrossRef]
- Zotz, G.; Weigelt, P.; Kessler, M.; Kreft, H.; Taylor, A. EpiList 1.0 - A global checklist of vascular epiphytes. Ecology 2021, 102, e03326. [Google Scholar] [CrossRef] [PubMed]
- Johansson, D. Ecology of vascular epiphytes in West African rain forest. Acta Phytogeogr. Suec. 1974, 59, 1–136. [Google Scholar]
- Spicer, M.E.; Woods, C.L. A case for studying biotic interactions in epiphyte ecology and evolution. Perspect. Plant Ecol. Evol. Syst. 2022, 54, 125658. [Google Scholar] [CrossRef]
- Zotz, G. Plants on Plants—The Biology of Vascular Epiphytes; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Ackerman, J.D. On the evidence for a primitively epiphytic habit in orchids. Syst. Bot. 1983, 8, 474–477. [Google Scholar]
- Tremblay, R.L.; Ackerman, J.D.; Pérez, M.E. Riding across the selection landscape: Fitness consequences of annual variation in reproductive characteristics. Philos. Trans. R. Soc. B, Biol. Sci. 2010, 365, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Liao, M.; Zhang, J.-Y.; Ren, Z.-X.; Deng, H.-N.; Xu, B. Phylogenomic insights into the historical biogeography, character-state evolution, and species diversification rates of Cypripedioideae (Orchidaceae). Mol. Phylogenet. Evol. 2024, 199, 108138. [Google Scholar] [CrossRef] [PubMed]
- DeWitt, T.J.; Scheiner, S.M. Phenotypic variation from single genotypes: A primer. In Phenotypic Plasticity: Functional and Conceptual Approaches; DeWitt, T.J., Scheiner, S.M., Eds.; Oxford University Press: Oxford, UK, 2004; pp. 1–9. [Google Scholar]
- Morales, M.; Ackerman, J.D.; Tremblay, R.L. Morphological flexibility across an environmental gradient in the epiphytic orchid, Tolumnia variegata: Complicating patterns of fitness. Bot. J. Linn. Soc. 2010, 163, 431–446. [Google Scholar] [CrossRef]
- de Lima, T.M.; da Silva, S.F.; Sánchez-Vilas, J.; Júnior, W.L.S.; Mayer, J.L.S.; Ribeiro, R.V.; Pinheiro, F. Phenotypic plasticity rather than ecotypic differentiation explains the broad realized niche of a Neotropical orchid species. Plant Biol. 2024, 27, 989–997. [Google Scholar] [CrossRef]
- Pfennig, D.W. Key questions about phenotypic plasticity. In Phenotypic Plasticity and Evolution: Causes, Consequences, Controversies; Pfennig, D.W., Ed.; CRC Press: Boca Raton, FL, USA, 2021; pp. 55–88. [Google Scholar]
- Pfennig, D.W.; Wund, M.A.; Snell-Rood, E.C.; Cruickshank, T.; Schlichting, C.D.; Moczek, A.P. Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol. Evol. 2010, 25, 459–467. [Google Scholar] [CrossRef]
- Guo, Y.Y.; Zhang, Y.Q.; Zhang, G.Q.; Huang, L.Q.; Liu, Z.J. Comparative transcriptomics provides insight into the molecular basis of species diversification of section Trigonopedia (Cypripedium) on the Qinghai-Tibetan Plateau. Sci. Rep. 2018, 8, 11640. [Google Scholar] [CrossRef]
- Tenaillon, M.I.; Hollister, J.D.; Gaut, B.S. A triptych of the evolution of plant transposable elements. Trends Plant Sci. 2010, 15, 471–478. [Google Scholar] [CrossRef]
- McClintock, B. The significance of responses of genomes to challenge. Science 1984, 226, 792–801. [Google Scholar] [CrossRef]
- Hollister, J.D.; Smith, L.M.; Guo, Y.; Ott, F.; Weigel, D.; Gaut, B.S. Transposable elements and small RNAs contribute to gene expression divergence between Arabidopsis thaliana and Arabidopsis lyrata. Proc. Natl. Acad. Sci. USA 2011, 108, 2322–2327. [Google Scholar] [CrossRef]
- Lang, L.; Schnittger, A. Endoreplication—A means to an end in cell growth and stress response. Curr. Opin. Plant Biol. 2020, 54, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.C.; Bourge, M.; Maunoury, N.; Wong, M.; Wolfe Bianchi, M.; Lepers-Andrzejewski, S.; Besse, P.; Siljak-Yakovlev, S.; Dron, M.; Satiat-Jeunemaître, B. DNA remodeling by strict partial endoreplication in orchids, an original process in the plant kingdom. Genome Biol. Evol. 2017, 9, 1051–1071. [Google Scholar] [CrossRef]
- Awasthi, M.; Thapa, S.; Awasthi, B.; Lim, C.R.; You, Y.H.; Chung, K.W. Diversity patterns of epiphytic orchids along elevation in the mountains of Western Nepal. Plants 2025, 13, 3256. [Google Scholar] [CrossRef]
- Camacho, L.F.; Schwartz, N.; Avilés, L. Vegetation structural complexity across elevational gradients: Insights from the tropical Andes. J. Biogeogr. 2025. [Google Scholar] [CrossRef]
- Gentry, A.H. Neotropical floristic diversity: Phytogeographical connections between Central and South America, Pleistocene climatic fluctuations, or an accident of the Andean orogeny? Ann. Missouri Bot. Gard. 1982, 69, 557–593. [Google Scholar] [CrossRef]
- Pérez-Escobar, O.A.; Chomicki, G.; Condamine, F.L.; Karremans, A.P.; Bogarín, D.; Matzke, N.J.; Silvestro, D.; Antonelli, A. Recent origin and rapid speciation of Neotropical orchids in the world’s richest plant biodiversity hotspot. New Phytol. 2017, 215, 891–905. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Escobar, O.A.; Zika, A.; Bemúdez, M.A.; Messenger, A.S.; Condamine, F.L.; Hoorn, C.; Hooghiemstra, H.; Pu, Y.; Bogarín, D.; Boschman, L.M.; et al. The Andes through time: Evolution and distribution of Andean floras. Trends Plant Sci. 2022, 27, 364–378. [Google Scholar] [CrossRef]
- Benzing, D.H. Alternative interpretations for the evidence that certain orchids and bromeliads act as shoot parasites. Selbyana 1979, 5, 135–144. [Google Scholar]
- Garwood, N.C.; Janos, D.P.; Brokaw, N. Earthquake-caused landslides: A major disturbance in tropical forests. Science 1979, 205, 997–999. [Google Scholar] [CrossRef]
- Putz, F.E.; Coley, P.D.; Lu, K.; Montalvo, A.; Aiello, A. Uprooting and snapping of trees: Structural determinants and ecological consequences. Can. J. For. Res. 1983, 13, 1011–1020. [Google Scholar] [CrossRef]
- Walker, L.R.; Voltzow, J.; Ackerman, J.D.; Fernandez, D.S.; Fetcher, N. Immediate impact of Hurricane Hugo on a Puerto Rican rain forest. Ecology 1992, 73, 691–694. [Google Scholar] [CrossRef]
- Yanoviak, S.P.; Gora, E.M.; Bitzer, P.M.; Burchfield, J.C.; Muller-Landau, H.C.; Detto, M.; Paton, S.; Hubbell, S.P. Lightning is a major cause of large tree mortality in a lowland neotropical forest. New Phytol. 2019, 225, 1936–1944. [Google Scholar] [CrossRef]
- Laube, S.; Zotz, G. Which abiotic factors limit vegetative growth in a vascular epiphyte? Funct. Ecol. 2003, 17, 598–604. [Google Scholar] [CrossRef]
- Štípková, Z.; Kindlmann, P. Distribution of population sizes in metapopulations of threatened organisms– implications for conservation of orchids. Plants 2025, 14, 369. [Google Scholar] [CrossRef]
- Partomijardjio, T. Colonisation of orchids on the Krakatau Islands. Telopea 2003, 10, 299–310. [Google Scholar] [CrossRef]
- Carson, H.L. The population flush and its genetic consequences. In Population Biology and Evolution; Lewontin, R.C., Ed.; Syracuse University Press: Syracuse, NY, USA, 1968; pp. 123–137. [Google Scholar]
- Templeton, A.R. The reality and importance of founder speciation in evolution. BioEssays 2008, 30, 470–479. [Google Scholar] [CrossRef] [PubMed]
- Wright, S. The shifting balance theory and macroevolution. Annu. Rev. Genet. 1982, 16, 1–19. [Google Scholar] [CrossRef]
- Hall, M.L.; Robin, C.; Beate, B.; Moths, P.; Monzier, M. Tungurahua volcano, Ecuador: Structure, eruptive history and hazard. J. Volcanol. Geotherm. Res. 1999, 91, 1–21. [Google Scholar] [CrossRef]
- Shiels, A.B.; Walker, L.R. Landslides cause spatial and temporal gradients at multiple scales in the Luquillo Mountains in Puerto Rico. Ecol. Bull. 2013, 54, 211–221. [Google Scholar]
- Kirby, S.H. Active tectonic and volcanic mountain building as agents of rapid environmental changes and increased orchid diversity and long-distance orchid dispersal in the tropical Americas: Opportunities and challenges. Lankesteriana 2016, 16, 243–254. [Google Scholar] [CrossRef]
- Wilson, E.O. Adaptive shift and dispersal in a tropical ant fauna. Evolution 1959, 13, 122–144. [Google Scholar] [CrossRef]
- Ricklefs, R.E.; Bermingham, E. The concept of the taxon cycle in biogeography. Glob. Ecol. Biogeogr. 2002, 11, 353–361. [Google Scholar] [CrossRef]
- Merckx, V.S.F.T.; Hendriks, K.P.; Beentjes, K.K.; Mennes, C.B.; Becking, L.E.; Peijnenburg, K.T.C.A.; Afendy, A.; Arumugam, N.; de Boer, H.; Biun, A.; et al. Evolution of endemism on a young tropical mountain. Nature 2015, 524, 347–350. [Google Scholar] [CrossRef]
- González-Orozco, C.E. Unveiling evolutionary cradles and museums of flowering plants in a neotropical biodiversity hotspot. R. Soc. Open Sci. 2023, 10, 230917. [Google Scholar] [CrossRef] [PubMed]
- Barkman, T.J.; Simpson, B.B. Origin of high-elevation Dendrochilum species (Orchidaceae) endemic to Mount Kinabalu, Sabah, Malaysia. Syst. Bot. 2001, 126, 658–669. [Google Scholar]
- Kirby, S.H. Active mountain building and the distribution of "core" Maxillariinae species in tropical Mexico and Central America. Lankesteriana 2011, 11, 275–291. [Google Scholar] [CrossRef]
- Driese, G.S.; Kenneth, H.O.; Sally, P.H.; Zheng-Hua, L.; Debra, S.J. Paleosol evidence for Quaternary uplift and for climate and ecosystem changes in the Cordillera de Talamanca, Costa Rica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 248, 1–23. [Google Scholar] [CrossRef]
- Gregory-Wodzicki, K.M. Uplift history of the Central and Northern Andes: A review. Geol. Soc. Am. Bull. 2000, 112, 1091–1105. [Google Scholar] [CrossRef]
- Figueiredo, J.J.J.P.; Hoorn, C.; Van der Ven, P.; Soares, E. Late Miocene onset of the Amazon River and the Amazon deep-sea fan: Evidence from the Foz do Amazonas Basin. Geology 2009, 37, 619–622. [Google Scholar] [CrossRef]
- Bacon, C.D.; Silvestro, D.; Jaramillo, C.; Smith, B.T.; Chakrabarty, P.; Antonelli, A. Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proc. Natl. Acad. Sci. USA 2015, 112, 6110–6115. [Google Scholar] [CrossRef]
- Agnolin, F.L.; Chimento, N.R.; Lucero, S.O. Pre-GABI biotic connections between the Americas: An alternative model to explain the “less-splendid isolation” of South America. Rev. Geog. Am. Cent. 2019, 61, 91–106. [Google Scholar]
- Andriananjamanantsoa, H.N.; Engberg, S.; Luis, E.E.; Brouillet, L. Diversification of Angraecum (Orchidaceae, Vandeae) in Madagascar: Revised phylogeny reveals species accumulation through time rather than rapid radiation. PLoS ONE 2016, 11, e0163194. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, Y.; Willett, S.D.; Zimmermann, N.E.; Pellissier, L. Escarpment evolution drives the diversification of the Madagascar flora. Science 2024, 383, 653–658. [Google Scholar] [CrossRef]
- Rakotoarinivo, M.; Blach-Overgaard, A.; Baker, W.J.; Dransfield, J.; Moat, J.; Svenning, J.-C. Palaeo-precipitation is a major determinant of palm species richness patterns across Madagascar: A tropical biodiversity hotspot. P. Roy. Soc. B-Biol. Sci. 2013, 280, 20123048. [Google Scholar] [CrossRef]
- Katrantsiotis, C.; Haberle, S.; Ekblom, A.; Smittenberg, R.H.; Risberg, J.; Rule, S.; Clark, G.; Anderson, A.; Prendergast, A.; Carmens, A.; et al. Late quaternary hydroclimate variability in Madagascar and its connection to atmospheric circulation patterns. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2024, 649, 112336. [Google Scholar] [CrossRef]
- Hill, R.S. Origins of the southeastern Australian vegetation. Philos. Trans. R. Soc. B, Biol. Sci. 2004, 359, 1537–1549. [Google Scholar] [CrossRef] [PubMed]
- Hopper, S.D.; Gioia, P. The Southwest Australian Floristic Region: Evolution and conservation of a global hot spot of biodiversity. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 623–650. [Google Scholar] [CrossRef]
- Neumann, F.H.; Bamford, M.K. Shaping of modern southern African biomes: Neogene vegetation and climate changes. Trans. Roy. Soc. S. Afr. 2015, 70, 195–212. [Google Scholar] [CrossRef]
- Peakall, R.; Wong, D.C.J.; Phillips, R.D.; Ruibal, M.; Eyles, R.; Rodriguez-Delgado, C.; Linde, C.C. A multitiered sequence capture strategy spanning broad evolutionary scales: Application for phylogenetic and phylogeographic studies of orchids. Mol. Ecol. Resour. 2021, 21, 1118–1140. [Google Scholar] [CrossRef]
- Ackerman, J.D.; Phillips, R.D.; Tremblay, R.L.; Karremans, A.; Reiter, N.; Peter, C.I.; Bogarín, D.; Pérez-Escobar, O.A.; Liu, H. Beyond the various contrivances by which orchids are pollinated: Global patterns in orchid pollination biology. Pollination list through 2024. Zenodo 2025. [Google Scholar] [CrossRef]
- Cohen, C.; Liltved, W.R.; Coville, J.F.; Shuttleworth, A.; Weissflog, J.; Svatos, A.; Bytebier, B.; Johnson, S.D. Sexual deception of a beetle pollinator through floral mimicry. Curr. Biol. 2021, 31, 1–8. [Google Scholar] [CrossRef]
- Anhuf, D.; Ledru, M.-P.; Behling, H.; Da Cruz, F.W., Jr.; Cordeiro, R.C.; Van der Hammen, T.; Karmann, I.; Marengo, J.A.; De Oliveira, P.E.; Pessenda, L.; et al. Paleo-envioronmental dhange in Amazonian and Arican rainforest during the LGM. Paleogeogr. Paleoclimatol. Paleoecol. 2006, 239, 510–527. [Google Scholar] [CrossRef]
- Acharya, K.P.; Vetaas, O.R.; Birks, H.J.B. Orchid species richness along Himalayan elevation gradients. J. Biogeogr. 2011, 38, 1821–1833. [Google Scholar] [CrossRef]
- Inda, L.A.; Pimentel, M.; Chase, M.W. (2012) Phylogenetics of tribe Orchideae (Orchidaceae: Orchidoideae) based on combined NA matrices: Inferences regarding timing of diversification and evolution of pollination syndromes. Ann. Bot. 2012, 110, 71–90. [Google Scholar] [CrossRef] [PubMed]
- Vitasse, Y.; Baumgarten, F.; Zohner, C.M.; Rutishauser, T.; Pietragalla, B.; Gehrig, R.; Dai, J.; Wang, H.; Aono, Y.; Sparks, T.H. The great acceleration of plant phenological shifts. Nat. Clim. Change 2022, 12, 300–302. [Google Scholar] [CrossRef]
- Price, M.V.; Waser, N.M. Pollen dispersal and optimal outcrossing in Delphinium nelsonii. Nature 1979, 277, 294–297. [Google Scholar] [CrossRef]
- Schierup, M.H.; Christiansen, F.B. Inbreeding depression and outbreeding depression in plants. Heredity 1996, 77, 461–468. [Google Scholar] [CrossRef]
- Bateman, R.M.; DiMichele, W.A. Generating and filtering major phenotypic novelties: NeoGoldschmidtian saltation revisited. In Developmental Genetics and Plant Evolution; Cronk, Q.C.B., Bateman, R.M., Hawkins, J.A., Eds.; Taylor & Francis: London, UK, 2002; pp. 109–159. [Google Scholar]
- Mondragón-Palomino, M.; Theissen, G. Why are orchid flowers so diverse? Reduction of evolutionary constraints by paralogues of class B floral homeotic genes. Ann. Bot. 2009, 104, 583–594. [Google Scholar] [CrossRef]
- Elliott, T.L.; Spalink, D.; Larridon, I.; Zuntini, A.R.; Escudero, M.; Hackel, J.; Barrett, R.L.; Martín-Bravo, S.; Márquez-Corro, J.I.; Granados Mendoza, C.; et al. Global analysis of Poales diversification – parallel evolution in space and time into open and closed habitats. New Phytol. 2002, 71, 55–78. [Google Scholar] [CrossRef]
- Kessous, I.M.; Farooq, H.; Testo, W.; Jiménez, M.F.T.; Neves, B.; Pinto, A.R.; Salgueiro, F.; Costa, A.F.; Bacon, C.D. New insights into the classification, diversification, and evolutionary dynamics of bromeliads. Bot. J. Linn. Soc. 2024. [Google Scholar] [CrossRef]
- Koenen, E.J.M.; Vos, J.M.; Atchison, G.W.; Simon, M.F.; Schrire, B.D.; Souza, E.R.; Queiroz, L.P.; Hughes, C.E. Exploring the tempo of species diversification in legumes. S. Afr. J. Bot. 2013, 89, 19–30. [Google Scholar] [CrossRef]
- Palazzesi, L.; Hidalgo, O.; Barreda, V.D.; Forest, F.; Höhna, S. The rise of grasslands is linked to atmospheric CO2 decline in the late Palaeogene. Nat. Commun. 2022, 13, 293. [Google Scholar] [CrossRef] [PubMed]
- Sundue, M.A.; Testo, W.L.; Ranker, T.A. Morphological innovation, ecological opportunity, and the radiation of a major vascular epiphyte lineage. Evolution 2015, 69, 2482–2495. [Google Scholar] [CrossRef] [PubMed]
Factors | Rationale | Select References |
---|---|---|
Tropics (Section 2.2) | Potential for uninterrupted growth; higher phorophyte diversity; higher functional diversity of pollinators; higher orchid mycorrhizal fungal (OMF) diversity; higher niche specialization; diverse array of spatial niches | [58,59,60] |
Pollinator relationships (Section 2.3.1) | Remarkable adaptations for precision pollination; high specificity for pollinators; deception pollination; severe pollination limitation; sexual attraction based on floral odors | [6,17,22,55,61] |
Hybridization (Section 2.3.2) | Instantly creates novel genetic combinations and novel phenotypes that may be subjected to selection | [62,63] |
Mycorrhizal relationships (Section 2.3.3) | Obligate symbiosis with orchid mycorrhizal fungi (OMF); patchiness of OMF; specificity toward OMF | [64,65,66,67] |
Wind-dispersed, dust-like seed (Section 2.4) | Seeds produced in large quantities; stochastic element to reproductive success; broadcast dispersal to reach suitable but patchy and ephemeral habitats | [53,68] |
Pollinia (Section 2.4) | Single pollination event delivers massive amount of pollen to fertilize thousands of ovules; biparental seed crops result in extensive sampling of recombination possibilities, including rare alleles | [32] |
Succulence (Section 2.5) | Provides water storage in habitats with sporadic water availabilities; predates epiphytism | [28,69] |
Crassulacean acid metabolism (Section 2.6) | Provides water-efficient carbon fixation; presumed to be common among epiphytes | [6,70] |
Genome size (Section 2.7) | The most diverse clades have small genomes and are associated with rapid cell cycling under intermittent water and nutrient availability | [71,72] |
Epiphytism (Section 2.8 and Section 3.1) | Novel environment, open niche; greater surface area availability; microsite niche partitioning; the most common substrate for orchids; locally ephemeral, fragmented habitat; low levels of competition | [29,61,68,73] |
Mountainous habitats (Section 3.2) | Fragmented landscapes lead to isolated populations; highly variable topography influences orographic precipitation and other abiotic conditions, providing barriers to dispersal | [29,74] |
Climate change (Section 3.3) | Paleoclimate cooling associated with orchid speciation; increased variation in genome associated with climate fluctuations | [9,75,76,77,78] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ackerman, J.D.; Tremblay, R.L.; Arias, T.; Zotz, G.; Sharma, J.; Salazar, G.A.; Kaur, J. Persistent Habitat Instability and Patchiness, Sexual Attraction, Founder Events, Drift and Selection: A Recipe for Rapid Diversification of Orchids. Plants 2025, 14, 1193. https://doi.org/10.3390/plants14081193
Ackerman JD, Tremblay RL, Arias T, Zotz G, Sharma J, Salazar GA, Kaur J. Persistent Habitat Instability and Patchiness, Sexual Attraction, Founder Events, Drift and Selection: A Recipe for Rapid Diversification of Orchids. Plants. 2025; 14(8):1193. https://doi.org/10.3390/plants14081193
Chicago/Turabian StyleAckerman, James D., Raymond L. Tremblay, Tatiana Arias, Gerhard Zotz, Jyotsna Sharma, Gerardo A. Salazar, and Jaspreet Kaur. 2025. "Persistent Habitat Instability and Patchiness, Sexual Attraction, Founder Events, Drift and Selection: A Recipe for Rapid Diversification of Orchids" Plants 14, no. 8: 1193. https://doi.org/10.3390/plants14081193
APA StyleAckerman, J. D., Tremblay, R. L., Arias, T., Zotz, G., Sharma, J., Salazar, G. A., & Kaur, J. (2025). Persistent Habitat Instability and Patchiness, Sexual Attraction, Founder Events, Drift and Selection: A Recipe for Rapid Diversification of Orchids. Plants, 14(8), 1193. https://doi.org/10.3390/plants14081193