Temporal Dynamics of Physiological Integration Intensity in Zoysia japonica Under Heterogeneous Stress of Cadmium or/and Phenanthrene
Abstract
:1. Introduction
2. Results
2.1. Photosynthetic Parameter and SPAD of Z. japonica Ramets Under Cd Heterogeneous Stress
2.2. Photosynthetic Parameter and SPAD of Z. japonica Ramets Under Phe Heterogeneous Stress
2.3. Photosynthetic Parameter and SPAD of Z. japonica Ramets Under Cd and Phe Heterogeneous Stress
2.4. Physiological Integration Intensity of Z. japonica Ramets Under Cd or/and Phe Heterogeneous Stress
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Experiment Design and Treatment
4.3. Determination of Photosynthetic Parameters and SPAD Values
4.4. Definition and Calculation of Physiological Integration Intensity
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Cd | cadmium |
Phe | phenanthrene |
HMs | heavy metals |
PAHs | heavy metals |
PN | net photosynthetic rate |
Cond | stomatal conductance |
Ci | intercellular CO₂ concentration |
Tr | transpiration rate |
WUE | water use efficiency |
References
- Janovskýa, Z.; Herben, T. Reaching similar goals by different means-Differences in life-history strategies of clonal and non-clonal plants. Perspect. Plant Ecol. Evol. Syst. 2020, 14, 125534. [Google Scholar] [CrossRef]
- Yang, P.; Huang, L.; He, S.N.; Zeng, X.H.; Chen, Y.Y.; Wang, H.M. Adaptive strategies employed by clonal plants in heterogeneous patches. Forests 2018, 14, 1648. [Google Scholar] [CrossRef]
- Cao, X.X.; Xue, W.; Lei, N.F.; Yu, F.H. Effects of clonal integration on foraging behavior of three clonal plants in heterogeneous soil environments. Forests 2022, 13, 696. [Google Scholar] [CrossRef]
- Qin, H.; Jiao, L.; Li, F.; Zhou, Y. Ecological adaptation strategies of the clonal plant Phragmites australis at the Dunhuang Yangguan wetland in the arid zone of northwest China. Ecol. Indic. 2022, 141, 109109. [Google Scholar] [CrossRef]
- Guo, J.; Li, H.Y.; Yang, Y.F. Physiological integration increases sexual reproductive performance of the rhizomatous grass Hierochloe glabra. Plants 2020, 9, 1608. [Google Scholar] [CrossRef]
- Zheng, L.L.; Yao, S.M.; Xue, W.; Yu, F.H. Small islands of safety promote the performance of a clonal plant in cadmium-contaminated soil. Plant Soil 2023, 489, 453464. [Google Scholar] [CrossRef]
- Ievinsh, G. Halophytic Clonal plant species: Important functional aspects for existence in heterogeneous saline habitats. Plants 2023, 12, 1728. [Google Scholar] [CrossRef]
- Sugiura, S.; Takahashi, S. Physiological integration for salinity stress alleviation in stoloniferous turfgrass, Zoysia matrella in heterogeneous saline environments. Landsc. Ecol. Eng. 2021, 17, 21–28. [Google Scholar] [CrossRef]
- Zhao, J.C.; Cai, C.J. Physiological integration improves nitrogen use efficiency of moso bamboo: An isotopic (15N) assessment. For. Ecol. Manag. 2023, 542, 121073. [Google Scholar] [CrossRef]
- Jing, X.; Cai, C.J.; Fan, S.H.; Liu, G.L.; Wu, C.M.; Chen, B.X. Effects of rhizome integration on the water physiology of phyllostachys edulis clones under heterogeneous water stress. Plants 2020, 9, 373. [Google Scholar] [CrossRef]
- Guo, Z.W.; Li, Q.; Wu, J.; Yang, L.T.; Fan, L.L.; Zhang, L.; Qin, M.H.; Chen, S.L. Clonal integration alters metabolic non-structural carbohydrate processes of a dwarf bamboo under negatively correlated light and soil water conditions. Agric. Water Manag. 2024, 306, 109152. [Google Scholar] [CrossRef]
- Yin, Y.L.; Xu, Y.N.; Li, X.N.; Fan, S.G.; Wang, G.Y.; Fu, J.M. Physiological integration between Bermudagrass ramets improves overall salt resistance under heterogeneous salt stress. Physiol. Plant. 2022, 174, e13655. [Google Scholar] [CrossRef] [PubMed]
- Li, X.H.; Ye, G.; Shen, Z.Y.; Li, J.J.; Hao, D.L.; Kong, W.Y.; Wang, H.R.; Zhang, L.; Chen, J.B.; Guo, H.L. Na+ and K+ homeostasis in different organs of contrasting Zoysia japonica accessions under salt stress. Environ. Exp. Bot. 2023, 214, 105445. [Google Scholar] [CrossRef]
- Li, Y.; Ning, W.T.; Xu, S.N.; Yu, N.; Chen, Z.L.; Zhang, L.H. Response of physiological integration in the clonal herb Zoysia japonica to heterogeneous water conditions. Acta Physiol. Plant. 2022, 44, 34. [Google Scholar] [CrossRef]
- Xu, S.N.; Liu, Y.C.; Liu, Y.H.; Chen, Z.L.; Li, Y.; Zhang, L.H. Physiological integration of growth and photosynthesis of Zoysia japonica clonal ramets under nutrient heterogeneity. Chin. J. Appl. Ecol. 2018, 29, 811–817. [Google Scholar] [CrossRef]
- Wang, L.H.; Yuan, Y.Y.; Kim, J. Molecular genetic insights into the stress responses and cultivation management of Zoysiagrass: Illuminating the Pathways for Turf Improvement. Agriculture 2024, 14, 1718. [Google Scholar] [CrossRef]
- Gouveia, B.T.; Chandra, A.; Kenworthy, K.E.; Raymer, P.L.; Schwartz, B.M.; Wu, Y.Q.; Milla-Lewis, S.R. Warm-season turfgrass species genotype-by-environment interaction for turfgrass quality under drought. J. Agron. Crop Sci. 2024, 210, e12681. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Y.L.; Li, Y.; Zhai, C.Y.; Zhang, K. Transcriptome analysis reveals the stress tolerance mechanisms of cadmium in Zoysia japonica. Plants 2023, 12, 3833. [Google Scholar] [CrossRef]
- Ujala Ejaz, U.; Khan, S.M.; Khalid, N.; Ahmad, Z.; Jehangir, S.; Rizvi, Z.F.; Lho, L.H.; Han, H.; Raposo, A. Detoxifying the heavy metals: A multipronged study of tolerance strategies against heavy metals toxicity in plants. Front. Plant Sci. 2023, 14, 1154571. [Google Scholar] [CrossRef]
- Sivakoff, F.S.; McLaughlin, R.; Gardiner, M.M. Cadmium soil contamination alters plant-pollinator interactions. Environ. Pollut. 2024, 356, 124316. [Google Scholar] [CrossRef]
- Baruah, N.; Gogoi, N.; Roy, S.; Bora, P.; Chetia, J.; Zahra, N.; Ali, N.; Gogoi, P.; Farooq, M. Phytotoxic responses and plant tolerance mechanisms to cadmium toxicity. J. Soil Sci. Plant Nutr. 2023, 23, 4805–4826. [Google Scholar] [CrossRef]
- Gao, L.; Okoye, C.O.; Wang, C.S.; Lou, F.L.; Jianxiong Jiang, J.X. Enhanced remediation of phenanthrene and naphthalene by corn-bacterial consortium in contaminated Soil. Plants 2024, 13, 2839. [Google Scholar] [CrossRef]
- Cabello-Hurtado, F.; Amrani, A.E. Phenanthrene-induced cytochrome P450 genes and phenanthrene tolerance associated with Arabidopsis thaliana CYP75B1 gene. Plants 2024, 13, 1692. [Google Scholar] [CrossRef]
- Wu, B.; Li, J.; Kuang, H.J.; Shangguan, Y.X.; Chen, J.B. Mercapto-based palygorskite modified soil micro-biology and reduced the uptake of heavy metals by Salvia miltiorrhiza in cadmium and lead co-contaminated soil. J. Environ. Manag. 2023, 345, 118859. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Imran, M.A.; Zhao, J.J.; Sultan, M.; Li, M.J. Single/joint effects of pyrene and heavy metals in contaminated soils on the growth and physiological response of maize (Zea mays L.). Front. Plant Sci. 2024, 15, 1505670. [Google Scholar] [CrossRef] [PubMed]
- Song, X.L.; Li, C.J.; Chen, W.F. Phytoremediation potential of Bermuda grass (Cynodon dactylon (L.) pers.) in soils co-contaminated with polycyclic aromatic hydrocarbons and cadmium. Ecotoxicol. Environ. Saf. 2022, 234, 113389. [Google Scholar] [CrossRef]
- Mathur, J.; Panwar, R. Synergistic efect of pyrene and heavy metals (Zn, Pb, and Cd) on phytoremediation potential of Medicago sativa L. (alfalfa) in multi-contaminated soil. Environ. Sci. Pollut. Res. 2024, 31, 21012–21027. [Google Scholar] [CrossRef]
- Dong, H.Q.; Li, F.M.; Xuan, X.X.; Ahiakpa, J.K.; Tao, J.B.; Zhang, X.Y.; Ge, P.F.; Wang, Y.R.; Gai, W.X.; Zhang, Y.Y. The genetic basis and improvement of photosynthesis in tomato. Hortic. Plant J. 2025, 11, 69–84. [Google Scholar] [CrossRef]
- Al-Gaadi, K.A.; Tola, E.; Madugundu, R.; Zeyada, A.M.; Alameen, A.A.; Edrris, M.K.; Edrees, H.F.; Mahjoop, O. Response of leaf photosynthesis, chlorophyll content and yield of hydroponic tomatoes to different water salinity levels. PLoS ONE 2024, 19, e0293098. [Google Scholar] [CrossRef]
- Niyoifasha, C.J.; Borena, B.M.; Ukob, I.T.; Minh, P.N.; Al Azzawi, T.N.I.; Imran, M.; Ali, S.; Inthavong, A.; Mun, B.G.; Lee, I.J.; et al. Alleviation of Hg-, Cr-, Cu-, and Zn-induced heavy metals stress by exogenous sodium nitroprusside in rice plants. Plants 2023, 12, 1299. [Google Scholar] [CrossRef]
- Sheng, L.Y.; Zhao, W.; Yang, X.Q.; Mao, H.; Zhu, S.X. Response characteristics of rhizosphere microbial community and metabolites of Iris tectorum to Cr stress. Ecotoxicol. Environ. Saf. 2023, 263, 115218. [Google Scholar] [CrossRef] [PubMed]
- Di, H.C.; Liang, Y.; Gong, Y.T.; Jin, S.H.; Xu, Y.X. The Effect of exogenous melatonin on the photosynthetic characteristics of Rhododendron simsii under cadmium stress. Plants 2025, 14, 125. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.W.; Zhao, C.Y.; Li, Q.; Feng, Y.H.; Zhang, X.Y.; Lu, Y.Y.; Ying, R.R.; Yin, A.J.; Ji, W.B. Heavy metals can affect plant morphology and limit plant growth and photosynthesis processes. Agronomy 2023, 13, 2601. [Google Scholar] [CrossRef]
- Shen, X.X.; Li, R.L.; Chai, M.W.; Cheng, S.S.; Tam, N.F.Y.; Han, J. Does combined heavy metal stress enhance iron plaque formation and heavy metal bioaccumulation in Kandelia obovata? Environ. Exp. Bot. 2021, 186, 104463. [Google Scholar] [CrossRef]
- Martínez, M.S.; Galante, P.M.; Plata, I.H.; Cuevas, L.V.; Rodríguez, A.; Godínez, M.L.C.; Sánchez, E.T. Phytoremediation Potential of Crotalaria pumila (Fabaceae) in Soils Polluted with Heavy Metals: Evidence from Field and Controlled Experiments. Plants 2024, 13, 1947. [Google Scholar] [CrossRef]
- Song, Z.W.; Lin, C.; Pedersen, O.; Jiménez, J. Anatomical and physiological responses of roots and rhizomes in Oryza longistaminata to soil water gradients. Ann. Bot. 2024, mcae131. [Google Scholar] [CrossRef]
- Qian, Y.Q.; Chen, L.; Li, D.Y. Physiological integration improves moc k strawberry [Duchesnea indica (Andr.) Focke] uniformity under heterogeneous saline conditions. Sci. Hortic. 2022, 291, 110579. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, Z.H.; Li, Y.M.; Wang, N.; Cui, W.T.; Zhao, B.N.; Si, C. Effects of clonal integration and nutrient availability on the growth of Glechoma longituba under heterogenous light conditions. Front. Plant Sci. 2023, 14, 1182068. [Google Scholar] [CrossRef]
- Duan, S.J.; Du, J.; Yu, D.W.; Pei, X.J.; Yin, D.Q.; Wang, S.J.; Tao, Q.Z.; Dan, Y.; Zhang, X.C.; Deng, J.; et al. Clonal integration of stress signal induces morphological and physiological response of root within clonal network. PLoS ONE 2024, 19, e0298258. [Google Scholar] [CrossRef]
- Xu, L.; Zhou, Z.F. Effects of Cu Pollution on the Expansion of an amphibious clonal herb in aquatic-terrestrial ecotones. PLoS ONE 2016, 11, e0164361. [Google Scholar] [CrossRef]
- Xu, L.; Wu, X.; Xiang, D. Risk expansion of Cr through amphibious clonal plant from polluted aquatic to terrestrial habitats. Open Life Sci. 2018, 13, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Emamverdian, A.; Ding, Y.L.; Barker, J.; Liu, G.H.; Hasanuzzaman, M.; Li, Y.; Ramakrishnan, M.; Mokhberdoran, F. Co-Application of 24-epibrassinolide and titanium oxide nanoparticles promotes Pleioblastus pygmaeus plant tolerance to Cu and Cd toxicity by increasing antioxidant activity and photosynthetic capacity and reducing heavy metal accumulation and translocation. Antioxidants 2022, 11, 451. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.X.; Zhou, J.; Zhou, J. Interactive effects of ammonium sulfate and lead on alfalfa in rare earth tailings: Physiological responses and toxicity thresholds. Sci. Total Environ. 2024, 947, 174439. [Google Scholar] [CrossRef]
- Wang, X.G.; Zhang, R.; Qian, Z.H.; Qiu, S.Y.; He, X.G.; Wang, S.J.; Si, C. Efects of cadmium and nutrients on the growth of the invasive plant Alternanthera philoxeroides. Folia Geobot 2022, 57, 259–267. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, Z.H.; Lyu, W.Y.; Hu, Y.F.; Yang, J.X.; Xin, J.C.; Wang, X.G.; Si, C. Effects of fragmentation, cadmium, and nutrients on the growth of a wetland invasive plant Alternanthera philoxeroides. Plant Species Biol. 2023, 38, 180–191. [Google Scholar] [CrossRef]
- Pyo, Y.; Moon, H.; Nugroho, A.B.D.; Yang, S.W.; Jung, I.L.; Kim, D.H. Transcriptome analysis revealed that jasmonic acid biosynthesis/signaling is involved in plant response to Strontium stress. Ecotoxicol. Environ. Saf. 2022, 237, 113552. [Google Scholar] [CrossRef]
- Xu, Y.Z.; Li, Y.Y.; Zhou, Z.G.; Jiao, J.G.; Zhang, H.J.; Li, H.X.; Hu, F.; Xu, L. Arabidopsis thaliana YUC1 reduced fluoranthene accumulation by modulating IAA content and antioxidant enzyme activities. Ecotoxicol. Environ. Saf. 2024, 284, 116992. [Google Scholar] [CrossRef]
- Jaafry, S.W.H.; Li, D.Z.; Chen, H.J.; Niu, X.L.; Li, B. Relative costs and benefits of clonal integration of Zoysia japonica under various N:P ratios. Nord. J. Bot. 2018, 36, e01795. [Google Scholar] [CrossRef]
- Liu, J.S.; Chen, C.; Pan, Y.; Zhang, Y.; Gao, Y. The intensity of simulated grazing modifies costs and benefits of physiological integration in a rhizomatous clonal plant. Int. J. Environ. Res. Public Health 2020, 17, 2724. [Google Scholar] [CrossRef]
- Sun, H.; Zheng, C.C.; Chen, T.P.; Postma, J.A.; Gao, Y.Z. Motherly care: How Leymus chinensis ramets support their offspring exposed to saline-alkali and clipping stresses. Sci. Total Environ. 2021, 801, 149675. [Google Scholar] [CrossRef]
- You, W.H.; Li, N.N.; Zhang, J.; Song, A.; Du, D.L. The Plant invader Alternanthera philoxeroides benefits from clonal integration more than its native co-genus in response to patch contrast. Plants 2023, 12, 2371. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.P.; Wei, G.W.; Luo, F.L.; Li, C.Y.; Dong, B.C.; Ji, J.S.; Yu, F.H. Effects of salinity and clonal integration on the amphibious plant Paspalum paspaloides: Growth, photosynthesis and tissue ion regulation. J. Plant Ecol. 2017, 12, 45–55. [Google Scholar] [CrossRef]
- Wang, Y.J.; Shi, X.P.; Wu, X.J.; Meng, X.F.; Wang, P.C.; Zhou, Z.X.; Luo, F.L.; Yu, F.H. Effects of patch contrast and arrangement on benefits of clonal integration in a rhizomatous clonal plant. Sci. Rep. 2016, 6, 35459. [Google Scholar] [CrossRef] [PubMed]
- Sterckeman, T.; Homine, S. Mechanisms of cadmium accumulation in plants. Crit. Rev. Plant Sci. 2020, 39, 322–359. [Google Scholar] [CrossRef]
- Ali, M.; Song, X.; Ding, D.; Wang, Q.; Zhang, Z.X.; Tang, Z.W. Bioremediation of PAHs and heavy metals co-contaminated soils: Challenges and enhancement strategies. Environ. Pollut. 2022, 295, 118686. [Google Scholar] [CrossRef]
SPAD | PN | Cond | Ci | Tr | WUE | ||
---|---|---|---|---|---|---|---|
D | F | 65.19 | 6.93 | 65.33 | 25.18 | 11.45 | 11.85 |
P | ** | ** | ** | ** | ** | ** | |
C | F | 85.85 | 134.36 | 335.35 | 2.47 | 12.06 | 37.11 |
P | ** | ** | ** | ns | ** | ** | |
T | F | 7683.34 | 14,670.59 | 17,876.17 | 2300.72 | 9578.60 | 2862.22 |
P | ** | ** | ** | ** | ** | ** | |
D × C | F | 7.17 | 5.51 | 247.05 | 5.20 | 5.53 | 3.67 |
P | ** | ** | ** | ** | ** | ** | |
D × T | F | 90.56 | 132.00 | 128.96 | 61.00 | 58.65 | 39.30 |
P | ** | ** | ** | ** | ** | ** | |
C × T | F | 462.32 | 712.08 | 1206.04 | 68.57 | 509.25 | 114.05 |
P | ** | ** | ** | ** | ** | ** | |
D × C × T | F | 18.64 | 30.68 | 94.73 | 8.70 | 15.21 | 6.36 |
P | ** | ** | ** | ** | ** | ** |
pH | Organic Matter Content (g·kg−1) | Available Nitrogen (mg·kg−1) | Available Phosphorus (mg·kg−1) | Available Potassium (mg·kg−1) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
7.18 | 17.60 | 118 | 66.5 | 206 | ||||||
Ni (mg·kg−1) | Cu (mg·kg−1) | Pb (mg·kg−1) | Zn (mg·kg−1) | Mn (mg·kg−1) | Cd (mg·kg−1) | Cr (mg·kg−1) | ||||
0.02 | 2.9 | 7.9 | 16.1 | 3.2 | 0.04 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Liu, Y.; Li, X.; Chen, Z.; Zhang, L.; Li, Y. Temporal Dynamics of Physiological Integration Intensity in Zoysia japonica Under Heterogeneous Stress of Cadmium or/and Phenanthrene. Plants 2025, 14, 1230. https://doi.org/10.3390/plants14081230
Xu S, Liu Y, Li X, Chen Z, Zhang L, Li Y. Temporal Dynamics of Physiological Integration Intensity in Zoysia japonica Under Heterogeneous Stress of Cadmium or/and Phenanthrene. Plants. 2025; 14(8):1230. https://doi.org/10.3390/plants14081230
Chicago/Turabian StyleXu, Sunan, Yichen Liu, Xuemei Li, Zhonglin Chen, Lihong Zhang, and Yue Li. 2025. "Temporal Dynamics of Physiological Integration Intensity in Zoysia japonica Under Heterogeneous Stress of Cadmium or/and Phenanthrene" Plants 14, no. 8: 1230. https://doi.org/10.3390/plants14081230
APA StyleXu, S., Liu, Y., Li, X., Chen, Z., Zhang, L., & Li, Y. (2025). Temporal Dynamics of Physiological Integration Intensity in Zoysia japonica Under Heterogeneous Stress of Cadmium or/and Phenanthrene. Plants, 14(8), 1230. https://doi.org/10.3390/plants14081230