Cytological Studies of 25 Species and Four Varieties of Artemisia (Asteraceae) from China, Toward a Better Understanding of the Variation Patterns of Chromosomes in the Genus
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Artemisia anomala S. Moore
3.2. A. baimaensis Y.R. Ling & Z.C. Chuo
3.3. A. campbellii Hook. f. & Thoms.
3.4. A. divaricata (Pamp.) Pamp.
3.5. A. fulgens var. meiguensis (Y.R. Ling) X.Q. Guo, L. Wang & Q.E. Yang
3.6. A. gmelinii Web. ex Stechm.
3.7. A. incisa Pamp.
3.8. A. igniaria Maxim.
3.9. A. imponens Pamp.
3.10. A. jilongensis Y.R. Ling & Humphries
3.11. A. lactiflora Wall. ex DC.
3.12. A. lactiflora var. taibaishanensis X.D. Cui
3.13. A. minor Jacq. ex Bess.
3.14. A. moorcroftiana Wall. ex DC.
3.15. A. phaeolepis Krasch.
3.16. A. princeps Pamp.
3.17. A. qinlingensis Ling & Y.R. Ling
3.18. A. sacrorum Ledeb.
3.19. A. tainingensis Hand.-Mazz.
3.20. A. verbenacea (Komar.) Kitag.
3.21. A. verlotiorum Lamotte
3.22. A. vulgaris L.
3.23. A. vulgaris var. xizangensis Ling & Y.R. Ling
3.24. A. waltonii var. yushuensis Y.R. Ling
3.25. A. wellbyi Hemsl. & Pears. ex Deasy
3.26. A. zayuensis Ling & Y.R. Ling
3.27. A. younghusbandii J.R. Drumm. ex Pamp.
3.28. A. youngii Y.R. Ling
3.29. A. yunnanensis J.F. Jeffrey ex Diels
Taxon | 2n | Karyotype Formula | TKL (μm) | A1 | A2 | ST | Figure |
---|---|---|---|---|---|---|---|
A. anomala S. Moore | 18 | 2n = 16m + 2sm | 63.06 | 0.26 | 0.14 | 2A | 1A, S1A |
A. anomala S. Moore | 18 | 2n = 14m + 2sm + 2st | 60.27 | 0.32 | 0.15 | 2A | 1B, S1B |
A. anomala S. Moore | 18 | 1C | |||||
A. baimaensis Y.R. Ling & Z.C. Chuo | 36 | 2n = 28m + 8sm | 110.74 | 0.30 | 0.13 | 2A | 1D, S1C |
A. campbellii Hook. f. & Thoms. | 36 | 2n = 28m + 8st | 102.81 | 0.33 | 0.09 | 2A | 1E, S1D |
A. divaricata (Pamp.) Pamp. | 18 | 2n = 14m + 4st | 61.50 | 0.35 | 0.12 | 2A | 1F, S1E |
A. divaricata (Pamp.) Pamp. | 18 | 2n = 14m + 4st | 61.70 | 0.29 | 0.12 | 2A | 1G, S1F |
A. divaricata (Pamp.) Pamp. | 18 | 1H | |||||
A. fulgens var. meiguensis (Y.R. Ling) X.Q. Guo, L. Wang & Q.E. Yang | 18 | 2n = 14m + 4sm | 62.55 | 0.27 | 0.12 | 2A | 1I, S1G |
A. gmelinii Web. ex Stechm. | 18 | 1J | |||||
A. incisa Pamp. | 36 | 2n = 28m + 4sm + 4st | 116.14 | 0.33 | 0.12 | 2A | 1K, S1H |
A. igniaria Maxim. | 34 | 2n = 30m + 4sm | 102.16 | 0.23 | 0.15 | 2A | 1L, S1I |
A. imponens Pamp. | 36 | 2n = 32m + 4sm | 118.05 | 0.27 | 0.11 | 2A | 1M, S2A |
A. imponens Pamp. | 36 | 2n = 28m + 8st | 112.46 | 0.34 | 0.09 | 2A | 1N, S2B |
A. imponens Pamp. | 36 | 2n = 28m + 8sm | 105.74 | 0.33 | 0.14 | 2A | 1O, S2C |
A. jilongensis Y. R. Ling & Humphries | 36 | 1P | |||||
A. lactiflora Wall. ex DC. | 18 | 2n = 14m + 4sm | 67.56 | 0.29 | 0.16 | 2A | 2A, S2D |
A. lactiflora Wall. ex DC. | 18 | 2n = 14m + 4sm | 59.35 | 0.35 | 0.16 | 2A | 2B, S2E |
A. lactiflora Wall. ex DC. | 36 | 2C | |||||
A. lactiflora var. taibaishanensis X.D. Cui | 36 | 2n = 28m + 8st | 97.57 | 0.32 | 0.14 | 2A | 2D, S2F |
A. lactiflora var. taibaishanensis X.D. Cui | 36 | 2n = 32m + 4sm | 107.94 | 0.24 | 0.11 | 2A | 2E, S3A |
A. minor Jacq. ex Bess. | 18 | 2n = 14m + 4sm | 63.72 | 0.26 | 0.11 | 2A | 2F, S3B |
A. moorcroftiana Wall. ex DC. | 36 | 2n = 28m + 8sm | 98.30 | 0.33 | 0.13 | 2A | 2G, S3C |
A. moorcroftiana Wall. ex DC. | 36 | 2n = 28m + 8sm | 101.14 | 0.31 | 0.14 | 2A | 2H, S3D |
A. moorcroftiana Wall. ex DC. | 36 | 2I | |||||
A. moorcroftiana Wall. ex DC. | 36 | 2J | |||||
A. phaeolepis Krasch | 36 | 2n = 28m + 8sm | 132.9 | 0.20 | 0.15 | 2B | 2K, S3E |
A. phaeolepis Krasch | 18 | 2n = 12m + 6sm | 66.43 | 0.30 | 0.13 | 2A | 2L, S3F |
A. princeps Pamp. | 32 | 2n = 28m + 4st | 80.26 | 0.30 | 0.16 | 2A | 2M, S3G |
A. qinlingensis Ling & Y.R. Ling | 18 | 2n = 14m + 4st | 52.50 | 0.34 | 0.17 | 2A | 2N, S3H |
A. qinlingensis Ling & Y.R. Ling | 18 | 2n = 12m + 6sm | 67.54 | 0.35 | 0.10 | 2A | 2O, S4A |
A. qinlingensis Ling & Y.R. Ling | 18 | 2P | |||||
A. sacrorum Ledeb. | 18 | 2n = 14m + 4sm | 68.04 | 0.26 | 0.08 | 2A | 3A, S4B |
A. tainingensis Hand.-Mazz. | 36 | 3B | |||||
A. tainingensis Hand.-Mazz. | 36 | 2n = 28m + 4sm + 4st | 84.77 | 0.30 | 0.13 | 2A | 3C, S4C |
A. tainingensis Hand.-Mazz. | 36 | 2n = 28m + 8st | 94.25 | 0.32 | 0.14 | 2A | 3D, S4D |
A. tainingensis Hand.-Mazz. | 36 | 3E | |||||
A. verbenacea (Komar.) Kitag. | 16 | 2n = 14m + 2sm | 59.34 | 0.28 | 0.20 | 2A | 3F, S4E |
A. verbenacea (Komar.) Kitag. | 16 | 2n = 14m + 2st | 65.88 | 0.24 | 0.18 | 2A | 3G, S4F |
A. verbenacea (Komar.) Kitag. | 16 | 2n = 14m + 2st | 69.89 | 0.26 | 0.14 | 2A | 3H, S4G |
A. verlotiorum Lamotte | 50 | 2n = 40m + 10st | 133.18 | 0.25 | 0.19 | 2A | 3I, S4H |
A. verlotiorum Lamotte | 50 | 3J | |||||
A. verlotiorum Lamotte | 50 | 3K | |||||
A. verlotiorum Lamotte | 50 | 3L | |||||
A. vulgaris L. | 16 | 2n = 14m + 2st | 71.00 | 0.23 | 0.12 | 2A | 3M, S5A |
A. vulgaris var. xizangensis Ling & Y.R. Ling | 36 | 2n = 28m + 4sm + 4st | 97.07 | 0.30 | 0.14 | 2A | 3N, S5B |
A. waltonii var. yushuensis Y. R. Ling | 36 | 2n = 28m + 8sm | 110.62 | 0.29 | 0.10 | 2A | 3O, S5C |
A. waltonii var. yushuensis Y. R. Ling | 36 | 3P | |||||
A. waltonii var. yushuensis Y. R. Ling | 36 | 4A, | |||||
A. wellbyi Hemsl. & Pears. ex Deasy | 18 | 2n = 14m + 2sm + 2st | 66.74 | 0.28 | 0.11 | 2A | 4B, S5D |
A. zayuensis Ling & Y. R. Ling | 18 | 2n = 12m + 6sm | 64.25 | 0.29 | 0.16 | 2A | 4C, S5E |
A. younghusbandii J. R. Drumm. ex Pamp. | 18 | 2n = 14m + 4sm | 61.14 | 0.29 | 0.14 | 2A | 4D, S5F |
A. youngii Y. R. Ling | 18 | 4E | |||||
A. youngii Y. R. Ling | 18 | 2n = 12m + 6sm | 68.68 | 0.32 | 0.13 | 2A | 4F, S5G |
A. youngii Y. R. Ling | 18 | 4G, | |||||
A. yunnanensis J.F. Jeffrey ex Diels | 32 | 2n = 24m + 4sm + 4st | 73.19 | 0.30 | 0.19 | 2B | 4H, S5H |
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
QTP | Qinghai–Tibetan Plateau |
m | median-centromeric chromosome |
sm | submedian-centromeric chromosome |
st | subterminal-centromeric chromosome |
References
- Shultz, L.M. Artemisia . In Flora of North America North of Mexico; Flora of North America Editorial Committee, Ed.; Oxford University Press: New York, NY, USA, 2006; Volume 19, pp. 503–534. [Google Scholar]
- Pellicer, J.; Garnatje, T.; Korobkov, A.A.; Garnatje, T. Phylogenetic relationships of subgenus Dracunculus (genus Artemisia, Asteraceae) based on ribosomal and chloroplast DNA sequences. Taxon 2011, 60, 691–704. [Google Scholar] [CrossRef]
- Ling, Y.R.; Humphries, C.J.; Gilbert, M.G. Artemisia L. In Flora of China; Wu, Z.Y., Raven, P.H., Hong, D.Y., Eds.; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MO, USA, 2011; Volume 20–21, pp. 676–737. [Google Scholar]
- Pellicer, J.; HarisSaslis-Lagoudakisb, C.; Carrió, E.; Ernst, M.; Garnatje, T.; Grace, O.M.; Gras, A.; Mumbrú, M.; Vallès, J.; Vitales, D.; et al. A phylogenetic road map to antimalarial Artemisia species. J. Ethnopharmacol. 2018, 225, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y.Y. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat. Med. 2011, 17, 1217–1220. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.J.; Guo, T.; Xue, G.M.; Ma, R.; Wang, Y.F.; Chen, Z.S. Artemisia argyi H. Lév. & Vaniot: A comprehensive review on traditional uses, phytochemistry, and pharmacological activities. Phytochem. Rev. 2024, 23, 821–862. [Google Scholar]
- Jiao, B.H.; Chen, C.; Wei, M.; Niu, G.H.; Zheng, J.Y.; Zhang, G.J.; Shen, J.H.; Vitales, D.; Vallès, J.; Verloove, F.; et al. Phylogenomics and morphological evolution of the mega-diverse genus Artemisia (Asteraceae: Anthemideae): Implications for its circumscription and infrageneric taxonomy. Ann. Bot. 2023, 131, 867–883. [Google Scholar] [CrossRef]
- Malik, S.; Vitales, D.; Hayatet, M.Q.; Korobkov, A.A.; Garnatje, T.; Vallès, J. Phylogeny and biogeography of Artemisia subgenus Seriphidium (Asteraceae: Anthemideae). Taxon 2017, 66, 934–952. [Google Scholar] [CrossRef]
- Guo, X.Q.; Wang, L.; Yang, Q.E. Clarification of morphological characters and geographical distribution of Artemisia neosinensis (Asteraceae, Anthemideae), a strikingly misunderstood species from China. Phytotaxa 2022, 544, 11–36. [Google Scholar] [CrossRef]
- Guo, X.Q.; Wang, L.; Yang, Q.E. The identity of Artemisia brevis (Asteraceae, Anthemideae) from Xinjiang, China. Phytotaxa 2022, 543, 73–81. [Google Scholar] [CrossRef]
- Guo, X.Q.; Wang, L.; Yang, Q.E. Clarification of some morphological characters in Artemisia anomala (Asteraceae, Anthemideae), with reduction of var. tomentella and var. acuminatissima to the synonymy of the species. Phytotaxa 2021, 520, 57–74. [Google Scholar]
- Guo, X.Q.; Wang, L.; Yang, Q.E. Artemisia flaccida (Asteraceae, Anthemideae) is merged with A. fulgens, with transfer of A. flaccida var. meiguensis to A. fulgens. Phytotaxa 2021, 514, 221–237. [Google Scholar] [CrossRef]
- Stebbins, G.L. Chromosomal Evolution in Higher Plants; Edward Arnold: London, UK, 1971; 216p. [Google Scholar]
- Stuessy, T.F.; Crawford, D.J.; Soltis, D.E.; Soltis, P.S. Plant Sytematics; Koeltz Scientific Books: Königstein, Germany, 2014; 425p. [Google Scholar]
- Vallès, J.; McArthur, E.D. Artemisia systematics and phylogeny: Cytogenetic and molecular in sights. In Proceddings of Shrubland Ecosystem, Genetics and Biodiversity; US Department of Agriculture Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2001; pp. 67–74. [Google Scholar]
- Vallès, J.; Garnatje, T.; Garcia, S.; Sanz, M.; Korobkov, A.A. Chromosome numbers in the tribes Anthemideae and Inuleae (Asteraceae). Bot. J. Linn. Soc. 2005, 148, 77–85. [Google Scholar] [CrossRef]
- Garcia, S.; Garnatje, T.; Twibell, J.D.; Vallès, J. Genome size variation in the Artemisia arborescens complex (Asteraceae, Anthemideae) and cultivars. Genome 2006, 49, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Korobkov, A.A.; Kotseruba, V.V.; Chepinoga, V.V. IAPT/IOPB chromosome data 17. Taxon 2014, 63, 1148–1155. [Google Scholar]
- Korobkov, A.A.; Kotseruba, V.V.; Probatova, N.S. Chromosome numbers for 12 species of Artemisia (Asteraceae) from the Altai region, West Siberia, Russia. Bot. Pac. 2018, 7, 101–106. [Google Scholar] [CrossRef]
- Korobkov, A.A.; Kotseruba, V.V.; Krivenko, D.A. IAPT/IOPB chromosome data 26. Taxon 2017, 66, 1487–1499. [Google Scholar]
- Pellicer, J.; Garcia, S.; Garnatje, T.; Dariimaa, S.; Korobkov, A.A.; Vallès, J. Chromosome numbers in some Artemisia (Asteraceae, Anthemideae) species and genome size variation in its subgenus Dracunculus: Karyological, systematic and phylogenetic implications. Chrom. Bot. 2007, 2, 45–53. [Google Scholar] [CrossRef]
- Pellicer, J.; Garcia, S.; Garnatje, T.; Hidalgo, O.; Korobkov, A.A.; Dariimaa, S.; Vallès, J. Chromosome counts in Asian Artemisia L. (Asteraceae) species: From diploids to the first report of the highest polyploidy in the genus. Bot. J. Linn. Soc. 2007, 153, 301–310. [Google Scholar] [CrossRef]
- Pellicer, J.; Garcia, S.; Canela, M.A.; Garnatje, T.; Korobkov, A.A.; Twibell, J.D.; Vallès, J. Genome size dynamics in Artemisia L. (Asteraceae): Following the track of polyploidy. Plant Biol. 2010, 12, 820–830. [Google Scholar] [CrossRef]
- Suzuka, O. Chromosome numbers in the genus Artemisia. Jpn. J. Genet. 1950, 25, 17–18. [Google Scholar]
- Park, M.S.; Jang, J.; Chung, G.Y. A taxonomic study of Korean Artemisia L. using somatic chromosome numbers. Korean J. Plant Taxon. 2009, 39, 247–253. [Google Scholar] [CrossRef]
- Hoshi, Y.; Kondo, K.; Tatarenko, I.V.; Kulikov, P.V.; Verkholat, V.P.; Gontcharov, A.; Ogura, H.; Funamoto, T.; Kokubugata, G.; Suzuki, R.; et al. Chromosome numbers of eleven species of Artemisia (Asteraceae) in Vladivostok, Russia. Chrom. Sci. 2004, 8, 145–146. [Google Scholar]
- Matoba, H.; Nagano, K.; Hoshi, Y. The tendency of chromosomal evolution in some Japanese Artemisia using numerical analysis of karyotypes. Cytologia 2007, 72, 181–188. [Google Scholar] [CrossRef]
- Zhen, L.; Chen, S.M.; Chen, F.D.; Fang, W.M.; Li, J.; Wang, H.B. Karyotype and meiotic analysis of five species in the genus Artemisia. Caryologia 2010, 63, 382–390. [Google Scholar] [CrossRef]
- Mehra, P.N.; Remanandan, P. Cytological investigations on the Indian Compositae. II. Astereae, Heliantheae, Helenieae and Anthemideae. Caryologia 1974, 27, 255–284. [Google Scholar] [CrossRef]
- Xiong, X.; Ling, Y.R.; Jiang, L. Studies on the chromosome numbers and karyotype of six species of Artemisia (Compositae). J. Trop. Subtrop. Bot. 1995, 3, 23–29. [Google Scholar]
- Martinoli, G.; Ogliotti, P. Ricerche citotassonomiche in Artemisia vulgaris L. ed Artemisia verlotorum Lamotte. Nuovo Giorn. Bot. Ital. 1970, 104, 373–387. [Google Scholar] [CrossRef]
- James, C.M.; Wurzell, B.S.; Stace, C.A. A new hybrid between a European and a Chinese species of Artemisia (Asteraceae). Watsonia 2000, 23, 139–147. [Google Scholar]
- Rotreklova, O.; Bure, P.; Grulich, V. Chromosome numbers for some species of vascular plants from Europe. Biologia 2004, 59, 425–433. [Google Scholar]
- Wen, J.; Zhang, J.Q.; Nie, Z.L.; Zhong, Y.; Sun, H. Evolutionary diversifications of plants on the Qinghai-Tibetan Plateau. Front. Genet. 2014, 5, 4. [Google Scholar] [CrossRef]
- Wu, Z.Y. Hengduan Mountain flora and her significance. J. Jpn. Bot. 1988, 63, 297–311. [Google Scholar]
- Li, X.W.; Li, J. A preliminary floristic study on the seed plants from the region of Hengduan Mountains. Acta Bot. Yunnan. 1993, 15, 217–231. [Google Scholar]
- Liu, J.Q.; Chen, Z.D.; Lu, A.M. The phylogenetic relationships of an endemic genus Sinadoxa in the Qinghai-Xizang Plateau: Evidence from ITS sequence analysis. Acta Bot. Sin. 2000, 42, 656–658. [Google Scholar]
- Mayrose, I.; Zhan, S.H.; Rothfels, C.J.; Magnuson-Ford, K.; Barker, M.S.; Rieseberg, L.H.; Otto, S.P. Recently formed polyploidy plants diversify at lower rates. Science 2011, 333, 1257. [Google Scholar] [CrossRef]
- Löve, A.; Löve, D. Polyploidy and altitude: Mt. Washington. Biol. Zent. 1967, 86, 307–312. [Google Scholar]
- Brochmann, C.; Brysting, A.K.; Alsos, I.G.; Borgen, L.; Grundt, H.H.; Scheen, A.C.; Elven, R. Polyploidy in arctic plants. Biol. J. Linn. Soc. 2004, 82, 521–536. [Google Scholar] [CrossRef]
- Nie, Z.L.; Wen, J.; Gu, Z.J.; Boufford, D.E.; Sun, H. Polyploidy in the flora of the Hengduan Mountains hotspot, southwestern China. Ann. Mo. Bot. Gard. 2005, 92, 75–306. [Google Scholar]
- Yuan, Q.; Yang, Q.E. Low incidence of polyploids and high uniformity of karyotypes displayed by Delphinium (Ranunculaceae) in the Hengduan Mountains region of south-west China. Bot. J. Linn. Soc. 2008, 158, 172–188. [Google Scholar] [CrossRef]
- Yuan, Q.; Yang, Q.E. Polyploidy in Aconitum subgenus Lycoctonum (Ranunculaceae). Bot. J. Linn. Soc. 2006, 150, 343–353. [Google Scholar] [CrossRef]
- Chen, G.; Sun, W.B.; Sun, H. Ploidy variation in Buddleja L. (Buddlejaceae) in the Sino-Himalayan region and its biogeographical implications. Bot. J. Linn. Soc. 2007, 154, 305–312. [Google Scholar] [CrossRef]
- Liu, J.Q.; Liu, S.W.; Ho, T.N.; Lu, A.M. Karyological studies on the Sino-Himalayan genus, Cremanthodium (Asteraceae: Senecioneae). Bot. J. Linn. Soc. 2001, 135, 107–112. [Google Scholar] [CrossRef]
- Liu, J.Q.; Wang, Y.J.; Wang, A.L.; Ohba, H.; Abbott, R.J. Radiation and diversification within the Ligularia–Cremanthodium–Parasenecio complex (Asteraceae) triggered by uplift of the Qinghai-Tibetan Plateau. Mol. Phylogenet. Evol. 2006, 38, 31–49. [Google Scholar] [CrossRef]
- Levan, A.; Fredga, K.; Sandberg, A.A. Nomenclature for centromeric position of chromosomes. Hereditas 1964, 52, 201–220. [Google Scholar] [CrossRef]
- Romero-Zarco, C. A new method for estimating karyotype asymmetry. Taxon 1986, 35, 526–530. [Google Scholar] [CrossRef]
- Suzuka, O. Chromosome numbers in Artemisia L. Rep. Kihara Inst. Biol. Res. 1952, 5, 68–77. [Google Scholar]
- Wang, C.; Lu, F.; Guan, Y.; Zhang, G.Y. Study on karyotypes of Artemisia sect. Artemisia Y. R. Ling in northeast China. Bull. Bot. Res. 2001, 21, 215–221. [Google Scholar]
- Kaul, M.K.; Bakshi, S.K. Studies on the genus Artemisia L. in north-west Himalaya with particular reference to Kashmir. Folia Geobot. Phytotaxon. 1984, 19, 299–316. [Google Scholar] [CrossRef]
- Gu, Z.J.; Wang, L.; Sun, H.; Wu, S.G. A cytological study of some plants from Qinghai-Xizang Plateau. Acta Bot. Yunnan. 1993, 15, 377–384. [Google Scholar]
- Bhat, B.K.; Bakshi, S.K.; Kaul, M.K. IOPB chromosome number reports XLVI. Taxon 1974, 25, 809. [Google Scholar]
- Korobkov, A.A.; Kotseruba, V.V.; Probatova, N.S.; Rudyka, E.G.; Gnutikov, A.A. IAPT/IOPB chromosome data 14. Taxon 2012, 61, 1336–1345. [Google Scholar]
- Korobkov, A.A.; Kotseruba, V.V.; Probatova, N.S.; Shatokhina, A.V. IAPT/IOPB chromosome data 18. Taxon 2014, 63, 1387–1393. [Google Scholar]
- Mendelak, M.; Schweizer, D. Giemsa C-band karyotypes of some diploid Artemisia species. Plant Syst. Evol. 1986, 152, 195–210. [Google Scholar] [CrossRef]
- Arano, H. Cytological studies on subfam. Carduoideae of Japanese Compositae (VI). Karyotype analysis in the genus Artemisia. Bot. Mag. Tokyo 1962, 75, 356–367. [Google Scholar] [CrossRef]
- Matoba, H.; Uchiyama, H. Physical mapping of 5S rDNA, 18S Rdna and telomere sequences in three species of the genus Artemisia (Asteraceae) with distinct basic chromosome numbers. Cytologia 2009, 74, 115–123. [Google Scholar] [CrossRef]
- Hoshi, Y.; Kondo, K.; Korobkov, A.A.; Tatarenko, I.V.; Kulikov, P.V.; Verkholat, V.P.; Gontcharov, A.; Ogura, H.; Funamoto, T.; Kokubugata, G.; et al. Cytological study in the genus Artemisia L. (Asteraceae) from Russia. Chrom. Sci. 2003, 7, 83–89. [Google Scholar]
- Probatova, N.S.; Korobkov, A.A.; Gnutikov, A.A.; Rudyka, E.G.; Kotseruba, V.V.; Seledets, V.P. IAPT/IOPB chromosome data 10. Taxon 2010, 59, 1935–1937. [Google Scholar]
- Korobkov, A.A.; Kotseruba, V.V.; Probatova, N.S.; Gnutikov, A.A. IAPT/IOPB chromosome data 13. Taxon 2012, 61, 889–902. [Google Scholar]
- Krivenko, D.A.; Kotseruba, V.V.; Kazanovsky, S.G.; Verkhozina, A.V.; Chernova, O.D. IAPT/IOPB chromosome data 16. Taxon 2013, 62, 1356–1361. [Google Scholar]
- Korobkov, A.A.; Kotseruba, V.V.; Probatova, N.S. Chromosome numbers of some species of Artemisia L. from Altai region, South Siberia. Bot. Pac. 2014, 3, 61–66. [Google Scholar] [CrossRef]
- Kawatani, T.; Ohno, T. Chromosome numbers in Artemisia. Bull. Natl. Inst. Hyg. Sci. 1964, 82, 183–193. [Google Scholar]
- Vallès, J.; Siljak-Yakovlev, S. Cytogenetic studies in the genus Artemisia L.: Fluorochrome banded karyotypes of five taxa, including the Iberian endemic species Artemisia barrelieri Bess. Can. J. Bot. 1997, 75, 595–606. [Google Scholar]
- Naseri, H.R.; Azarnivand, H.; Jafari, M. Chromosomal evolution in some Iranian Artemisia L. using numerical analysis of karyotypes. Cytologia 2009, 74, 55–64. [Google Scholar] [CrossRef]
- Dolatyari, A.; Vallès, J.; Naghavi, M.R.; Fazeli, S.A.S. Karyological data of 47 accessions of 28 Artemisia (Asteraceae, Anthemideae) species from Iran, with first new reports for Iranian populations and first absolute counts in three species. Plant Syst. Evol. 2013, 299, 1503–1518. [Google Scholar] [CrossRef]
- Sokolovskaia, A.P. Geografičeskoje raspredelenije poliploidnych vidov rastenij. Issledevanije flory ostrova Sachalina. Vestn. Leningr. Univ. Ser. Biol. 1960, 21, 42–48. [Google Scholar]
- Kreitschitz, A.; Vallès, J. New or rare data on chromosome numbers in several taxa of the genus Artemisia (Asteraceae) in Poland. Folia Geobot. 2003, 38, 333–343. [Google Scholar] [CrossRef]
- Guo, X.Q.; Wang, L.; Yang, Q.E. Artemisia taibaishanensis (Asteraceae, Anthemideae), a new synonym of A. qinlingensis from China. Phytotaxa 2021, 487, 125–138. [Google Scholar] [CrossRef]
- Luo, D.; Liu, D.; Xu, B.; Nie, Z.L.; Sun, H.; Li, Z.M. A karyological study of six species of Silene L. (Caryophyllaceae) from the Hengduan Mountains, SW China. Caryologia 2011, 64, 10–13. [Google Scholar] [CrossRef]
- Meng, Y.; Nie, Z.L.; Sun, H.; Yang, Y.P. Chromosome numbers and polyploidy in Leontopodium (Asteraceae: Gnaphalieae) from the Qinghai-Tibet Plateau of SW China. Caryologia 2012, 65, 87–93. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; Jiang, Y.; Zeng, X.; Tan, F.; Xue, D.; Wu, Y. Cytological Studies of 25 Species and Four Varieties of Artemisia (Asteraceae) from China, Toward a Better Understanding of the Variation Patterns of Chromosomes in the Genus. Plants 2025, 14, 1253. https://doi.org/10.3390/plants14081253
Guo X, Jiang Y, Zeng X, Tan F, Xue D, Wu Y. Cytological Studies of 25 Species and Four Varieties of Artemisia (Asteraceae) from China, Toward a Better Understanding of the Variation Patterns of Chromosomes in the Genus. Plants. 2025; 14(8):1253. https://doi.org/10.3390/plants14081253
Chicago/Turabian StyleGuo, Xinqiang, Yiran Jiang, Xianxiang Zeng, Fuhui Tan, Dawei Xue, and Yuhuan Wu. 2025. "Cytological Studies of 25 Species and Four Varieties of Artemisia (Asteraceae) from China, Toward a Better Understanding of the Variation Patterns of Chromosomes in the Genus" Plants 14, no. 8: 1253. https://doi.org/10.3390/plants14081253
APA StyleGuo, X., Jiang, Y., Zeng, X., Tan, F., Xue, D., & Wu, Y. (2025). Cytological Studies of 25 Species and Four Varieties of Artemisia (Asteraceae) from China, Toward a Better Understanding of the Variation Patterns of Chromosomes in the Genus. Plants, 14(8), 1253. https://doi.org/10.3390/plants14081253