Photosynthetic Characterization of Oil Palm (Elaeis guineensis Jacq.) Seedlings During Late In Vitro Development and Acclimatization
Abstract
:1. Introduction
2. Results
2.1. Gas Exchange
2.2. Light and CO2 Response Curve Analyses
2.3. Chlorophyll Fluorescence
2.4. Comparison Between In Vitro- and Seed-Derived Seedlings in the Nursery Stage
3. Discussion
4. Materials and Methods
4.1. Location
4.2. Plant Material
4.3. Gas Exchange Measurements
4.4. Light and CO2 Curves
- Amax is the maximum photosynthetic rate;
- K is the saturation constant for light (equal to ½ PPFD);
- Rd is the dark respiration rate.
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nugroho, Y.A.; Sumertajaya, I.M.; Wiendi, N.M.A.; Toruan-Mathius, N. Estimation of genetic parameters for in vitro culture traits and selection best progenies for tenera oil palm tissue culture. Energy Procedia 2014, 47, 316–322. [Google Scholar] [CrossRef]
- Corrêa, T.R.; Motoike, S.Y.; Coser, S.M.; da Silveira, G.; de Resende, M.D.V.; Chia, G.S. Estimation of genetic parameters for in vitro oil palm characteristics (Elaeis guineensis Jacq.) and selection of genotypes for cloning capacity and oil yield. Ind. Crops Prod. 2015, 77, 1033–1038. [Google Scholar] [CrossRef]
- Soh, A.C.; Wong, G.; Tan, C.C.; Chew, P.S.; Chong, S.; Ho, Y.W.; Wong, C.K.; Choo, C.N. Commercial-scale propagation and planting of elite oil palm clones: Research and development towards realization. J. Oil Palm Res. 2011, 23, 936–952. [Google Scholar]
- Ruffoni, B.; Savona, M. Physiological and biochemical analysis of growth abnormalities associated with plant tissue culture. Hortic. Environ. Biotechnol. 2013, 54, 191–205. [Google Scholar] [CrossRef]
- Chandra, S.; Bandopadhyay, R. Acclimatization of tissue cultured plantlets: From laboratory to land. Biotechnol. Lett. 2010, 32, 1199–1205. [Google Scholar] [CrossRef] [PubMed]
- Kiferle, C.; Lucchesini, M.; Maggini, R.; Pardossi, A.; Mensuali-Sodi, A. In vitro culture of sweet basil: Gas exchanges, growth, and rosmarinic acid production. Biol. Plant. 2014, 58, 601–610. [Google Scholar] [CrossRef]
- Kozai, T. Photoautotrophic micropropagation—Environmental control for promoting photosynthesis. Propag. Ornam. Plants 2010, 10, 188–204. [Google Scholar]
- Martins, J.P.R.; Verdoodt, V.; Pasqual, M.; De Proft, M. Impacts of photoautotrophic and photomixotrophic conditions on in vitro propagated Billbergia zebrina (Bromeliaceae). Plant Cell Tiss. Org. Cult. 2015, 123, 121–132. [Google Scholar] [CrossRef]
- Chaari-Rkhis, A.; Maalej, M.; Chelli-Chaabouni, A.; Fki, L.; Drira, N. Photosynthesis parameters during acclimatization of in vitro-grown olive plantlets. Photosynthetica 2015, 53, 613–616. [Google Scholar] [CrossRef]
- Seon, J.H.; Cui, Y.Y.; Kozai, T.; Paek, K.Y. Influence of in vitro growth conditions on photosynthetic competence and survival rate of Rehmannia glutinosa plantlets during acclimatization period. Plant Cell Tiss. Org. Cult. 2000, 61, 135–142. [Google Scholar] [CrossRef]
- Carvalho, L.C.; Leonor Osório, M.; Manuela Chaves, M.; Amâncio, S. Chlorophyll fluorescence as an indicator of photosynthetic functioning of in vitro grapevine and chestnut plantlets under ex vitro acclimatization. Plant Cell Tiss. Org. Cult. 2001, 67, 271–280. [Google Scholar] [CrossRef]
- Asmar, S.A.; Castro, E.M.; Pasqual, M.; Pereira, F.J.; Soares, J.D.R. Changes in leaf anatomy and photosynthesis of micropropagated banana plantlets under different silicon sources. Sci. Hort. 2013, 161, 328–332. [Google Scholar] [CrossRef]
- Bag, N.; Chandra, S.; Palni, L.M.S.; Nandi, S.K. Micropropagation of Dev-ringal [Thamnocalamus spathiflorus (Trin.) Munro]—A temperate bamboo, and comparison between in vitro propagated plants and seedlings. Plant Sci. 2000, 156, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Pospísilová, J.; Synková, H.; Haisel, D.; Semorádová, S. Acclimation of Plantlets to Ex Vitro Conditions: Effects of Air Humidity, Irradiance, CO2 Concentration and Abscisic Acid (a Review). Acta Hortic. 2007, 748, 29–38. [Google Scholar] [CrossRef]
- Hazarika, B.N. Acclimatization of tissue-cultures plants. Curr. Sci. 2003, 85, 1704–1712. [Google Scholar]
- Weckx, S.; Inzé, D.; Maene, L. Tissue culture of oil palm: Finding the balance between mass propagation and somaclonal variation. Front. Plant Sci. 2019, 10, 722. [Google Scholar] [CrossRef]
- Rival, A.; Beulé, T.; Lavergne, D.; Nato, A.; Havaux, M.; Puard, M. Development of photosynthetic characteristics in oil palm during in vitro micropropagation. J. Plant Physiol. 1997, 150, 520–527. [Google Scholar] [CrossRef]
- Sáez, P.L.; Bravo, L.A.; Sáez, K.L.; Sánchez-Olate, M.; Latsague, M.I.; Ríos, D.G. Photosynthetic and leaf anatomical characteristics of Castanea sativa: A comparison between in vitro and nursery plants. Biol. Plant. 2012, 56, 15–24. [Google Scholar] [CrossRef]
- Zanderluce, G.L.; Bezerra, K.M.G.; Scherwinski-pereira, J.E. Adaptability and leaf anatomical features in oil palm seedlings produced by embryo rescue and pre-germinated seeds. Braz. J. Plant Physiol. 2010, 22, 209–215. [Google Scholar] [CrossRef]
- Gadea, P.; Chinchilla, C.; Rodríguez, W. Oil palm compact clones: A preliminary study on some physiological and anatomical changes during acclimatization of ramets. ASD Oil Palm Pap. 2012, 37, 1–9. [Google Scholar]
- Tezara, W.; Martínez, D.; Rengifo, E.; Herrera, A. Photosynthetic responses of the tropical spiny shrub Lycium nodosum (Solanaceae) to drought, soil salinity and saline spray. Ann. Bot. 2003, 92, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Sima, B.D.; Desjardins, Y.; Van Quy, L. Sucrose enhances phosphoenolpyruvate carboxylase activity of in vitro Solanum tuberosum L. under non-limiting nitrogen conditions. In Vitr. Cell. Dev. Biol.-Plant 2001, 37, 480–489. [Google Scholar] [CrossRef]
- Ayub, R.A.; Dos Santos, J.N.; Zanlorensi, L.A.; Da Silva, D.M.; De Carvalho, T.C.; Grimaldi, F. Sucrose concentration and volume of liquid medium on the in vitro growth and development of blackberry cv. Tupy in temporary immersion systems. Cienc. E Agrotecnologia 2019, 43, e007219. [Google Scholar] [CrossRef]
- Pinheiro, M.V.M.; Ríos-Ríos, A.M.; da Cruz, A.C.F.; Rocha, D.I.; Orbes, M.Y.; Saldanha, C.W.; Batista, D.S.; de Carvalho, A.C.P.P.; Otoni, W.C. CO2 enrichment alters morphophysiology and improves growth and acclimatization in Etlingera Elatior (Jack) R.M. Smith micropropagated plants. Rev. Bras. Botanica 2021, 44, 799–809. [Google Scholar] [CrossRef]
- Nowakowska, K.; Pińkowska, A.; Siedlecka, E.; Pacholczak, A. The effect of cytokinins on shoot proliferation, biochemical changes and genetic stability of Rhododendron ‘Kazimierz Odnowiciel’ in the in vitro cultures. Plant Cell Tiss. Org. Cult. 2022, 149, 675–684. [Google Scholar] [CrossRef]
- Hdider, C.; Desjardins, Y. Changes in ribulose-1,5-bisphosphate carboxylase/oxygenase and phosphoenolpyruvate carboxylase activities and CO2 fixation during the rooting of strawberry shoots in vitro. Can. J. Plant Sci. 1994, 74, 827–831. [Google Scholar] [CrossRef]
- Estrada-Luna, A.A.; Davies, J.T.; Egilla, J.N. Physiological changes and growth of micropropagated chile ancho pepper plantlets during acclimatization and post-acclimatization. Plant Cell Tiss. Org. Cult. 2001, 66, 17–24. [Google Scholar] [CrossRef]
- Talavera, C.; Contreras, F.; Espadas, F.; Fuentes, G.; Santamaría, J.M. Cultivating in vitro coconut palms (Cocos nucifera) under glasshouse conditions with natural light, improves in vitro photosynthesis nursery survival and growth. Plant Cell Tiss. Org. Cult. 2005, 83, 287–292. [Google Scholar] [CrossRef]
- Aragón, C.E.; Escalona, M.; Capote, I.; Pina, D.; Cejas, I.; Rodriguez, R.; Jesus Cañal, M.; Sandoval, J.; Roels, S.; Debergh, P.; et al. Photosynthesis and carbon metabolism in plantain (Musa AAB) plantlets growing in temporary immersion bioreactors and during ex vitro acclimatization. In Vitr. Cell. Dev. Biol.-Plant 2005, 41, 550–554. [Google Scholar] [CrossRef]
- Yue, D.; Gosselin, A.; Desjardins, Y. Reexamination of the Photosynthetic Capacity of Invitro-Cultured Strawberry Plantlets. J. Am. Soc. Hort. Sci. 1993, 118, 419–424. [Google Scholar] [CrossRef]
- Pospíšilová, J.; Haisel, D.; Synková, H.; Baťková-Spoustová, P. Improvement of ex vitro transfer of tobacco plantlets by addition of abscisic acid to the last subculture. Biol. Plant. 2009, 53, 617–624. [Google Scholar] [CrossRef]
- Dias, G.M.d.G.; Soares, J.D.r.R.; Pasqual, M.; Silva, R.A.L.; Rodrigues, L.C.d.A.; Pereira, F.J.; de Castro, E.M. Photosynthesis and leaf Anatomy of Anthurium cv. Rubi plantlets cultured in vitro under different silicon (Si) concentrations. Aust. J. Crop Sci. 2014, 8, 1160–1167. [Google Scholar]
- Hazarika, B.N. Morpho-physiological disorders in in vitro culture of plants. Sci. Hortic. 2006, 108, 105–120. [Google Scholar] [CrossRef]
- Tisarum, R.; Samphumphung, T.; Theerawitaya, C.; Prommee, W.; Cha-um, S. In vitro photoautotrophic acclimatization, direct transplantation and ex vitro adaptation of rubber tree (Hevea brasiliensis). Plant Cell Tiss. Org. Cult. 2018, 133, 215–223. [Google Scholar] [CrossRef]
- Tezara, W.; Domínguez, T.S.T.; Loyaga, D.W.; Ortiz, R.N.; Chila, V.H.R.; Ortega, M.J.B. Photosynthetic activity of oil palm (Elaeis guineensis) and interspecific hybrid genotypes (Elaeis oleifera × Elaeis guineensis), and response of hybrids to water deficit. Sci. Hort. 2021, 287, 110263. [Google Scholar] [CrossRef]
- Cheah, S.S.; Teh, C.B.S. Parameterization of the Farquhar-von Caemmerer-Berry C3 photosynthesis model for oil palm. Photosynthetica 2020, 58, 769–779. [Google Scholar] [CrossRef]
- Alvarez, C.; Sáez, P.; Sáez, K.; Sánchez-Olate, M.; Ríos, D. Effects of light and ventilation on physiological parameters during in vitro acclimatization of Gevuina avellana mol. Plant Cell Tiss. Org. Cult. 2012, 110, 93–101. [Google Scholar] [CrossRef]
- Cha-um, S.; Ulziibat, B.; Kirdmanee, C. Effects of temperature and relative humidity during in vitro acclimatization, on physiological changes and growth characters of Phalaenopsis adapted to in vivo. Aust. J. Crop Sci. 2010, 4, 750–756. [Google Scholar]
- Grzelak, M.; Pacholczak, A.; Nowakowska, K. Challenges and insights in the acclimatization step of micropropagated woody plants. Plant Cell Tissue Organ Cult. 2024, 159, 72. [Google Scholar] [CrossRef]
- Lakho, M.A.; Jatoi, M.A.; Solangi, N.; Abul-Soad, A.A.; Qazi, M.A.; Abdi, G. Optimizing in vitro nutrient and ex vitro soil mediums-driven responses for multiplication, rooting, and acclimatization of pineapple. Sci. Rep. 2023, 13, 1275. [Google Scholar] [CrossRef]
- Guo, C.; Liu, L.; Sun, H.; Wang, N.; Zhang, K.; Zhang, Y.; Zhu, J.; Li, A.; Bai, Z.; Liu, X.; et al. Predicting Fv/Fm and evaluating cotton drought tolerance using hyperspectral and 1D-CNN. Front. Plant Sci. 2022, 13, 1007150. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Méndez, Y.D.; Romero, H.M. Fitting of photosynthetic response curves to photosynthetically active radiation in oil palm. Agron. Colomb. 2017, 35, 323–329. [Google Scholar] [CrossRef]
- Lu, X.; Sun, P.; Liu, R.; Wang, C.; Tong, L.; Tahir, M.M.; Ma, X.; Bao, J.; Zhang, D.; Wang, M.; et al. In vitro slow-growth conservation, acclimatization, and genetic stability of virus-free apple plants. Hortic. Adv. 2024, 2, 30. [Google Scholar] [CrossRef]
Acclimation Stage | Maximum Photosynthesis (µmol CO2 m−² s−¹) | Saturation Constant (μmol photon m−2 s−1) | Dark Respiration Rate (μmol CO2 m−2 s−1) | Light Compensation Point (μmol photon m−2 s−1) | Quantum Yield of CO2 (mol CO2 mol−1 photon) |
---|---|---|---|---|---|
IN VITRO | 1.42 ± 0.12 | 104.18 ± 16.84 | −0.04 ± 0.11 | 2.64 | 0.0081 |
AD1 | 1.17 ± 0.14 | 904.70 ± 148.28 | −0.05 ± 0.04 | 39.95 | 0.0009 |
AD7 | 2.05 ± 0.12 | 93.17 ± 10.07 | −0.27 ±0.11 | 14.01 | 0.0118 |
AD15 | 2.64 ± 0.22 | 86.93 ± 13.36 | −0.23 ± 0.21 | 8.28 | 0.0156 |
AD30 | 6.11 ± 0.31 | 160.33 ± 3.24 | −0.15 ± 0.28 | 3.74 | 0.0229 |
PRE-NURSERY | 10.25 ± 0.27 | 95.02 ± 4.67 | −0.59 ± 0.25 | 5.80 | 0.0517 |
NURSERY | 11.30 ± 0.54 | 177.43 ± 17.19 | −0.94 ± 0.49 | 16.09 | 0.0399 |
FIELD | 20.01 ± 0.98 | 269.70 ± 28.84 | −1.75 ± 0.79 | 25.86 | 0.0420 |
Asat (CO2-Saturated Photosynthetic Rate) (μmol CO2 m−² s−¹) | CE (Carboxylation Efficiency) (mol CO2 m−² s−¹) | Γ (CO2 Compensation Point) (μmol mol−1) | Ls (Relative Stomatal Limitation) (%) | Lm (Mesophyll Limitation) (%) | Vcmax (Maximum Carboxylation Rate of RuBisCO) (μmol m−² s−¹) | Jmax (Maximum Electron Transport Rate) (μmol m−² s−¹) | TPU (Triose Phosphate Utilization Rate) (μmol m−² s−¹) | |
---|---|---|---|---|---|---|---|---|
IN VITRO | 8.4 ± 1.1 | 0.062 ± 0.021 | 251.9 ± 28.4 | 66.1 ± 4.7 | 71.8 ± 4.1 | 12.0 ± 1.8 | 35.3 ± 4.8 | 3.0 ± 0.3 |
AD7 | 6.7 ± 1.0 | 0.026 ± 0.001 | 246.6 ± 23.5 | 66.4 ± 3.2 | 76.6 ± 3. 6 | 12.6 ± 1.7 | 29.0 ± 2.5 | 2.6 ± 0.3 |
AD15 | 6.2 ± 0.3 | 0.030 ± 0.004 | 202.9 ± 16.6 | 55.4 ± 5.3 | 77.8 ± 1.0 | 12.8 ± 1.3 | 34.3 ± 1.5 | 2.5 ± 0.1 |
AD30 | 10.4 ± 0.3 | 0.061 ± 0.005 | 152.6 ± 9.1 | 38.2 ± 2.8 | 62.4 ± 1.2 | 26.2 ± 2.1 | 53.7 ± 2.5 | 4.0 ± 0.1 |
PRE-NURSERY | 18.7 ± 0.1 | 0.085 ± 0.009 | 97.7 ± 7.7 | 28.5 ± 2.1 | 32.1 ± 0.5 | 53.3± 4.9 | 87.5 ± 3.3 | 6.7 ± 0.1 |
NURSERY | 21.1 ± 0.2 | 0.284 ± 0.007 | 153.2 ± 7.2 | 32.0 ± 1.9 | 24.1 ± 0.6 | 53.1 ± 4.5 | 105.8 ± 0.6 | 7.6± 0.1 |
FIELD | 27.8 ± 0.3 | 0.154 ± 0.021 | 95.5 ± 8.8 | 26.6 ± 0.8 | 0.00 ± 1.1 | 91.0 ± 4.7 | 125.9 ± 1.8 | 9.8± 0.2 |
Parameter | In Vitro Generated Seedlings | Seed Generated Seedlings |
---|---|---|
Photosynthesis (µmol CO2 m−2 s−¹) | 11.20 ± 0.61 b | 11.86 ± 0.72 a |
Transpiration (mmol H2O m−2 s−¹) | 2.78 ± 0.39 b | 3.62 ± 0.50 a |
Stomatal conductance (mol H2O m−2 s−¹) | 0.24 ± 0.02 b | 0.31 ± 0.04 a |
Water Use Efficiency (mole CO2 mol−1 H2O) | 0.0041 ± 0.0006 a | 0.0033 ± 0.0005 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avila-Diazgranados, R.A.; Tezara, W.; Romero, H.M. Photosynthetic Characterization of Oil Palm (Elaeis guineensis Jacq.) Seedlings During Late In Vitro Development and Acclimatization. Plants 2025, 14, 1299. https://doi.org/10.3390/plants14091299
Avila-Diazgranados RA, Tezara W, Romero HM. Photosynthetic Characterization of Oil Palm (Elaeis guineensis Jacq.) Seedlings During Late In Vitro Development and Acclimatization. Plants. 2025; 14(9):1299. https://doi.org/10.3390/plants14091299
Chicago/Turabian StyleAvila-Diazgranados, Rodrigo Andrés, Wilmer Tezara, and Hernán Mauricio Romero. 2025. "Photosynthetic Characterization of Oil Palm (Elaeis guineensis Jacq.) Seedlings During Late In Vitro Development and Acclimatization" Plants 14, no. 9: 1299. https://doi.org/10.3390/plants14091299
APA StyleAvila-Diazgranados, R. A., Tezara, W., & Romero, H. M. (2025). Photosynthetic Characterization of Oil Palm (Elaeis guineensis Jacq.) Seedlings During Late In Vitro Development and Acclimatization. Plants, 14(9), 1299. https://doi.org/10.3390/plants14091299