The Arabidopsis Plant Intracellular Ras-group LRR (PIRL) Family and the Value of Reverse Genetic Analysis for Identifying Genes that Function in Gametophyte Development
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Arabidopsis PIRL Family and Insertion Mutants
PIRL(sub-family) | AGI Locus | Mutant alleles in this study | Insert position (nucleotide position) |
---|---|---|---|
PIRL1 (I) | At5g05850 | pirl1-1 a | Intron I (+1107) |
PIRL9 (I) | At3g11330 | pirl9-1 a | Exon I (+357) |
PIRL2(I) | At3g26500 | pirl2-1 a | Exon I (+526) |
pirl2-2 [SALK_138743] b | Exon III (+1147) | ||
PIRL3(I) | At1g12970 | pirl3-1 a | Exon III (+1640) |
pirl3-2 [SALK_033703] b | Exon I (+514) | ||
PIRL6 (II) | At2g19330 | pirl6-1 [SAIL574A05] c; | Exon I (+182) |
pirl6-2 [WISCDSLOX393-396L14] c | Promoter region (-272) |
2.2. PIRL1 and PIRL9 Illustrate Functional Redundancy in Pollen
2.3. PIRL2 and PIRL3 Affect Pollen Morphology
2.4. Analysis of Putative pirl6 Knockout Mutants and PIRL6 mRNA Expression.
Expression database or dataset | Primary reference | |
---|---|---|
Microspores, pollen, stamens | eFP browser, developmental map [41] | [47] |
eFP browser, tissue specific map | [17] | |
Genevestigator [46] | [16] | |
Genevestigator | [48] | |
Pollen RNA-seq dataset | [19] | |
Ovaries, ovules, carpels | Genevestigator | [49] |
eFP browser, developmental map | [47] | |
eFP browser, tissue specific map | [50] |
3. Experimental
3.1. Mutant Identification and Confirmation of T-DNA Insert Position
3.2 Microscopy
4. Conclusions
Acknowledgments
Conflict of Interest
References
- McCormick, S. Control of male gametophyte development. Plant Cell 2004, 16, S142–S153. [Google Scholar] [CrossRef]
- Yadegari, R.; Drews, G.N. Female gametophyte development. Plant Cell 2004, 16, S133–S141. [Google Scholar] [CrossRef]
- Johnson-Brousseau, S.A.; McCormick, S. A compendium of methods useful for characterizing Arabidopsis pollen mutants and gametophytically-expressed genes. Plant J. 2004, 39, 761–775. [Google Scholar] [CrossRef]
- Meinke, D.; Muralla, R.; Sweeney, C.; Dickerman, A. Identifying essential genes in Arabidopsis thaliana. Trends Plant Sci. 2008, 13, 483–491. [Google Scholar] [CrossRef]
- Bolle, C.; Schneider, A.; Leister, D. Perspectives on systematic analyses of gene function in Arabidopsis thaliana: New tools, topics and trends. Curr. Genomics 2011, 12, 1–14. [Google Scholar] [CrossRef]
- Feldmann, K.A.; Coury, D.A.; Christianson, M.L. Exceptional segregation of a selectable marker (kanr) in Arabidopsis identifies genes important for gametophytic growth and development. Genetics 1997, 147, 1411–1422. [Google Scholar]
- Howden, R.; Park, S.K.; Moore, J.M.; Orme, J.; Grossniklaus, U.; Twell, D. Selection of t-DNA-tagged male and female gametophytic mutants by segregation distortion in Arabidopsis. Genetics 1998, 149, 621–631. [Google Scholar]
- Christensen, C.A.; Subramanian, S.; Drews, G.N. Identification of gametophytic mutations affecting female gametophyte development in arabidopsis. Dev. Biol. 1998, 202, 136–151. [Google Scholar] [CrossRef]
- Procissi, A.; de Laissardiere, S.; Ferault, M.; Vezon, D.; Pelletier, G.; Bonhomme, S. Five gametophytic mutations affecting pollen development and pollen tube growth in Arabidopsis thaliana. Genetics 2001, 158, 1773–1783. [Google Scholar]
- Johnson, M.A.; von Besser, K.; Zhou, Q.; Smith, E.; Aux, G.; Patton, D.; Levin, J.Z.; Preuss, D. Arabidopsis hapless mutations define essential gametophytic functions. Genetics 2004, 168, 971–982. [Google Scholar] [CrossRef]
- Pagnussat, G.C.; Yu, H.J.; Ngo, Q.A.; Rajani, S.; Mayalagu, S.; Johnson, C.S.; Capron, A.; Xie, L.F.; Ye, D.; Sundaresan, V. Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 2005, 132, 603–614. [Google Scholar] [CrossRef]
- Boavida, L.C.; Shuai, B.; Yu, H.J.; Pagnussat, G.C.; Sundaresan, V.; McCormick, S. A collection of Ds insertional mutants associated with defects in male gametophyte development and function in Arabidopsis thaliana. Genetics 2009, 181, 1369–1385. [Google Scholar] [CrossRef]
- Lalanne, E.; Twell, D. Genetic control of male germ unit organization in Arabidopsis. Plant Physiol. 2002, 129, 865–875. [Google Scholar] [CrossRef]
- Durbarry, A.; Vizir, I.; Twell, D. Male germ line development in Arabidopsis. Duo pollen mutants reveal gametophytic regulators of generative cell cycle progression. Plant Physiol. 2005, 137, 297–307. [Google Scholar] [CrossRef]
- Muralla, R.; Lloyd, J.; Meinke, D. Molecular foundations of reproductive lethality in Arabidopsis thaliana. PLoS One 2011, 6, e28398. [Google Scholar] [CrossRef]
- Pina, C.; Pinto, F.; Feijo, J.A.; Becker, J.D. Gene family analysis of the arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol. 2005, 138, 744–756. [Google Scholar] [CrossRef]
- Honys, D.; Twell, D. Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol. 2004, 5, R85. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Leydon, A.R.; Manziello, A.; Pandey, R.; Mount, D.; Denic, S.; Vasic, B.; Johnson, M.A.; Palanivelu, R. Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLoS Genet. 2009, 5, e1000621. [Google Scholar] [CrossRef]
- Loraine, A.; McCormick, S.; Estrada, A.; Patel, K.; Qin, P. High-throughput sequencing of Arabidopsis thaliana pollen cdna uncovers novel transcription and alternative splicing. Plant Physiol. 2013. [Google Scholar] [CrossRef]
- Bouche, N.; Bouchez, D. Arabidopsis gene knockout: Phenotypes wanted. Curr. Opin. Plant Biol. 2001, 4, 111–117. [Google Scholar] [CrossRef]
- Cutler, S.; McCourt, P. Dude, where’s my phenotype? Dealing with redundancy in signaling networks. Plant Physiol. 2005, 138, 558–559. [Google Scholar] [CrossRef]
- Lloyd, J.; Meinke, D. A comprehensive dataset of genes with a loss-of-function mutant phenotype in Arabidopsis. Plant Physiol. 2012, 158, 1115–1129. [Google Scholar] [CrossRef]
- Berg, M.; Rogers, R.; Muralla, R.; Meinke, D. Requirement of aminoacyl-tRNA synthetases for gametogenesis and embryo development in Arabidopsis. Plant J. 2005, 44, 866–878. [Google Scholar] [CrossRef]
- Bonhomme, S.; Horlow, C.; Vezon, D.; de Laissardiere, S.; Guyon, A.; Ferault, M.; Marchand, M.; Bechtold, N.; Pelletier, G. T-DNA mediated disruption of essential gametophytic genes in Arabidopsis is unexpectedly rare and cannot be inferred from segregation distortion alone. Mol. Gen. Genet. 1998, 260, 444–452. [Google Scholar] [CrossRef]
- O’Malley, R.C.; Ecker, J.R. Linking genotype to phenotype using the arabidopsis unimutant collection. Plant J. 2010, 61, 928–940. [Google Scholar] [CrossRef]
- Forsthoefel, N.R.; Cutler, K.; Port, M.D.; Yamamoto, T.; Vernon, D.M. Pirls: A novel class of plant intracellular leucine rich repeat proteins. Plant Cell Physiol. 2005, 46, 913–922. [Google Scholar] [CrossRef]
- McHale, L.; Tan, X.; Koehl, P.; Michelmore, R.W. Plant NBS-LRR proteins: Adaptable guards. Genome Biol. 2006, 7, 212. [Google Scholar]
- Nodine, M.D.; Bryan, A.C.; Racolta, A.; Jerosky, K.V.; Tax, F.E. A few standing for many: Embryo receptor-like kinases. Trends Plant Sci. 2011, 16, 211–217. [Google Scholar] [CrossRef]
- Morillo, S.A.; Tax, F.E. Functional analysis of receptor-like kinases in monocots and dicots. Curr. Opin. Plant Biol. 2006, 9, 460–469. [Google Scholar] [CrossRef]
- De Smet, I.; Voss, U.; Jürgens, G.; Beeckman, T. Receptor-like kinases shape the plant. Nat. Cell Biol. 2009, 11, 1166–1173. [Google Scholar] [CrossRef]
- Forsthoefel, N.R.; Dao, T.P.; Vernon, D.M. PIRL1 and PIRL9, encoding members of a novel family of plant leucine-rich repeat proteins, are essential for differentiation of microspores into pollen. Planta 2010, 232, 1101–1114. [Google Scholar] [CrossRef]
- Forsthoefel, N.R.; Vernon, D.M. Effect of sporophytic PIRL9 genotype on post-meiotic expression of the Arabidopsis pirl1;pirl9 mutant pollen phenotype. Planta 2011, 233, 423–431. [Google Scholar] [CrossRef]
- You, C.; Dai, X.; Li, X.; Wang, L.; Chen, G.; Xiao, J.; Wu, C. Molecular characterization, expression pattern, and functional analysis of the osirl gene family encoding intracellular ras-group-related LRR proteins in rice. Plant Mol. Biol. 2010, 74, 617–629. [Google Scholar] [CrossRef]
- Sussman, M.R.; Amasino, R.M.; Young, J.C.; Krysan, P.J.; Austin-Phillips, S. The Arabidopsis knockout facility at the University of Wisconsin-Madison. Plant Physiol. 2000, 124, 1465–1467. [Google Scholar] [CrossRef]
- Alonso, J.M.; Stepanova, A.N.; Leisse, T.J.; Kim, C.J.; Chen, H.; Shinn, P.; Stevenson, D.K.; Zimmerman, J.; Barajas, P.; Cheuk, R.; et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 2003, 301, 653–657. [Google Scholar] [CrossRef]
- Sessions, A.; Burke, E.; Presting, G.; Aux, G.; McElver, J.; Patton, D.; Dietrich, B.; Ho, P.; Bacwaden, J.; Ko, C.; et al. A high-throughput Arabidopsis reverse genetics system. Plant Cell 2002, 14, 2985–2994. [Google Scholar] [CrossRef]
- Woody, S.T.; Austin-Phillips, S.; Amasino, R.M.; Krysan, P.J. The wiscdslox t-DNA collection: An Arabidopsis community resource generated by using an improved high-throughput t-DNA sequencing pipeline. J. Plant Res. 2007, 120, 157–165. [Google Scholar] [CrossRef]
- Rhee, S.Y.; Beavis, W.; Berardini, T.Z.; Chen, G.; Dixon, D.; Doyle, A.; Garcia-Hernandez, M.; Huala, E.; Lander, G.; Montoya, M.; et al. The Arabidopsis information resource (TAIR): A model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Res. 2003, 31, 224–228. [Google Scholar] [CrossRef]
- The Arabidopsis information resource. Available online: http://www.arabidopsis.org (accessed on 10 December 2012).
- Winter, D.; Vinegar, B.; Nahal, H.; Ammar, R.; Wilson, G.V.; Provart, N.J. An “electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One 2007, 2, e718. [Google Scholar] [CrossRef]
- The Arabidopsis eFP browser. Available online: http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi/ (accessed on 1 March 2013).
- Reddy, J.T.; Dudareva, N.; Evrard, J.-L.; Krauter, R.; Steinmetz, A.; Pillay, D.T.N. A pollen-specificgene from sunflower encodes a member of the leucine-rich-repeat protein superfamily. Plant Sci. 1995, 111, 81–93. [Google Scholar] [CrossRef]
- Clark, K.A.; Krysan, P.J. Chromosomal translocations are a common phenomenon in Arabidopsis thaliana t-DNA insertion lines. Plant J. 2010, 64, 990–1001. [Google Scholar] [CrossRef]
- Tax, F.E.; Vernon, D.M. T-DNA-associated duplication/translocations in Arabidopsis. Implications for mutant analysis and functional genomics. Plant Physiol. 2001, 126, 1527–1538. [Google Scholar] [CrossRef]
- Zimmermann, P.; Hirsch-Hoffmann, M.; Hennig, L.; Gruissem, W. GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol. 2004, 136, 2621–2632. [Google Scholar] [CrossRef]
- Genevestigator. Available online: https://www.genevestigator.com/gv/plant.jsp/ (accessed on 3 March 2013).
- Schmid, M.; Davison, T.S.; Henz, S.R.; Pape, U.J.; Demar, M.; Vingron, M.; Scholkopf, B.; Weigel, D.; Lohmann, J.U. A gene expression map of Arabidopsis thaliana development. Nat. Genet. 2005, 37, 501–506. [Google Scholar] [CrossRef]
- Mandaokar, A.; Thines, B.; Shin, B.; Lange, B.M.; Choi, G.; Koo, Y.J.; Yoo, Y.J.; Choi, Y.D.; Choi, G.; Browse, J. Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling. Plant J. 2006, 46, 984–1008. [Google Scholar] [CrossRef]
- Boavida, L.C.; Borges, F.; Becker, J.D.; Feijo, J.A. Whole genome analysis of gene expression reveals coordinated activation of signaling and metabolic pathways during pollen-pistil interactions in Arabidopsis. Plant Physiol. 2011, 155, 2066–2080. [Google Scholar] [CrossRef]
- Swanson, R.; Clark, T.; Preuss, D. Expression profiling of Arabidopsis stigma tissue identifies stigma-specific genes. Sex. Plant. Reprod. 2005, 18, 163–171. [Google Scholar] [CrossRef]
- Cushing, D.A.; Forsthoefel, N.R.; Gestaut, D.R.; Vernon, D.M. Arabidopsis emb175 and other ppr knockout mutants reveal essential roles for PPR proteins in plant embryogenesis. Planta 2005, 222, 424–436. [Google Scholar]
- Sanders, P.M.; Bui, A.Q.; Weterings, K.; McIntire, K.N.; Hsu, Y.C.; Lee, P.Y.; Truong, M.T.; Beals, T.P.; Goldberg, R.B. Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex. Plant. Reprod. 1999, 11, 297–322. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Forsthoefel, N.R.; Klag, K.A.; Simeles, B.P.; Reiter, R.; Brougham, L.; Vernon, D.M. The Arabidopsis Plant Intracellular Ras-group LRR (PIRL) Family and the Value of Reverse Genetic Analysis for Identifying Genes that Function in Gametophyte Development. Plants 2013, 2, 507-520. https://doi.org/10.3390/plants2030507
Forsthoefel NR, Klag KA, Simeles BP, Reiter R, Brougham L, Vernon DM. The Arabidopsis Plant Intracellular Ras-group LRR (PIRL) Family and the Value of Reverse Genetic Analysis for Identifying Genes that Function in Gametophyte Development. Plants. 2013; 2(3):507-520. https://doi.org/10.3390/plants2030507
Chicago/Turabian StyleForsthoefel, Nancy R., Kendra A. Klag, Barbara P. Simeles, Rachel Reiter, Lauren Brougham, and Daniel M. Vernon. 2013. "The Arabidopsis Plant Intracellular Ras-group LRR (PIRL) Family and the Value of Reverse Genetic Analysis for Identifying Genes that Function in Gametophyte Development" Plants 2, no. 3: 507-520. https://doi.org/10.3390/plants2030507