Next Issue
Volume 5, September
Previous Issue
Volume 5, March
 
 

Plants, Volume 5, Issue 2 (June 2016) – 13 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
2267 KiB  
Article
The Occurrence of Flavonoids and Related Compounds in Flower Sections of Papaver nudicaule
by Bettina Dudek, Anne-Christin Warskulat and Bernd Schneider
Plants 2016, 5(2), 28; https://doi.org/10.3390/plants5020028 - 22 Jun 2016
Cited by 34 | Viewed by 8748
Abstract
Flavonoids play an important role in the pigmentation of flowers; in addition, they protect petals and other flower parts from UV irradiation and oxidative stress. Nudicaulins, flavonoid-derived indole alkaloids, along with pelargonidin, kaempferol, and gossypetin glycosides, are responsible for the color of white, [...] Read more.
Flavonoids play an important role in the pigmentation of flowers; in addition, they protect petals and other flower parts from UV irradiation and oxidative stress. Nudicaulins, flavonoid-derived indole alkaloids, along with pelargonidin, kaempferol, and gossypetin glycosides, are responsible for the color of white, red, orange, and yellow petals of different Papaver nudicaule cultivars. The color of the petals is essential to attract pollinators. We investigated the occurrence of flavonoids in basal and apical petal areas, stamens, and capsules of four differently colored P. nudicaule cultivars by means of chromatographic and spectroscopic methods. The results reveal the specific occurrence of gossypetin glycosides in the basal spot of all cultivars and demonstrate that kaempferol glycosides are the major secondary metabolites in the capsules. Unlike previous reports, the yellow-colored stamens of all four P. nudicaule cultivars are shown to contain not nudicaulins but carotenoids. In addition, the presence of nudicaulins, pelargonidin, and kaempferol glycosides in the apical petal area was confirmed. The flavonoids and related compounds in the investigated flower parts and cultivars of P. nudicaule are profiled, and their potential ecological role is discussed. Full article
(This article belongs to the Special Issue Plant Flavonoids)
Show Figures

Graphical abstract

1914 KiB  
Review
Flavones: From Biosynthesis to Health Benefits
by Nan Jiang, Andrea I. Doseff and Erich Grotewold
Plants 2016, 5(2), 27; https://doi.org/10.3390/plants5020027 - 21 Jun 2016
Cited by 241 | Viewed by 22021
Abstract
Flavones correspond to a flavonoid subgroup that is widely distributed in the plants, and which can be synthesized by different pathways, depending on whether they contain C- or O-glycosylation and hydroxylated B-ring. Flavones are emerging as very important specialized metabolites involved [...] Read more.
Flavones correspond to a flavonoid subgroup that is widely distributed in the plants, and which can be synthesized by different pathways, depending on whether they contain C- or O-glycosylation and hydroxylated B-ring. Flavones are emerging as very important specialized metabolites involved in plant signaling and defense, as well as key ingredients of the human diet, with significant health benefits. Here, we appraise flavone formation in plants, emphasizing the emerging theme that biosynthesis pathway determines flavone chemistry. Additionally, we briefly review the biological activities of flavones, both from the perspective of the functions that they play in biotic and abiotic plant interactions, as well as their roles as nutraceutical components of the human and animal diet. Full article
(This article belongs to the Special Issue Plant Flavonoids)
Show Figures

Graphical abstract

1362 KiB  
Article
Potential Pasture Nitrogen Concentrations and Uptake from Autumn or Spring Applied Cow Urine and DCD under Field Conditions
by Jim Moir, Keith Cameron and Hong Di
Plants 2016, 5(2), 26; https://doi.org/10.3390/plants5020026 - 13 Jun 2016
Cited by 8 | Viewed by 4901
Abstract
Nitrogen (N) cycling and losses in grazed grassland are strongly driven by urine N deposition by grazing ruminants. The objective of this study was to quantify pasture N concentrations, yield and N uptake following autumn and spring deposition of cow urine and the [...] Read more.
Nitrogen (N) cycling and losses in grazed grassland are strongly driven by urine N deposition by grazing ruminants. The objective of this study was to quantify pasture N concentrations, yield and N uptake following autumn and spring deposition of cow urine and the effects of fine particle suspension (FPS) dicyandiamide (DCD). A field plot study was conducted on the Lincoln University dairy farm, Canterbury, New Zealand from May 2003 to May 2005. FPS DCD was applied to grazed pasture plots at 10 kg·ha−1 in autumn and spring in addition to applied cow urine at a N loading rate of 1000 kg·N·ha−1, with non-urine control plots. Pasture N ranged between 1.9 and 4.8% with higher concentrations from urine. Results indicated that urine consistently increased N concentrations for around 220 days post deposition (mid December/early summer) at which point concentrations dropped to background levels. In urine patches, pasture yield and annual N uptake were dramatically increased on average by 51% for autumn and 28% for spring applied urine, in both years, when DCD was applied. This field experiment provides strong evidence that annual pasture N uptake is more strongly influenced by high urine N deposition than pasture N concentrations. FPS DCD has the potential to result in very high N uptake in urine patches, even when they are autumn deposited. Full article
(This article belongs to the Special Issue Plant Nitrogen Metabolism)
Show Figures

Figure 1

618 KiB  
Review
Reconfiguration of N Metabolism upon Hypoxia Stress and Recovery: Roles of Alanine Aminotransferase (AlaAT) and Glutamate Dehydrogenase (GDH)
by Houssein Diab and Anis M. Limami
Plants 2016, 5(2), 25; https://doi.org/10.3390/plants5020025 - 31 May 2016
Cited by 59 | Viewed by 12463
Abstract
In the context of climatic change, more heavy precipitation and more frequent flooding and waterlogging events threaten the productivity of arable farmland. Furthermore, crops were not selected to cope with flooding- and waterlogging-induced oxygen limitation. In general, low oxygen stress, unlike other abiotic [...] Read more.
In the context of climatic change, more heavy precipitation and more frequent flooding and waterlogging events threaten the productivity of arable farmland. Furthermore, crops were not selected to cope with flooding- and waterlogging-induced oxygen limitation. In general, low oxygen stress, unlike other abiotic stresses (e.g., cold, high temperature, drought and saline stress), received little interest from the scientific community and less financial support from stakeholders. Accordingly, breeding programs should be developed and agronomical practices should be adapted in order to save plants’ growth and yield—even under conditions of low oxygen availability (e.g., submergence and waterlogging). The prerequisite to the success of such breeding programs and changes in agronomical practices is a good knowledge of how plants adapt to low oxygen stress at the cellular and the whole plant level. In the present paper, we summarized the recent knowledge on metabolic adjustment in general under low oxygen stress and highlighted thereafter the major changes pertaining to the reconfiguration of amino acids syntheses. We propose a model showing (i) how pyruvate derived from active glycolysis upon hypoxia is competitively used by the alanine aminotransferase/glutamate synthase cycle, leading to alanine accumulation and NAD+ regeneration. Carbon is then saved in a nitrogen store instead of being lost through ethanol fermentative pathway. (ii) During the post-hypoxia recovery period, the alanine aminotransferase/glutamate dehydrogenase cycle mobilizes this carbon from alanine store. Pyruvate produced by the reverse reaction of alanine aminotransferase is funneled to the TCA cycle, while deaminating glutamate dehydrogenase regenerates, reducing equivalent (NADH) and 2-oxoglutarate to maintain the cycle function. Full article
(This article belongs to the Special Issue Plant Nitrogen Metabolism)
Show Figures

Graphical abstract

2572 KiB  
Review
Nitrogen Assimilation, Abiotic Stress and Glucose 6-Phosphate Dehydrogenase: The Full Circle of Reductants
by Sergio Esposito
Plants 2016, 5(2), 24; https://doi.org/10.3390/plants5020024 - 11 May 2016
Cited by 62 | Viewed by 10493
Abstract
Glucose 6 phosphate dehydrogenase (G6PDH; EC 1.1.1.49) is well-known as the main regulatory enzyme of the oxidative pentose phosphate pathway (OPPP) in living organisms. Namely, in Planta, different G6PDH isoforms may occur, generally localized in cytosol and plastids/chloroplasts. These enzymes are differently regulated [...] Read more.
Glucose 6 phosphate dehydrogenase (G6PDH; EC 1.1.1.49) is well-known as the main regulatory enzyme of the oxidative pentose phosphate pathway (OPPP) in living organisms. Namely, in Planta, different G6PDH isoforms may occur, generally localized in cytosol and plastids/chloroplasts. These enzymes are differently regulated by distinct mechanisms, still far from being defined in detail. In the last decades, a pivotal function for plant G6PDHs during the assimilation of nitrogen, providing reductants for enzymes involved in nitrate reduction and ammonium assimilation, has been described. More recently, several studies have suggested a main role of G6PDH to counteract different stress conditions, among these salinity and drought, with the involvement of an ABA depending signal. In the last few years, this recognized vision has been greatly widened, due to studies clearly showing the non-conventional subcellular localization of the different G6PDHs, and the peculiar regulation of the different isoforms. The whole body of these considerations suggests a central question: how do the plant cells distribute the reductants coming from G6PDH and balance their equilibrium? This review explores the present knowledge about these mechanisms, in order to propose a scheme of distribution of reductants produced by G6PDH during nitrogen assimilation and stress. Full article
(This article belongs to the Special Issue Plant Nitrogen Metabolism)
Show Figures

Figure 1

6505 KiB  
Article
Two New Nepenthes Species from the Philippines and an Emended Description of Nepenthes ramos
by Thomas Gronemeyer, Wally Suarez, Herman Nuytemans, Michael Calaramo, Andreas Wistuba, François S. Mey and Victor B. Amoroso
Plants 2016, 5(2), 23; https://doi.org/10.3390/plants5020023 - 6 May 2016
Cited by 11 | Viewed by 16574
Abstract
With 50 species of the genus Nepenthes L. currently described from the Philippines, it is without doubt that the country, along with the islands of Sumatra (Indonesia) and Borneo (Indonesia, Malaysia, Brunei), should be considered the center of diversity of the genus. In [...] Read more.
With 50 species of the genus Nepenthes L. currently described from the Philippines, it is without doubt that the country, along with the islands of Sumatra (Indonesia) and Borneo (Indonesia, Malaysia, Brunei), should be considered the center of diversity of the genus. In this work, we describe two new species. One species, N. aenigma sp. nov., is from Ilocos Norte province on Luzon Island and has the—for Nepenthes—unusual ecological preference to grow in dense vegetation in deep shade. The other new species is from Mount Hamiguitan in Davao Oriental province on Mindanao Island. With this new entry, Mount Hamiguitan is now home to four endemic species (N. peltata, N. micramphora, N. hamiguitanensis, N. justinae sp. nov.). Furthermore, we provide an emended description of N. ramos based on field data. Nepenthes kurata is synonymized here with N. ramos. Full article
Show Figures

Figure 1

804 KiB  
Communication
Short-Term Responses in Maximum Quantum Yield of PSII (Fv/Fm) to ex situ Temperature Treatment of Populations of Bryophytes Originating from Different Sites in Hokkaido, Northern Japan
by Annika K. Jägerbrand and Gaku Kudo
Plants 2016, 5(2), 22; https://doi.org/10.3390/plants5020022 - 26 Apr 2016
Cited by 40 | Viewed by 6040
Abstract
There is limited knowledge available on the thermal acclimation processes for bryophytes, especially when considering variation between populations or sites. This study investigated whether short-term ex situ thermal acclimation of different populations showed patterns of site dependency and whether the maximum quantum yield [...] Read more.
There is limited knowledge available on the thermal acclimation processes for bryophytes, especially when considering variation between populations or sites. This study investigated whether short-term ex situ thermal acclimation of different populations showed patterns of site dependency and whether the maximum quantum yield of PSII (Fv/Fm) could be used as an indicator of adaptation or temperature stress in two bryophyte species: Pleurozium schreberi (Willd. ex Brid.) Mitt. and Racomitrium lanuginosum (Hedw.) Brid. We sought to test the hypothesis that differences in the ability to acclimate to short-term temperature treatment would be revealed as differences in photosystem II maximum yield (Fv/Fm). Thermal treatments were applied to samples from 12 and 11 populations during 12 or 13 days in growth chambers and comprised: (1) 10/5 °C; (2) 20/10 °C; (3) 25/15 °C; (4) 30/20 °C (12 hours day/night temperature). In Pleurozium schreberi, there were no significant site-dependent differences before or after the experiment, while site dependencies were clearly shown in Racomitrium lanuginosum throughout the study. Fv/Fm in Pleurozium schreberi decreased at the highest and lowest temperature treatments, which can be interpreted as a stress response, but no similar trends were shown by Racomitrium lanuginosum. Full article
Show Figures

Figure 1

421 KiB  
Article
Quantification of Plasmodiophora brassicae Using a DNA-Based Soil Test Facilitates Sustainable Oilseed Rape Production
by Ann-Charlotte Wallenhammar, Albin Gunnarson, Fredrik Hansson and Anders Jonsson
Plants 2016, 5(2), 21; https://doi.org/10.3390/plants5020021 - 22 Apr 2016
Cited by 6 | Viewed by 4468
Abstract
Outbreaks of clubroot disease caused by the soil-borne obligate parasite Plasmodiophora brassicae are common in oilseed rape (OSR) in Sweden. A DNA-based soil testing service that identifies fields where P. brassicae poses a significant risk of clubroot infection is now commercially available. It [...] Read more.
Outbreaks of clubroot disease caused by the soil-borne obligate parasite Plasmodiophora brassicae are common in oilseed rape (OSR) in Sweden. A DNA-based soil testing service that identifies fields where P. brassicae poses a significant risk of clubroot infection is now commercially available. It was applied here in field surveys to monitor the prevalence of P. brassicae DNA in field soils intended for winter OSR production and winter OSR field experiments. In 2013 in Scania, prior to planting, P. brassicae DNA was detected in 60% of 45 fields on 10 of 18 farms. In 2014, P. brassicae DNA was detected in 44% of 59 fields in 14 of 36 farms, in the main winter OSR producing region in southern Sweden. P. brassicae was present indicative of a risk for >10% yield loss with susceptible cultivars (>1300 DNA copies g soil−1) in 47% and 44% of fields in 2013 and 2014 respectively. Furthermore, P. brassicae DNA was indicative of sites at risk of complete crop failure if susceptible cultivars were grown (>50 000 copies g−1 soil) in 14% and 8% of fields in 2013 and 2014, respectively. A survey of all fields at Lanna research station in western Sweden showed that P. brassicae was spread throughout the farm, as only three of the fields (20%) showed infection levels below the detection limit for P.brassicae DNA, while the level was >50,000 DNA copies g−1 soil in 20% of the fields. Soil-borne spread is of critical importance and soil scraped off footwear showed levels of up to 682 million spores g−1 soil. Soil testing is an important tool for determining the presence of P. brassicae and providing an indication of potential yield loss, e.g., in advisory work on planning for a sustainable OSR crop rotation. This soil test is gaining acceptance as a tool that increases the likelihood of success in precision agriculture and in applied research conducted in commercial oilseed fields and at research stations. The present application highlights the importance of prevention of disease spread by cleaning of farm equipment, footwear, etc. Full article
Show Figures

Graphical abstract

884 KiB  
Article
Patterns of Growth Costs and Nitrogen Acquisition in Cytisus striatus (Hill) Rothm. and Cytisus balansae (Boiss.) Ball are Mediated by Sources of Inorganic N
by María Pérez-Fernández, Elena Calvo-Magro, Irene Ramírez-Rojas, Laura Moreno-Gallardo and Valentine Alexander
Plants 2016, 5(2), 20; https://doi.org/10.3390/plants5020020 - 16 Apr 2016
Cited by 3 | Viewed by 4663
Abstract
Nitrogen-fixing shrubby legumes in the Mediterranean area partly overcome nutrient limitations by making use of soil N and atmospheric N2 sources. Their ability to switch between different sources lets them adjust to the carbon costs pertaining to N acquisition throughout the year. [...] Read more.
Nitrogen-fixing shrubby legumes in the Mediterranean area partly overcome nutrient limitations by making use of soil N and atmospheric N2 sources. Their ability to switch between different sources lets them adjust to the carbon costs pertaining to N acquisition throughout the year. We investigated the utilization of different inorganic N sources by Cytisus balansae and Cytisus striatus, shrubby legumes under low and a sufficient (5 and 500 µM P, respectively) levels of P. Plants grew in sterile sand, supplied with N-free nutrient solution and inoculated with effective Bradyrhizobium strains; other treatments consisted of plants treated with (i) 500 µM NH4NO3; and (ii) 500 µM NH4NO3 and inoculation with effective rhizobial strains. The application of NH4NO3 always resulted in greater dry biomass production. Carbon construction costs were higher in plants that were supplied with mineral and symbiotic N sources and always greater in the endemic C. striatus. Photosynthetic rates were similar in plants treated with different sources of N although differences were observed between the two species. Non-fertilized inoculated plants showed a neat dependence on N2 fixation and had more effective root nodules. Results accounted for the distribution of the two species with regards to their ability to use different N sources. Full article
(This article belongs to the Special Issue Plant Nitrogen Metabolism)
Show Figures

Figure 1

632 KiB  
Article
Short-Term Response of Sasa Dwarf Bamboo to a Change of Soil Nitrogen Fertility in a Forest Ecosystem in Northern Hokkaido, Japan
by Tsunehiro Watanabe, Karibu Fukuzawa and Hideaki Shibata
Plants 2016, 5(2), 19; https://doi.org/10.3390/plants5020019 - 14 Apr 2016
Cited by 3 | Viewed by 6232
Abstract
In forest ecosystems, a change of soil nitrogen (N) cycling after disturbance is regulated by various factors. Sasa dwarf bamboo (hereafter referred to as Sasa) is an understory plant that grows thickly on the forest floor in northern Hokkaido, Japan. However, the ecosystem [...] Read more.
In forest ecosystems, a change of soil nitrogen (N) cycling after disturbance is regulated by various factors. Sasa dwarf bamboo (hereafter referred to as Sasa) is an understory plant that grows thickly on the forest floor in northern Hokkaido, Japan. However, the ecosystem function of Sasa after disturbances in the soil N cycling is not fully understood. The purpose of this study was to determine the short-term response of Sasa to a change of soil N fertility. Biomass, litterfall, litter decomposition, soil N pool, and N leaching from soil were measured in control, and low- (5 g N m−2 year−1) and high-N (15 g N m−2 year−1) addition plots. Sasa immobilized much N as the soil N fertility increased. However, the leaf N concentration in aboveground biomass did not increase, suggesting that the N in leaves was maintained because of the increase of leaf biomass. As a result, the decomposition and mineralization rates of the produced litter before and after N addition were comparable among plots, even though the soil inorganic N fertility increased greatly. These results suggest that immediate response of Sasa to an increase of soil inorganic N mitigates the excess N leaching from soil. Full article
(This article belongs to the Special Issue Plant Nitrogen Metabolism)
Show Figures

Figure 1

7324 KiB  
Article
Overexpression of Arabidopsis AnnAt8 Alleviates Abiotic Stress in Transgenic Arabidopsis and Tobacco
by Deepanker Yadav, Israr Ahmed, Pawan Shukla, Prasanna Boyidi and Pulugurtha Bharadwaja Kirti
Plants 2016, 5(2), 18; https://doi.org/10.3390/plants5020018 - 14 Apr 2016
Cited by 30 | Viewed by 10250
Abstract
Abiotic stress results in massive loss of crop productivity throughout the world. Because of our limited knowledge of the plant defense mechanisms, it is very difficult to exploit the plant genetic resources for manipulation of traits that could benefit multiple stress tolerance in [...] Read more.
Abiotic stress results in massive loss of crop productivity throughout the world. Because of our limited knowledge of the plant defense mechanisms, it is very difficult to exploit the plant genetic resources for manipulation of traits that could benefit multiple stress tolerance in plants. To achieve this, we need a deeper understanding of the plant gene regulatory mechanisms involved in stress responses. Understanding the roles of different members of plant gene families involved in different stress responses, would be a step in this direction. Arabidopsis, which served as a model system for the plant research, is also the most suitable system for the functional characterization of plant gene families. Annexin family in Arabidopsis also is one gene family which has not been fully explored. Eight annexin genes have been reported in the genome of Arabidopsis thaliana. Expression studies of different Arabidopsis annexins revealed their differential regulation under various abiotic stress conditions. AnnAt8 (At5g12380), a member of this family has been shown to exhibit ~433 and ~175 fold increase in transcript levels under NaCl and dehydration stress respectively. To characterize Annexin8 (AnnAt8) further, we have generated transgenic Arabidopsis and tobacco plants constitutively expressing AnnAt8, which were evaluated under different abiotic stress conditions. AnnAt8 overexpressing transgenic plants exhibited higher seed germination rates, better plant growth, and higher chlorophyll retention when compared to wild type plants under abiotic stress treatments. Under stress conditions transgenic plants showed comparatively higher levels of proline and lower levels of malondialdehyde compared to the wild-type plants. Real-Time PCR analyses revealed that the expression of several stress-regulated genes was altered in AnnAt8 over-expressing transgenic tobacco plants, and the enhanced tolerance exhibited by the transgenic plants can be correlated with altered expressions of these stress-regulated genes. Our findings suggest a role for AnnAt8 in enhancing abiotic stress tolerance at different stages of plant growth and development. Full article
Show Figures

Figure 1

190 KiB  
Meeting Report
Canola/Rapeseed Protein: Future Opportunities and Directions—Workshop Proceedings of IRC 2015
by Lisa Campbell, Curtis B. Rempel and Janitha P.D. Wanasundara
Plants 2016, 5(2), 17; https://doi.org/10.3390/plants5020017 - 13 Apr 2016
Cited by 71 | Viewed by 9134
Abstract
At present, canola meal is primarily streamlined into the animal feed market where it is a competitive animal feed source owing to its high protein value. Beyond animal feed lies a potential game-changer with regards to the value of canola meal, and its [...] Read more.
At present, canola meal is primarily streamlined into the animal feed market where it is a competitive animal feed source owing to its high protein value. Beyond animal feed lies a potential game-changer with regards to the value of canola meal, and its opportunity as a high quality food protein source. An economic and sustainable source of protein with high bioavailability and digestibility is essential to human health and well-being. Population pressures, ecological considerations, and production efficiency underscore the importance of highly bioavailable plant proteins, both for the developed and developing world. Despite decades of research, several technologies being developed, and products being brought to large scale production, there are still no commercially available canola protein products. The workshop entitled “Canola/Rapeseed Protein—Future Opportunities and Directions” that was held on 8 July 2015 during the 14th International Rapeseed Congress (IRC 2015) addressed the current situation and issues surrounding canola meal protein from the technological, nutritional, regulatory and genomics/breeding perspective. Discussions with participants and experts in the field helped to identify economic barriers and research gaps that need to be addressed in both the short and long term for the benefit of canola industry. Full article
(This article belongs to the Special Issue Selected/Extended Full Papers of 14th International Rapeseed Congress)
4210 KiB  
Article
Paired Hierarchical Organization of 13-Lipoxygenases in Arabidopsis
by Adeline Chauvin, Aurore Lenglet, Jean-Luc Wolfender and Edward E. Farmer
Plants 2016, 5(2), 16; https://doi.org/10.3390/plants5020016 - 24 Mar 2016
Cited by 49 | Viewed by 8401
Abstract
Embryophyte genomes typically encode multiple 13-lipoxygenases (13-LOXs) that initiate the synthesis of wound-inducible mediators called jasmonates. Little is known about how the activities of these different LOX genes are coordinated. We found that the four 13-LOX genes in Arabidopsis thaliana have different basal [...] Read more.
Embryophyte genomes typically encode multiple 13-lipoxygenases (13-LOXs) that initiate the synthesis of wound-inducible mediators called jasmonates. Little is known about how the activities of these different LOX genes are coordinated. We found that the four 13-LOX genes in Arabidopsis thaliana have different basal expression patterns. LOX2 expression was strong in soft aerial tissues, but was excluded both within and proximal to maturing veins. LOX3 was expressed most strongly in circumfasicular parenchyma. LOX4 was expressed in phloem-associated cells, in contrast to LOX6, which is expressed in xylem contact cells. To investigate how the activities of these genes are coordinated after wounding, we carried out gene expression analyses in 13-lox mutants. This revealed a two-tiered, paired hierarchy in which LOX6, and to a lesser extent LOX2, control most of the early-phase of jasmonate response gene expression. Jasmonates precursors produced by these two LOXs in wounded leaves are converted to active jasmonates that regulate LOX3 and LOX4 gene expression. Together with LOX2 and LOX6, and working downstream of them, LOX3 and LOX4 contribute to jasmonate synthesis that leads to the expression of the defense gene VEGETATIVE STORAGE PROTEIN2 (VSP2). LOX3 and LOX4 were also found to contribute to defense against the generalist herbivore Spodoptera littoralis. Our results reveal that 13-LOX genes are organised in a regulatory network, and the data herein raise the possibility that other genomes may encode LOXs that act as pairs. Full article
(This article belongs to the Special Issue The Jasmonate Pathway)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop