Mycorrhization Mitigates Disease Caused by “Candidatus Liberibacter solanacearum” in Tomato
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plants
2.2. AM Fungi and Inoculation
2.3. Insects
2.4. Experimental Design
2.5. Assessment of the R. irregularis Effects on Disease Development and Plant Growth
2.6. Detection of Lso on Top-Tier Leaves
2.7. Assessment of AM Effect on B. cockerelli Oviposition and Nymph Survival
2.8. Statistical Analyses
3. Results
3.1. Estimation of Root Colonization by AM Fungi Rhizophagus Irregularis
3.2. Rhizophagus Irregularis Delays the Development of Symptoms Associated with Lso Infection and Promotes Plant Growth under Disease Stress
3.3. Effect of Mycorrhization on the Development of Nymphs from Parents Harboring Different Lso Haplotypes
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tamborindeguy, C.; Huot, O.B.; Ibanez, F.; Levy, J. The influence of bacteria on multitrophic interactions among plants, psyllids, and pathogen. Insect Sci. 2017, 24, 961–974. [Google Scholar] [CrossRef]
- Wang, N.; Pierson, E.A.; Setubal, J.C.; Xu, J.; Levy, J.G.; Zhang, Y.; Li, J.; Rangel, L.T.; Martins, J. The Candidatus Liberibacter–Host interface: Insights into pathogenesis mechanisms and disease control. Annu. Rev. Phytopathol. 2017, 55, 451–482. [Google Scholar] [CrossRef]
- Liefting, L.W.; Perez-Egusquiza, Z.C.; Clover, G.R.G.; Anderson, J.A.D. A new ‘Candidatus Liberibacter’ species in Solanum tuberosum in New Zealand. Plant. Dis. 2008, 92, 1474. [Google Scholar] [CrossRef] [PubMed]
- Munyaneza, J.E.; Fisher, T.W.; Sengoda, V.G.; Garczynski, S.F.; Nissinen, A.; Lemmetty, A. First report of “Candidatus Liberibacter solanacearum” associated with psyllid-affected carrots in Europe. Plant. Dis. 2010, 94, 639. [Google Scholar] [CrossRef] [PubMed]
- Nelson, W.R.; Fisher, T.W.; Munyaneza, J.E. Haplotypes of “Candidatus Liberibacter solanacearum” suggest long-standing separation. Eur. J. Plant. Pathol. 2011, 130, 5–12. [Google Scholar] [CrossRef]
- Alfaro-Fernández, A.; Siverio, F.; Cebrián, M.C.; Villaescusa, F.J.; Font, M.I. ‘Candidatus Liberibacter solanacearum’ associated with Bactericera trigonica-affected carrots in the Canary Islands. Plant. Dis. 2012, 96, 581. [Google Scholar] [CrossRef]
- Nelson, W.R.; Sengoda, V.G.; Alfaro-Fernandez, A.O.; Font, M.I.; Crosslin, J.M.; Munyaneza, J.E. A new haplotype of “Candidatus Liberibacter solanacearum” identified in the Mediterranean region. Eur. J. Plant. Pathol. 2012, 135, 633. [Google Scholar] [CrossRef]
- Tahzima, R.; Maes, M.; Achbani, E.H.; Swisher, K.D.; Munyaneza, J.E.; De Jonghe, K. First report of ‘Candidatus Liberibacter solanacearum’ on carrot in Africa. Plant. Dis. 2014, 98, 1426. [Google Scholar] [CrossRef]
- Haapalainen, M.; Wang, J.; Latvala, S.; Lehtonen, M.T.; Pirhonen, M.; Nissinen, A.I. Genetic variation of ‘Candidatus Liberibacter solanacearum’haplotype C and identification of a novel haplotype from Trioza urticae and stinging nettle. Phytopathology 2018, 108, 925–934. [Google Scholar] [CrossRef]
- Haapalainen, M.; Kivimäki, P.; Latvala, S.; Rastas, M.; Hannukkala, A.; Jauhiainen, L.; Lemmetty, A.; Pirhonen, M.; Virtanen, A.; Nissinen, A.I. Frequency and occurrence of the carrot pathogen ‘Candidatus Liberibacter solanacearum’haplotype C in Finland. Plant. Pathol. 2017, 66, 559–570. [Google Scholar] [CrossRef]
- Hansen, A.K.; Trumble, J.T.; Stouthamer, R.; Paine, T.D. A new Huanglongbing species, “Candidatus Liberibacter psyllaurous,” found to infect tomato and potato, is vectored by the psyllid Bactericera cockerelli (Sulc). Appl. Environ. Microbiol. 2008, 74, 5862–5865. [Google Scholar] [CrossRef] [PubMed]
- Pitman, A.R.; Drayton, G.M.; Kraberger, S.J.; Genet, R.A.; Scott, I.A.W. Tuber transmission of ‘Candidatus Liberibacter solanacearum’ and its association with Zebra Chip on potato in New Zealand. Eur. J. Plant. Pathol. 2011, 129, 389–398. [Google Scholar] [CrossRef]
- Camacho-Tapia, M.; Rojas-Martínez, R.I.; Zavaleta-Mejía, E.; Hernández-Deheza, M.G.; Carrillo-Salazar, J.A.; Rebollar-Alviter, A.; Ochoa-Martínez, D.L. Aetiology of chili pepper variegation from Yurécuaro, México. J. Plant. Pathol. 2011, 93, 331–335. [Google Scholar]
- Callaway, E. Bioterror: The green menace. Nature 2008, 452, 148–150. [Google Scholar] [CrossRef]
- Levy, J.; Ravindran, A.; Gross, D.; Tamborindeguy, C.; Pierson, E. Translocation of ‘Candidatus Liberibacter solanacearum’, the Zebra Chip pathogen, in potato and tomato. Phytopathology 2011, 101, 1285–1291. [Google Scholar] [CrossRef]
- Harrison, K.; Tamborindeguy, C.; Scheuring, D.C.; Herrera, A.M.; Silva, A.; Badillo-Vargas, I.E.; Miller, J.C.; Levy, J.G. Differences in Zebra Chip severity between ‘Candidatus Liberibacter solanacearum’ haplotypes in Texas. Am. J. Potato Res. 2019, 96, 86–93. [Google Scholar] [CrossRef]
- Mendoza-Herrera, A.; Levy, J.; Harrison, K.; Yao, J.; Ibanez, F.; Tamborindeguy, C. Infection by Candidatus Liberibacter solanacearum’ haplotypes A and B in Solanum lycopersicum ‘Moneymaker’. Plant. Dis. 2018, 102, 2009–2015. [Google Scholar] [CrossRef]
- Echegaray, E.R.; Rondon, S.I. Incidence of Bactericera cockerelli (Hemiptera: Triozidae) under different pesticide regimes in the lower Columbia basin. J. Econ. Entomol. 2017, 110, 1639–1647. [Google Scholar] [CrossRef]
- Prager, S.M.; Vindiola, B.; Kund, G.S.; Byrne, F.J.; Trumble, J.T. Considerations for the use of neonicotinoid pesticides in management of Bactericera cockerelli (Šulk) (Hemiptera: Triozidae). Crop Prot. 2013, 54, 84–91. [Google Scholar] [CrossRef]
- Diaz-Montano, J.; Vindiola, B.G.; Drew, N.; Novy, R.G.; Miller, J.C.; Trumble, J.T. Resistance of selected potato genotypes to the potato psyllid (Hemiptera: Triozidae). Am. J. Potato Res. 2014, 91, 363–367. [Google Scholar] [CrossRef]
- Levy, J.G.; Scheuring, D.C.; Koym, J.W.; Henne, D.C.; Tamborindeguy, C.; Pierson, E.; Miller, J.C. Investigations on putative Zebra Chip tolerant potato selections. Am. J. Potato Res. 2015, 92, 417–425. [Google Scholar] [CrossRef]
- Smith, S.E.; Jakobsen, I.; Grønlund, M.; Smith, F.A. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: Interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant. Physiol. 2011, 156, 1050–1057. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.E.; Smith, F.A. Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 2012, 104, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Bennett, A.E.; Orrell, P.; Malacrino, A.; Pozo, M.J. Fungal-mediated above–belowground interactions: The community approach, stability, evolution, mechanisms, and applications. In Aboveground–Belowground Community Ecology; Ecological Studies; Ohgushi, T., Wurst, S., Johnson, S.N., Eds.; Springer International Publishing: Cham, Switzerland, 2018; Volume 234, pp. 85–116. ISBN 978-3-319-91614-9. [Google Scholar]
- Bennett, A.E.; Bever, J.D. Mycorrhizal species differentially alter plant growth and response to herbivory. Ecology 2007, 88, 210–218. [Google Scholar] [CrossRef]
- Bennett, A.E.; Alers-Garcia, J.; Bever, J.D. Three-way interactions among mutualistic mycorrhizal fungi, plants, and plant enemies: Hypotheses and synthesis. Am. Nat. 2006, 167, 141–152. [Google Scholar] [CrossRef]
- Pozo, M.J.; Azcón-Aguilar, C. Unraveling mycorrhiza-induced resistance. Curr. Opin. Plant. Biol. 2007, 10, 393–398. [Google Scholar] [CrossRef]
- Pozo, M.J.; Jung, S.C.; López-Ráez, J.A.; Azcón-Aguilar, C. Impact of arbuscular mycorrhizal symbiosis on plant response to biotic stress: The role of plant defence mechanisms. In Arbuscular Mycorrhizas: Physiology and Function; Koltai, H., Kapulnik, Y., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2010; pp. 193–207. ISBN 978-90-481-9488-9. [Google Scholar]
- Gehring, C.; Bennett, A. Mycorrhizal fungal–plant–insect interactions: The importance of a community approach. Environ. Entomol. 2009, 38, 93–102. [Google Scholar] [CrossRef]
- Koricheva, J.; Gange, A.C.; Jones, T. Effects of mycorrhizal fungi on insect herbivores: A meta-analysis. Ecology 2009, 90, 2088–2097. [Google Scholar] [CrossRef]
- Barber, N.A.; Kiers, E.T.; Hazzard, R.V.; Adler, L.S. Context-dependency of arbuscular mycorrhizal fungi on plant-insect interactions in an agroecosystem. Front. Plant. Sci. 2013, 4, 338. [Google Scholar] [CrossRef]
- Pozo, M.J.; López-Ráez, J.A.; Azcón-Aguilar, C.; García-Garrido, J.M. Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytol. 2015, 205, 1431–1436. [Google Scholar] [CrossRef]
- Wehner, J.; Antunes, P.M.; Powell, J.R.; Mazukatow, J.; Rillig, M.C. Plant pathogen protection by arbuscular mycorrhizas: A role for fungal diversity? Pedobiologia 2010, 53, 197–201. [Google Scholar] [CrossRef]
- D’Amelio, R.; Berta, G.; Gamalero, E.; Massa, N.; Avidano, L.; Cantamessa, S.; D’Agostino, G.; Bosco, D.; Marzachì, C. Increased plant tolerance against Chrysanthemum yellows phytoplasma (‘Candidatus Phytoplasma asteris’) following double inoculation with Glomus mosseae BEG12 and Pseudomonas putida S1Pf1Rif. Plant. Pathol. 2011, 60, 1014–1022. [Google Scholar] [CrossRef]
- Jung, S.C.; Martinez-Medina, A.; Lopez-Raez, J.A.; Pozo, M.J. Mycorrhiza-induced resistance and priming of plant defenses. J. Chem. Ecol. 2012, 38, 651–664. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.M.; Hayman, D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970, 55, 158–161. [Google Scholar] [CrossRef]
- Giovannetti, M.; Mosse, B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 1980, 84, 489–500. [Google Scholar] [CrossRef]
- Swisher, K.D.; Sengoda, V.G.; Dixon, J.; Munyaneza, J.E.; Murphy, A.F.; Rondon, S.I.; Thompson, B.; Karasev, A.V.; Wenninger, E.J.; Olsen, N.; et al. Assessing potato psyllid haplotypes in potato crops in the pacific northwestern United States. Am. J. Potato Res. 2014, 91, 485–491. [Google Scholar] [CrossRef]
- Nachappa, P.; Shapiro, A.A.; Tamborindeguy, C. Effect of ‘Candidatus Liberibacter solanacearum’ on Fitness of Its Insect Vector, Bactericera cockerelli (Hemiptera: Triozidae), on Tomato. Phytopathology 2011, 102, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Nachappa, P.; Levy, J.; Pierson, E.; Tamborindeguy, C. Correlation between “Candidatus Liberibacter solanacearum” infection levels and fecundity in its psyllid vector. J. Invertebr. Pathol. 2014, 115, 55–61. [Google Scholar] [CrossRef]
- Ravindran, A.; Levy, J.; Pierson, E.; Gross, D.C. Development of primers for improved PCR detection of the potato Zebra Chip pathogen, ‘Candidatus Liberibacter solanacearum’. Plant. Dis. 2011, 95, 1542–1546. [Google Scholar] [CrossRef] [Green Version]
- Ravindran, A.; Levy, J.; Pierson, E.; Gross, D.C. Development of a loop-mediated isothermal amplification procedure as a sensitive and rapid method for detection of ‘Candidatus Liberibacter solanacearum’ in potatoes and psyllids. Phytopathology 2012, 102, 899–907. [Google Scholar] [CrossRef] [Green Version]
- Levy, J.; Hancock, J.; Ravindran, A.; Gross, D.; Tamborindeguy, C.; Pierson, E. Methods for rapid and effective PCR-based detection of ‘Candidatus Liberibacter solanacearum’ from the insect vector Bactericera cockerelli: Streamlining the DNA extraction/purification process. J. Econ. Entomol. 2013, 106, 1440–1445. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Maldonado-Mendoza, I.; Lopez-Meyer, M.; Cheung, F.; Town, C.D.; Harrison, M.J. Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant. J. 2007, 50, 529–544. [Google Scholar] [CrossRef] [PubMed]
- Javot, H.; Pumplin, N.; Harrison, M.J. Phosphate in the arbuscular mycorrhizal symbiosis: Transport properties and regulatory roles. Plant. Cell Environ. 2007, 30, 310–322. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Jiang, J.; Wang, N. Control of Citrus Huanglongbing via trunk injection of plant defense activators and antibiotics. Phytopathology 2017, 108, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Howe, G.A.; Jander, G. Plant immunity to insect herbivores. Annu. Rev. Plant. Biol. 2008, 59, 41–66. [Google Scholar] [CrossRef] [Green Version]
- Pozo, M.J.; Cordier, C.; Dumas-Gaudot, E.; Gianinazzi, S.; Barea, J.M.; Azcón-Aguilar, C. Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. J. Exp. Bot. 2002, 53, 525–534. [Google Scholar] [CrossRef]
- Ahmad, S.; Veyrat, N.; Gordon-Weeks, R.; Zhang, Y.; Martin, J.; Smart, L.; Glauser, G.; Erb, M.; Flors, V.; Frey, M.; et al. Benzoxazinoid metabolites regulate innate immunity against aphids and fungi in maize. Plant. Physiol. 2011, 157, 317–327. [Google Scholar] [CrossRef] [Green Version]
Score | Symptom Type |
---|---|
0 | No symptoms |
1 | Slight curling and/or purpling of leaves |
2 | Mild stunting of the plant, wilting and leaf midvein purpling |
3 | Accentuated stunting, yellowing, interveinal chlorosis. Presence of vein greening mottled or chlorotic leaves |
4 | Extreme stunting and extreme scorching, wilt, yellowing or interveinal chlorosis. Mottled or chlorotic leaves. Plant collapse and death of the plant. |
Disease Quantification | Lso and Inoculation Treatment | 3 WAI | 6 WAI | 8 WAI | |
---|---|---|---|---|---|
Disease Incidence | LsoA | Non-mycorrhized plants | 0% | 100% | 100% |
Mycorrhized plants | 0% | 42% | 58% | ||
LsoB | Non-mycorrhized plants | 0% | 100% | 100% | |
Mycorrhized plants | 0% | 42% | 58% | ||
Disease Severity Indices | LsoA | Non-mycorrhized plants | 0.0 | 3.0 ± 0.1 b | 3.5 ± 0.1 b |
Mycorrhized plants | 0.0 | 3.0 ± 0.1 b | 3.7 ± 0.1 b | ||
LsoB | Non-mycorrhized plants | 0.0 | 3.5 ± 0.1 a | 4.0 ± 0.0 a | |
Mycorrhized plants | 0.0 | 3.6 ± 0.0 a | 4.0 ± 0.0 a |
Treatments | Eggs | Nymphs 9 DAI | Nymphs 11 DAI | |
---|---|---|---|---|
LsoA | Non-mycorrhized plants | 50.6 ± 3.4 a | 37.7 ± 4.3 a | 30.5 ± 3.6 a |
Mycorrhized plants | 25.1 ± 1.9 b | 15.0 ± 2.0 b * | 8.2 ± 1.4 b * | |
LsoB | Non-mycorrhized plants | 19.3 ± 2.4 c | 6.3 ± 0.9 c | 4.9 ± 0.8 b |
Mycorrhized plants | 14.9 ± 2.0 c | 7.3 ± 1.2 c | 6.2 ± 1.1 b |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiénébo, E.-O.; Harrison, K.; Abo, K.; Brou, Y.C.; Pierson, L.S., III; Tamborindeguy, C.; Pierson, E.A.; Levy, J.G. Mycorrhization Mitigates Disease Caused by “Candidatus Liberibacter solanacearum” in Tomato. Plants 2019, 8, 507. https://doi.org/10.3390/plants8110507
Tiénébo E-O, Harrison K, Abo K, Brou YC, Pierson LS III, Tamborindeguy C, Pierson EA, Levy JG. Mycorrhization Mitigates Disease Caused by “Candidatus Liberibacter solanacearum” in Tomato. Plants. 2019; 8(11):507. https://doi.org/10.3390/plants8110507
Chicago/Turabian StyleTiénébo, Eric-Olivier, Kyle Harrison, Kouabenan Abo, Yao Casimir Brou, Leland S. Pierson, III, Cecilia Tamborindeguy, Elizabeth A. Pierson, and Julien G. Levy. 2019. "Mycorrhization Mitigates Disease Caused by “Candidatus Liberibacter solanacearum” in Tomato" Plants 8, no. 11: 507. https://doi.org/10.3390/plants8110507
APA StyleTiénébo, E.-O., Harrison, K., Abo, K., Brou, Y. C., Pierson, L. S., III, Tamborindeguy, C., Pierson, E. A., & Levy, J. G. (2019). Mycorrhization Mitigates Disease Caused by “Candidatus Liberibacter solanacearum” in Tomato. Plants, 8(11), 507. https://doi.org/10.3390/plants8110507