Variation Among Spring Wheat (Triticum aestivum L.) Genotypes in Response to the Drought Stress. II—Root System Structure
Abstract
:1. Introduction
2. Results
2.1. Plant Traits Under Control (C) Conditions
2.2. Plant Traits Under Drought (D vs. C)
2.3. Correlation Between Drought Susceptibility Index (DSI) and Relative Trait Changes (RTC)
2.4. Transcriptional Responses to Drought in Root Tissue
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Atkinson, A.; Pound, M.P.; Bennett, M.J.; Wells, D.M. Uncovering the hidden half of plants using new advances in root phenotyping. Curr. Opin. Biotech. 2019, 55, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Wang, X.; Wang, F. Adaptive minirhizotron for pepper roots observation and its installation based on root system architecture traits. Plant Methods 2019, 15, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Fromm, H. Root plasticity in the pursuit of water. Plants (Basel) 2019, 8, 236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, J.P. Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems. Ann. Bot. 2013, 112, 347–357. [Google Scholar] [CrossRef] [Green Version]
- Uga, Y.; Ebana, K.; Abe, J.; Morita, S.; Okuno, K.; Yano, M. Variation in root morphology and anatomy among accessions of cultivated rice (Oryza sativa L.) with different genetic backgrounds. Breed Sci. 2009, 59, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, S.; Valencia, M.O.; Ishitani, M.; Selvaraj, M.G. Root system architecture variation in response to different NH4 concentrations and its association with Nitrogen-deficient tolerance traits in rice. Acta Physiol. Plant. 2014, 36, 2361–2372. [Google Scholar] [CrossRef]
- Colombi, T.; Walter, A. Root responses of triticale and soybean to soil compaction in the field are reproducible under controlled conditions. Funct. Plant Biol. 2015, 43, 114–128. [Google Scholar] [CrossRef]
- Szechyńska-Hebda, M.; Marczyk, J.; Ziejewska, C.; Hordyńska, N.; Mikuła, J.; Hebda, M. Optimal design of pH-neutral geopolymer foams for their use in ecological plant cultivation systems. Materials 2019, 12, 2999. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, M. Inducing drought tolerance in plants: Recent advances. Biotech. Adv. 2010, 28, 199–238. [Google Scholar] [CrossRef]
- King, J. Reaching for The Sun: How Plant Work; Cambridge University Press: Cambridge, UK, 2011; pp. 185–244. [Google Scholar]
- Colombi, T.; Walder, F.; Büchi, L.; Sommer, M.; Liu, K.; Six, J.; van der Heijden, M.G.A.; Charles, R.; Keller, T. On-farm study reveals positive relationship between gas transport capacity and organic carbon content in arable soil. Soil 2019, 5, 91–105. [Google Scholar] [CrossRef] [Green Version]
- Chang, T.T.; Armenta-Soto, J.L.; Mao, C.X.; Peiris, R.; Loresto, G.C. Genetic studies on the components of drought resistance in rice (Oryza sativa L.). In Rice Genetics; IRRI Los Banos: Manila, Philippines, 1986; pp. 389–398. [Google Scholar] [CrossRef]
- Wu, L.; McGechan, M.B.; Watson, C.A.; Baddeley, J.A. Developing existing plant root system architecture models to meet future agricultural challenges. Adv. Agron. 2005, 85, 181–219. [Google Scholar] [CrossRef]
- Fleury, D.; Jefferies, S.; Kuchel, H.; Langridge, P. Genetic and genomic tools to improve drought tolerance in wheat. J. Exp. Bot. 2010, 61, 3211–3222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kono, Y.; Yamauchi, A.; Nonoyama, T.; Tatsumi, T.; Kawamura, N. A revised system of root-soil interaction for laboratory work. Environ. Control Biol. 1987, 25, 141–151. [Google Scholar] [CrossRef]
- Iijima, M.; Kono, Y.; Yamauchi, A.; Pardales, P.J. Effects of soil compaction on the development of rice and maize root system. Environ. Exp. Bot. 1991, 30, 333–342. [Google Scholar] [CrossRef]
- Tardieu, F.; Katerji, N. Plant response to soil water reserve: Consequences of the root system environment. Irrig. Sci. 1991, 12, 145–152. [Google Scholar] [CrossRef]
- Yamauchi, A. Significance of root system structure in relation to stress tolerance in cereal crop. Low-Input Sustain. Crop Product. Syst. Asia 1993, 347–360. Available online: https://ci.nii.ac.jp/naid/10008236424/ (accessed on 7 December 2019).
- Bengough, A.G.; McKenzie, B.M.; Hallett, P.D.; Valentine, T.A. Root elongation, water stress, and mechanical impedance: A review of limiting stresses and beneficial root tip traits. J. Exp. Bot. 2011, 62, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Grzesiak, M.T. Impact of soil compaction on root architecture, leaf water status, gas exchange and growth of maize and triticale seedlings. Plant Root 2009, 3, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, S.; Bhattacharjee, D.P.; Cabuslay, G.S. Relationship between plant type and root growth in rice. Soil Sci. Plant Nutr. 1982, 28, 473–482. [Google Scholar] [CrossRef] [Green Version]
- Ho, M.D.; Rosas, J.C.; Brown, K.M.; Lynch, J.P. Root architectural tradeoffs for water and phosphorus acquisition. Funct. Plant Biol. 2005, 32, 737–748. [Google Scholar] [CrossRef] [Green Version]
- Grzesiak, M.T.; Marcińska, I.; Janowiak, F.; Rzepka, A.; Hura, T. The relationship between seedling growth and grain yield under drought conditions in maize and triticale genotypes. Acta Physiol. Plant 2012, 34, 1757–1764. [Google Scholar] [CrossRef]
- Grzesiak, M.T.; Waligórski, P.; Janowiak, F.; Marcińska, I.; Hura, K.; Szczyrek, P.; Głąb, T. The relations between drought susceptibility index based on grain yield (DSIGY) and key physiological seedling traits in maize and triticale genotypes. Acta Physiol. Plant 2013, 35, 549–565. [Google Scholar] [CrossRef] [Green Version]
- Gietler, M.; Nykiel, M.; Zagdanska, B.M. Changes in the reduction state of ascorbate and glutathione, protein oxidation and hydrolysis leading to the development of dehydration intolerance in Triticum aestivum L. seedlings. Plant Growth Reg. 2016, 79, 287–297. [Google Scholar] [CrossRef] [Green Version]
- Grzesiak, S.; Hordynska, N.; Szczyrek, P.; Grzesiak, M.T.; Noga, A.; Szechynska-Hebda, M. Variation among wheat (Triticum easativum L.) genotypes in response to the drought stress: I- selection approaches. J. Plant Interact. 2019, 14, 30–44. [Google Scholar] [CrossRef] [Green Version]
- Lorens, G.F.; Bennett, J.M.; Loggale, L.B. Differences in drought resistance between two corn hybrids. I. Water relations and root length density. Agron. J. 1987, 79, 802–807. [Google Scholar] [CrossRef]
- Grzesiak, S. Reaction to drought of inbreds and hybrids of maize (Zea mays L.) as evaluated in field and greenhouse experiments. Maydica 1990, 35, 303–331. [Google Scholar]
- Golbashy, M.; Ebrahimi, M.; Khavari-Khorasani, S.; Choukan, R. Evaluation of drought tolerance of same corn (Zea mays L.) hybrids in Iran. Afr. J. Agr. Res. 2010, 5, 2714–2719. [Google Scholar]
- Larsson, S.; Górny, A.G. Grain yield and drought resistance indices of oat cultivars in field rain shelter and laboratory experiments. J. Agron. Crop Sci. 1988, 161, 277–286. [Google Scholar] [CrossRef]
- Marcinska, I.; Czyczyło-Mysza, I.; Skrzypek, E.; Grzesiak, M.T.; Popielarska-Konieczna, M.; Warchoł, M.; Grzesiak, S. Application of photochemical parameters and several indices based on phenotypical traits to assess intraspecific variation of oat (Avena sativa L.) tolerance to drought. Acta Physiol. Plant 2017, 39, 153–165. [Google Scholar] [CrossRef] [Green Version]
- Royo, C.; Abaza, M.; Bianco, R.; del Moral, L.F.G. Triticale grain growth and morphometry as affected by drought stress, late sowing and simulated drought stress. Aust. J. Physiol. 2000, 27, 1051–1059. [Google Scholar] [CrossRef]
- Grzesiak, M.T.; Hura, K.; Jurczyk, B.; Hura, T.; Rut, G.; Szczyrek, P.; Grzesiak, S. Physiological markers of stress susceptibility in maize and triticale under different soil compaction and/or soil water contents. J. Plant Inter. 2017, 12, 355–372. [Google Scholar] [CrossRef] [Green Version]
- Bandurska, H.; Jóźwiak, W. A comparison of the effects of drought on proline accumulation and peroxidases activity in leaves of Festuca rubra L. and Lolium perenne L. Acta Soc. Bot. Pol. 2010, 79, 111–116. [Google Scholar] [CrossRef]
- Szechyńska-Hebda, M.; Czarnocka, W.; Hebda, M.; Bernacki, M.J.; Karpiński, S. PAD4, LSD1 and EDS1 regulate drought tolerance, plant biomass production, and cell wall properties. Plant Cell Rep. 2016, 35, 527–539. [Google Scholar] [CrossRef] [PubMed]
- Crush, J.R.; Easton, H.S.; Waller, J.E.; Hume, D.E.; Faville, M.J. Genotypic variation in patterns of root distribution, nitrate interception and response to moisture stress of a perennial ryegrass (Lolium perenne L.) mapping population. Grass Forage Sci. 2007, 62, 265–273. [Google Scholar] [CrossRef]
- Colombi, T.; Kirchgessner, N.; Walter, A.; Keller, T. Root tip shape governs root elongation rate under increased soil strength. Plant Physiol. 2017, 174, 2289–2301. [Google Scholar] [CrossRef] [Green Version]
- Geravandi, M.; Farshadfar, E.; Kahrizi, D. Evaluation of some physiological traits as indicators of drought tolerance in bread wheat genotypes. Russ. J. Plant Physiol. 2011, 58, 69–75. [Google Scholar] [CrossRef]
- Bandurska, H. Does proline accumulated in leaves of water deficit stressed barley plants confine cell membrane injury? I. Free proline accumulation and membrane injury index in drought and osmotically stressed plants. Acta Physiol. Plant 2012, 22, 409–415. [Google Scholar] [CrossRef]
- Pieczynski, M.; Wyrzykowska, A.; Milanowska, K.; Boguszewska-Mankowska, D.; Zagdanska, B.; Karlowski, W.; Jarmolowski, A.; Szweykowska-Kulinska, Z. Genomewide identification of genes involved in thepotato response to drought indicates functional evolutionary conservation with Arabidopsis plants. Plant Biotechnol. J. 2017, 16, 603–614. [Google Scholar] [CrossRef] [Green Version]
- Walter, A.; Silk, W.K.; Schurr, U. Environmental effects on spatial and temporal patterns of leaf and root growth. Annu. Rev. Plant Biol. 2009, 60, 279–304. [Google Scholar] [CrossRef]
- Batey, T. Soil compaction and soil management—A review. Soil Use Manag. 2009, 25, 335–345. [Google Scholar] [CrossRef]
- Drikvand, R.; Doosty, B.; Hosseinpour, T. Response of rainfed wheat genotypes to drought stress using drought tolerance indices. J. Agric. Sci. 2012, 4, 126–131. [Google Scholar] [CrossRef] [Green Version]
- Ye, H.; Roorkiwal, M.; Valliyodan, B.; Zhou, L.; Chen, P.; Varshney, R.K.; Nguyen, T.H. Genetic diversity of root system architecture in response to drought stress in grain legumes. J. Exp. Bot. 2018, 69, 3267–3277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; et al. Crop production under drought and heat stress: Plant responses and management option. Front Plant Sci. 2017, 8, 1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, M.P. Physiological approaches to wheat breeding. In Bread Wheat: Improvement and Production; Curtis, B.C., Rajaram, S., Gomez Macpherson, H., Eds.; Food Agr Org: Rome, Italy, 2002; pp. 118–140. [Google Scholar]
- Talebi, R.; Fayaz, F.; Naji, N. Effective selection criteria for assessing drought stress tolerance in durum wheat (Triticum durum Desf.). Gen. App. Plant Physiol. 2009, 35, 64–74. [Google Scholar]
- Zaheri, A.; Bahraminejad, S. Assessment of drought tolerance in oat (Avena sativa L.) genotypes. Ann. Biol. Res. 2012, 3, 2194–2201. [Google Scholar]
- Wituszynska, W.; Slesak, I.; Vanderauwera, S.; Szechynska-Hebda, M.; Kornas, A.; Van Der Kelen, K.; Mühlenbock, P.; Karpinska, B.; Mackowski, S.; Van Breusegem, F.; et al. Lesion Simulating Disease1, Enhanced Disease Susceptibility1, and Phytoalexin Deficient4 conditionally regulate cellular signaling homeostasis, photosynthesis, water use efficiency, and seed yield in Arabidopsis. Plant Physiol. 2013, 161, 1795–1805. [Google Scholar] [CrossRef] [Green Version]
- Dyda, M.; Wąsek, I.; Tyrka, M.; Wędzony, M.; Szechyńska-Hebda, M. Local and systemic regulation of PSII efficiency in triticale infected by the hemibiotrophic pathogen Microdochium nivale. Physiol. Plant 2019, 165, 711–727. [Google Scholar] [CrossRef]
- Stanley, C.D. Proper use and data interpretation for plant- and soil water status measuring instrumentation: Introductory remarks. Hort Sci. 1990, 25, 1534. [Google Scholar] [CrossRef]
- Richards, R.A. Defining selection criteria to improve yield under drought. Plant Grow. Regul. 1996, 20, 157–166. [Google Scholar] [CrossRef]
- Colombi, T.; Herrmann, A.M.; Vallenback, P.; Keller, T. Cortical cell diameter is key to energy costs of root growth in wheat. Plant Physiol. 2019, 180, 2049–2060. [Google Scholar] [CrossRef] [Green Version]
- Colombi, T.; Torres, L.C.; Walter, A.; Keller, T. Feedbacks between soil penetration resistance, root architecture and water uptake limit water accessibility and crop growth—A vicious circle. Sci. Total Environ. 2018, 626, 1026–1035. [Google Scholar] [CrossRef] [PubMed]
- Rapacz, M.; Kościelniak, J.; Jurczyk, B.; Adamska, A.; Wójcik, M. Different patterns of physiological and molecular response to drought in seedlings of malt- and feed-type barleys (Hordeum vulgare). J. Agron. Crop Sci. 2010, 196, 9–19. [Google Scholar] [CrossRef]
- Hochholdinger, F. Untapping root system architecture for crop improvement. J. Exp. Bot. 2016, 67, 4431–4433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fry, E.L.; Evans, A.L.; Sturrock, C.J.; Bullock, J.M.; Bardgett, R.D. Root architecture governs plasticity in response to drought. Plant Soil 2018, 433, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Wasaya, A.; Zhang, X.; Fang, Q.; Zongzheng, Y. Root phenotyping for drought tolerance: A review. Agronomy 2018, 8, 241. [Google Scholar] [CrossRef] [Green Version]
- Chaichi, M.; Sanjarian, F.; Razavi, K.; Gonzalez-Hernandez, J.L. Analysis of transcriptional responses in root tissue of bread wheat landrace (Triticum aestivum L.) reveals drought avoidance mechanisms under water scarcity. PLoS ONE 2019, 14, e0212671. [Google Scholar] [CrossRef]
- Li, Y.C.; Meng, F.R.; Zhang, C.Y.; Zhang, N.; Sun, M.S.; Ren, J.P.; Niu, H.B.; Wang, X.; Yin, J. Comparative analysis of water stress-responsive transcriptomes in drought-susceptible and -tolerant wheat (Triticum aestivum L.). J Plant Biol. 2012, 55, 349–360. [Google Scholar] [CrossRef]
- Ma, J.; Li, R.; Wang, H.; Li, D.; Wang, X.; Zhang, Y.; Zhen, W.; Duan, H.; Yan, G.; Li, Y. Transcriptomics analyses reveal wheat responses to drought stress during reproductive stages under field conditions. Fron. Plant Sci. 2017, 8, 592. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, M.; Soolanayakanahally, R.; Ogawa, S.; Uga, Y.; Selvaraj, M.G.; Kagale, S. Drought response in wheat: Key genes and regulatory mechanisms controlling root system architecture and transpiration efficiency. Front. Chem. 2017, 5, 106. [Google Scholar] [CrossRef] [Green Version]
- Benny, J.; Pisciotta, A.; Caruso, T.; Martinelli, F. Identification of key genes and its chromosome regions linked to drought responses in leaves across different crops through meta-analysis of RNA-Seq data. BMC Plant Biol. 2019, 19, 194. [Google Scholar] [CrossRef] [Green Version]
- Janiak, A.; Kwaśniewski, M.; Szarejko, I. Gene expression regulation in roots under drought. J. Exp. Bot. 2017, 67, 1003–1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudziak, K.; Zapalska, M.; Börner, A.; Szczerba, H.; Kowalczyk, K.; Nowak, M. Analysis of wheat gene expression related to the oxidative stress response and signal transduction under short-term osmotic stress. Sci. Rep. 2019, 9, 2743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iquebal, M.A.; Sharma, P.; Jasrotia, R.S.; Jaiswal, S.; Kaur, A.; Saroha, M.; Angadi, U.B.; Sheoran, S.; Singh, R.; Singh, G.P.; et al. RNAseq analysis reveals drought-responsive molecular pathways with candidate genes and putative molecular markers in root tissue of wheat. Sci. Rep. 2019, 9, 13917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillel, D.; van Bavel, C.H.M. Simulation of profile water storage as related to soil hydraulic properties. Soil Sci. Soc. Am. J. 1976, 40, 807–815. [Google Scholar] [CrossRef]
Genotype | Treatment | H (cm) | LNo | Dry Matter (g plant−1) | |||||
---|---|---|---|---|---|---|---|---|---|
S | RU | RB | R (RU + RB) | S + R | S/R | ||||
Drought-Sensitive Genotypes (DSI > 1.0) | |||||||||
Telimena | C | 51.30 b | 6.70 a | 1.48 a | 0.28 b | 0.55 a | 0.82 ab | 2.30 a | 1.80 a |
D | 40.00 de | 6.30 ab | 0.95 d | 0.24 c | 0.32 e | 0.56 b | 1.51 c | 1.70 ab | |
RTC | 0.22 | 0.06 | 0.36 | 0.14 | 0.42 | 0.32 | 0.34 | 0.06 | |
Sirocco | C | 58.00 a | 6.30 ab | 1.44 ab | 0.28 b | 0.55 a | 0.83 a | 2.27 a | 1.74 a |
D | 44.00 d | 6.00 b | 0.97 d | 0.24 c | 0.32 e | 0.56 b | 1.53 c | 1.73 a | |
RTC | 0.24 | 0.05 | 0.33 | 0.14 | 0.42 | 0.32 | 0.33 | 0.01 | |
Goplana | C | 51.70 b | 6.30 ab | 1.33 b | 0.25 bc | 0.51 ab | 0.84 a | 2.17 a | 1.59 cd |
D | 41.00 de | 5.70 bc | 0.79 e | 0.23 c | 0.30 e | 0.53 d | 1.32 d | 1.49 d | |
RTC | 0.21 | 0.10 | 0.41 | 0.08 | 0.41 | 0.37 | 0.39 | 0.06 | |
Mean ± SE | C | 53.70 ± 2.17 | 6.40 ± 0.10 | 1.41 ± 0.05 | 0.27 ± 0.01 | 0.54 ± 0.01 | 0.83 ± 0.01 | 2.24 ± 0.04 | 1.71 ± 0.06 |
D | 41.70 ± 1.20 | 6.00 ± 0.20 | 0.90 ± 0.05 | 0.24 ± 0.05 | 0.31 ± 0.01 | 0.55 ± 0.01 | 1.45 ± 0.07 | 1.64 ± 0.08 | |
RTC | 0.22 | 0.07 | 0.36 | 0.11 | 0.43 | 0.34 | 0.35 | 0.04 | |
Drought-Resistant Genotypes (DSI < 1.0) | |||||||||
Sharki | C | 46.30 c | 6.00 b | 1.34 b | 0.28 b | 0.56 a | 0.82 a | 2.18 a | 1.59 cd |
D | 38.00 de | 4.70 d | 1.10 cd | 0.34 a | 0.47 c | 0.81 ab | 1.91 b | 1.37 e | |
RTC | 0.18 | 0.22 | 0.18 | −0.21 | 0.16 | 0.01 | 0.12 | 0.14 | |
Struna | C | 47.30 c | 6.00 b | 1.37 b | 0.27 bc | 0.53 ab | 0.80 b | 2.17 a | 1.71 ab |
D | 38.70 de | 4.70 d | 1.10 c | 0.32 a | 0.43 cd | 0.75 bc | 1.85 b | 1.49 d | |
RTC | 0.18 | 0.22 | 0.20 | −0.18 | 0.19 | 0.06 | 0.15 | 0.13 | |
SMJ 2115 | C | 49.70 bc | 6.30 ab | 1.33 b | 0.24 c | 0.54 ab | 0.81 ab | 2.14 ab | 1.65 bc |
D | 41.30 de | 5.30 c | 0.99 d | 0.30 ab | 0.40 d | 0.73 c | 1.72 c | 1.36 e | |
RTC | 0.17 | 0.16 | 0.26 | −0.25 | 0.25 | 0.10 | 0.20 | 0.18 | |
Mean ± SE | C | 47.80 ± 1.00 | 6.10 ± 0.10 | 1.35 ± 0.01 | 0.27 ± 0.00 | 0.54 ± 0.01 | 0.82 ± 0.01 | 2.16 ± 0.01 | 1.65 ± 0.03 |
D | 39.30 ± 1.00 | 4.90 ± 0.20 | 1.06 ± 0.04 | 0.32 ± 0.01 | 0.43 ± 0.02 | 0.76 ± 0.02 | 1.82 ± 0.06 | 1.40 ± 0.04 | |
RTC | 0.18 | 0.20 | 0.21 | −0.19 | 0.20 | 0.07 | 0.16 | 0.15 | |
ANOVA | |||||||||
Variable | df | H | LNo | S | RU | RB | R | R + S | S/R |
Genotype (G) | 5 | ** | ns | * | ** | ** | * | ** | *** |
Treatment (T) | 1 | * | ns | * | * | * | * | * | * |
G × T | 5 | * | ns | * | * | * | * | * | * |
Genotype | Treatment | Seminal Roots | Seminal Adventitious Roots | Nodal Roots | ||
---|---|---|---|---|---|---|
R1SL (cm) | R2SAL (cm) | RNo | RL (cm) | RML (cm) | ||
Drought-Sensitive Genotypes (DSI > 1.0) | ||||||
Telimena | C | 43.2 a | 43.2 c | 16.7 a | 243.7 d | 14.6 d |
D | 40.2 a | 49.8 a | 16.0 ab | 223.3 e | 14.0 d | |
RTC | 0.07 | −0.15 | 0.04 | 0.08 | 0.04 | |
Sirocco | C | 44.3 a | 41.8 d | 16.7 a | 262.2 c | 16.0 c |
D | 42.0 a | 45.7 b | 15.7 ab | 230.7 de | 14.7 d | |
RTC | 0.05 | −0.09 | 0.06 | 0.12 | 0.08 | |
Goplana | C | 41.7 a | 50.7 a | 16.3 a | 279.8 a | 17.3 b |
D | 41.6 a | 43.5 c | 15.3 b | 236.0 d | 15.4 cd | |
RTC | 0.00 | 0.14 | 0.06 | 0.16 | 0.11 | |
Mean ± SE | C | 42.2 ± 0.7 | 42.4 ± 1.4 | 16.6 ± 0.1 | 261.9 ± 10.4 | 16.1 ± 0.7 |
D | 41.1 ± 0.8 | 39.4 ± 1.7 | 15.7 ± 0.2 | 230.0 ± 3.7 | 14.7 ± 0.4 | |
RTC | 0.03 | 0.07 | 0.05 | 0.12 | 0.09 | |
Drought-Resistant Genotypes (DSI < 1.0) | ||||||
Sharki | C | 42.3 a | 44.3 bc | 15.3 b | 265.2 c | 17.3 b |
D | 41.0 a | 38.5 f | 15.0 b | 257.3 c | 17.2 b | |
RTC | 0.03 | 0.13 | 0.02 | 0.03 | 0.01 | |
Struna | C | 43.0 a | 37.8 f | 16.0 a | 297.7 a | 18.6 a |
D | 42.7 a | 46.7 b | 15.3 b | 283.3 b | 18.4 ab | |
RTC | 0.01 | −0.23 | 0.04 | 0.05 | 0.01 | |
SMJ 2115 | C | 41.0 a | 32.3 g | 16.0 a | 283.5 b | 17.7 ab |
D | 43.3 a | 40.5 ef | 16.0 a | 275.0 bc | 17.2 b | |
RTC | −0.06 | −0.25 | 0.00 | 0.03 | 0.03 | |
Mean ± SE | C | 42.6 ± 0.5 | 40.0 ± 2.2 | 15.8 ± 0.2 | 282.1 ± 9.4 | 17.9 ± 0.4 |
D | 41.9 ± 0.6 | 38.6 ± 1.9 | 15.4 ± 0.3 | 271.8 ± 7.6 | 17.7 ± 0.4 | |
RTC | 0.02 | 0.04 | 0.03 | 0.04 | 0.01 | |
ANOVA | ||||||
Variable | df | R1SL | R2SAL | RNo | RL | RML |
Genotype (G) | 5 | ns | * | ns | * | ns |
Treatment (T) | 1 | ns | ns | ns | * | * |
G × T | 5 | ns | ns | ns | ns | * |
Genotype | Treatment | H (cm) | LNo | Dry Matter (g plant−1) | |||
---|---|---|---|---|---|---|---|
S | R | S + R | S/R | ||||
Drought-Sensitive Genotypes (DSI > 1.0) | |||||||
Telimena | C | 46.50 b | 5.50 a | 1.67 a | 0.97 a | 2.64 a | 1.72 b |
D | 35.00 ef | 5.20 ab | 1.07 de | 0.66 d | 1.73 f | 1.62 b | |
RTC | 0.25 | 0.05 | 0.36 | 0.32 | 0.34 | 0.05 | |
Sirocco | C | 46.70 b | 5.20 ab | 1.62 a | 0.96 ab | 2.58 ab | 1.69 b |
D | 39.00 ef | 5.00 bc | 1.10 d | 0.64 d | 1.74 f | 1.72 b | |
RTC | 0.16 | 0.04 | 0.32 | 0.33 | 0.33 | −0.25 | |
Goplana | C | 53.00 a | 5.20 ab | 1.63 a | 0.88 abc | 2.51 abc | 1.85 a |
D | 35.90 ef | 5.00 bc | 0.97 e | 0.64 d | 1.61 f | 1.52 d | |
RTC | 0.32 | 0.04 | 0.40 | 0.27 | 0.36 | −0.14 | |
Mean ± SE | C | 48.70 ± 2.10 | 5.30 ± 0.10 | 1.64 ± 0.02 | 0.94 ± 0.03 | 2.58 ± 0.04 | 1.75 ± 0.05 |
D | 36.60 ± 1.20 | 5.10 ± 0.10 | 1.05 ± 0.04 | 0.63 ± 0.02 | 1.68 ± 0.05 | 1.67 ± 0.03 | |
RTC | 0.25 | 0.04 | 0.36 | 0.32 | 0.35 | 0.05 | |
Drought-Resistant Genotypes (DSI < 1.0) | |||||||
Sharki | C | 42.2 cd | 5.2 ab | 1.50 b | 0.93 ab | 2.43 bc | 1.61 c |
D | 34.2 f | 4.0 e | 1.23 c | 0.85 bc | 2.08 d | 1.45 e | |
RTC | 0.19 | 0.23 | 0.18 | 0.09 | 0.14 | 0.10 | |
Struna | C | 41.5 cd | 5.0 bc | 1.49 b | 0.97 a | 2.47 bc | 1.54 d |
D | 33.0 f | 4.5 d | 1.23 c | 0.91 abc | 2.14 d | 1.35 f | |
RTC | 0.20 | 0.10 | 0.17 | 0.06 | 0.13 | 0.12 | |
SMJ 2115 | C | 44.7 bc | 5.5 a | 1.49 b | 0.94 ab | 2.43 c | 1.59 c |
D | 36.3 ef | 4.7 cd | 1.11 d | 0.80 b | 1.91 e | 1.39 f | |
RTC | 0.19 | 0.15 | 0.26 | 0.15 | 0.21 | 0.12 | |
Mean ± SE | C | 42.80 ± 1.00 | 5.20 ± 0.20 | 1.49 ± 0.00 | 0.95 ± 0.01 | 2.44 ± 0.01 | 1.58 ± 0.02 |
D | 34.50 ± 1.00 | 4.40 ± 0.20 | 1.19 ± 0.04 | 0.85 ± 0.03 | 2.04 ± 0.07 | 1.40 ± 0.03 | |
RTC | 0.20 | 0.16 | 0.20 | 0.10 | 0.16 | 0.11 | |
ANOVA | |||||||
Variable | df | H | LNo | S | R | S + R | S/R |
Genotype (G) | 5 | ns | * | ** | ** | ** | *** |
Treatment (T) | 1 | * | ns | * | * | * | * |
G × T | 5 | ns | ns | * | * | * | ** |
Genotype | Treatment | R | RNo | RL (cm) | ||||||
0–30° | 30–60° | 60–90° | 0–30° | 30–60° | 60–90° | 0–30° | 30–60° | 60–90° | ||
Drought-Sensitive Genotypes (DSI > 1.0) | ||||||||||
Telimena | C | 0.04 g | 0.16 cd | 0.77 a | 0.25 g | 2.00 f | 9.75 a | 1.1 de | 40.6 e | 185.0 a |
D | 0.04 g | 0.13 d | 0.49 c | 0.30 g | 2.50 e | 9.00 b | 1.2 de | 38.1 f | 105.6 f | |
RTC | 0.00 | 0.19 | 0.36 | −0.20 | −0.25 | 0.08 | −0.09 | 0.06 | 0.43 | |
Sirocco | C | 0.04 g | 0.15 d | 0.68 b | 0.50 fg | 1.75 f | 7.75 de | 3.0 de | 50.3 c | 141.8 d |
D | 0.05 fg | 0.13 d | 0.46 cd | 0.75 g | 2.00 f | 7.00 f | 3.4 de | 33.2 g | 90.1 g | |
RTC | −0.25 | 0.13 | 0.32 | −0.50 | −0.14 | 0.10 | −0.13 | 0.34 | 0.36 | |
Goplana | C | 0.04 g | 0.26 a | 0.66 b | 0.50 fg | 3.00 c | 7.50 e | 5.4 d | 40.6 e | 98.5 fg |
D | 0.04 g | 0.16 cd | 0.44 cd | 0.75 g | 2.75 de | 7.00 f | 4.5 de | 45.6 d | 130.0 d | |
RTC | 0.00 | 0.40 | 0.33 | −0.50 | 0.08 | 0.07 | 0.16 | −0.12 | −0.32 | |
Mean ± SE | C | 0.04 ± 0.00 | 0.18 ± 0.4 | 0.71 ± 0.07 | 0.43 ± 0.07 | 2.25 ± 0.38 | 8.33 ± 0.08 | 3.2 ± 0.7 | 43.8 ± 0.1 | 141.8 ± 0.3 |
D | 0.04 ± 0.01 | 0.14 ± 0.1 | 0.46 ± 0.02 | 0.60 ± 0.15 | 2.42 ± 0.22 | 8.08 ± 0.46 | 3.0 ± 0.6 | 39.0 ± 0.2 | 108.6 ± 0.2 | |
RTC | 0.09 | 0.22 | 0.35 | −0.40 | −0.08 | 0.03 | 0.06 | 0.11 | 0.23 | |
Drought-Resistant Genotypes (DSI < 1.0) | ||||||||||
Sharki | C | 0.07 ef | 0.27 a | 0.58 bc | 1.00 d | 3.75 b | 8.00 cd | 6.5 d | 57.1 b | 155.6 bc |
D | 0.11 bc | 0.26 a | 0.48 cd | 1.75 b | 4.25 a | 8.00 cd | 11.8 bc | 63.8 a | 117.5 e | |
RTC | −0.57 | 0.04 | 0.17 | −0.75 | −0.13 | 0.00 | −0.81 | −0.12 | 0.24 | |
Struna | C | 0.08 de | 0.25 ab | 0.64 b | 1.00 d | 3.00 c | 7.75 de | 13.5 b | 61.3 a | 157.0 b |
D | 0.13 ab | 0.24 b | 0.54 c | 1.75 b | 3.75 b | 8.00 cd | 19.5 a | 64.0 a | 134.4 d | |
RTC | −0.63 | 0.04 | 0.16 | −0.75 | −0.25 | −0.03 | −0.44 | −0.04 | 0.14 | |
SMJ 2115 | C | 0.10 cd | 0.19 c | 0.64 b | 1.50 c | 2.75 de | 9.25 a | 11.0 c | 50.0 c | 169.1 b |
D | 0.15 a | 0.17 c | 0.48 cd | 2.75 a | 3.00 c | 7.50 e | 15.0 b | 53.0 c | 153.3 c | |
RTC | −0.48 | 0.11 | 0.25 | −0.83 | −0.09 | 0.19 | −0.36 | −0.06 | 0.09 | |
Mean ± SE | C | 0.08 ± 0.01 | 0.24 ± 0.02 | 0.62 ± 0.02 | 1.17 ± 0.17 | 3.17 ± 0.30 | 8.33 ± 0.46 | 10.30 ± 0.30 | 56.10 ± 0.10 | 160.60 ± 0.10 |
D | 0.13 ± 0.01 | 0.22 ± 0.03 | 0.50 ± 0.02 | 2.08 ± 0.33 | 3.67 ± 0.36 | 7.83 ± 0.17 | 15.40 ± 0.03 | 60.30 ± 0.10 | 135.00 ± 0.10 | |
RTC | −0.63 | 0.08 | 0.19 | −0.78 | −0.16 | 0.06 | −0.49 | −0.07 | 0.16 | |
ANOVA | ||||||||||
Variable | df | R | RNo | RL (cm) | ||||||
0–30° | 30–60° | 60–90° | 0–30° | 30–60° | 60–90° | 0–30° | 30–60° | 60–90° | ||
Genotype (G) | 5 | ** | * | * | *** | ** | * | ** | ** | ** |
Treatment (T) | 1 | * | * | * | * | ns | ns | ** | * | * |
G × T | 5 | * | * | * | ** | ns | ns | ns | ns | * |
Container | H | LNo | Dry Matter | Root Traits | |||||
---|---|---|---|---|---|---|---|---|---|
S | R | S + R | S/R | RNo | RL | RML | |||
Root-box | 0.881 ** | −0.803 ** | 0.751 * | 0.876 ** | 0.818 ** | −0.908 ** | 0.899 ** | 0.859 ** | 0.733 * |
Root-basket | 0.943 *** | −0.918 *** | 0.771 * | 0.818 ** | 0.794 * | −0.779 * | 0.918 ** | .0.906 ** | 0.843 ** |
Ensembl Gene/Gene ID | UniProtKB Function/Process |
---|---|
Transcription Factors | |
Transcription initiation factor TFIID subunit 10/ TraesCS7B02G097300 | DNA-templated transcription, mediating promoter responses to various activators and repressors |
Ethylene responsive transcription factor 5a/ TraesCS5B02G214400 | |
BZIP transcription factor B/TraesCS6B02G364000 | DNA binding, ABA signaling |
DRF-like transcription factor DRFL2a/TraesCS6B02G331000 | DNA binding, transcription regulation |
DRF-like transcription factor DRFL2b/TraesCS6D02G281200 | |
DRF-like transcription factor DRFL2c/TraesCS6A02G301900 | |
Drought-responsive factor-like transcription factor DRFL1a/TraesCS5D02G200900 | |
WXPL1B transcription factor/TraesCS5B02G193200 | |
R2R3-MYB transcription factor TaMyb1D/TraesCS5D02G335700 | DNA binding, cell differentiation |
Transcription factor LIM/TraesCS5D02G115000 | Actin filament binding, metal ion binding, mRNA binding, actin filament bundle assembly |
Transcription initiation factor IIA subunit 2/TraesCS1D02G024600 | Transcription initiation from RNA polymerase II promoter |
MYB transcription factor 80/TraesCS2A02G206400 | Transcription regulatory region DNA binding, cell differentiation |
MYB transcription factor 74/TraesCS2D02G209600 | |
MIKC-type MADS-box transcription factor WM30/TraesCS2A02G337900 | DNA binding, transcription factor activity, protein dimerization activity, RNA polymerase II regulatory region |
MYB transcription factor SM152-3/TraesCS7A02G179900 | Transcription regulatory region DNA binding, cell differentiation |
MYB transcription factor SM152-1/TraesCS7B02G085100 | |
MYB transcription factor SM152-2/TraesCS7D02G181400 | |
MYB13 transcription factor/TraesCS3A02G535100 | |
R2R3 MYB transcriptional factor/TraesCS7D02G272400 | |
NAC transcription factor 6A/TraesCS5B02G054200 | DNA binding, transcription regulation |
NAC transcription factor/TraesCS5D02G059700 | |
MYB-related protein/TraesCS3D02G540600 | Sequence-specific DNA binding, transcription regulation |
MYB protein/TraesCS3B02G612200 | |
R2R3-MYB protein/TraesCS3A02G108000 | Sequence-specific DNA binding, cell differentiation |
NAC domain-containing protein 2a-like protein/TraesCS5B02G480900 | Sequence-specific DNA binding, transcription regulation |
NAC transcription factor 6A/TraesCS3A02G406000 | |
NAC transcription factor 6B/TraesCS3B02G439600 | |
NAC domain-containing protein 18/TraesCS7D02G263800 | |
RNAC1 transcription factor/TraesCS2D02G324700 | |
WRKY transcription factor/TraesCS3B02G324400 | |
WRKY80 transcription factor/TraesCS6A02G146900 | |
Auxin | |
Auxin-responsive protein/TraesCS4B02G070300 | Uncharacterized protein |
Auxin-responsive protein/TraesCS4A02G245100 | |
Auxin-responsive protein/TraesCS4D02G069100 | |
Auxin-responsive protein/TraesCS5D02G069300 | |
Auxin-responsive protein/TraesCS5B02G058500 | |
Auxin-responsive protein/TraesCS5D02G392000 | |
Auxin-responsive protein/TraesCS5A02G382600 | Auxin-induced protein, auxin-activated signaling pathway |
Auxin-responsive protein/TraesCS5A02G058700 | |
Auxin-responsive protein/TraesCS5B02G386800 | Uncharacterized protein |
Auxin-responsive protein/TraesCS5D02G069200 | Auxin-induced protein, auxin-activated signaling pathway |
Auxin efflux carrier component/TraesCS7B02G095500 | Auxin efflux carrier, auxin-activated signaling, transmembrane transport |
Auxin-responsive protein/TraesCS5D02G388200 | Auxin-responsive protein |
Auxin-responsive protein/TraesCS7B02G256100 | Uncharacterized protein |
Auxin-responsive protein/TraesCS7A02G371500 | |
Auxin-responsive protein/TraesCS5B02G381800 | |
Cytokinin | |
Cytokinin riboside 5′-monophosphate phosphoribohydrolase/TraesCS3A02G251500 | Hydrolase activity cytokinin, biosynthetic process |
Mitogen-activated Protein Kinase | |
Mitogen-activated protein kinase/TraesCS7A02G422500 | ATP binding, cell division, response to abscisic acid, ethylene, hydrogen peroxide, priming of cellular response to stress |
Mitogen-activated protein kinase/TraesCS7A02G111300 | |
Abscisic Acid | |
HVA22-like protein/TraesCS3A02G283300 | Receptor expression-enhancing protein |
HVA22-like protein/TraesCS4A02G080700 | |
Abscisic stress-ripening protein/TraesCS4D02G109500 | |
HVA22-like protein/TraesCS2B02G313000 | Uncharacterized protein |
HVA22-like protein/TraesCS2D02G294700 | |
HVA22-like protein/TraesCS2A02G296800 | Receptor expression-enhancing protein |
Ethylene | |
Transmembrane 9 superfamily member/TraesCS6D02G265500 | Multi-pass membrane protein, signal peptide, protein localization to membrane |
Transmembrane 9 superfamily member/TraesCS6B02G313900 | |
Ethylene receptor/TraesCS6A02G399400 | Ethylene binding, signaling pathway |
Antioxidative Enzymes | |
Superoxide dismutase/TraesCS2A02G537100 | Catalyze the conversion of superoxide radicals to molecular oxygen, metal ion binding, stress responses |
Catalase/TraesCS7B02G473400 | Heme binding, metal ion binding, reactive oxygen species detoxification, hydrogen peroxide catabolic process, response to abscisic acid and salicylic acid |
Catalase/TraesCSU02G105300 | |
Dopamine beta-monooxygenase/TraesCS3B02G300400 | Oxidation–reduction process, metal ion binding, electron transport, flavin adenine dinucleotide binding, auxin biosynthesis process, NADP binding |
Glutathione reductase/TraesCS6B02G423100 | Oxidoreductase activity, detoxification of ROS, glutathione metabolism |
Superoxide dismutase [Cu–Zn]/TraesCS4D02G242800 | Catalyze the conversion of superoxide radicals to molecular |
Flavin-containing monooxygenase/TraesCS4B02G370200 | Oxidation–reduction process, flavin adenine dinucleotide binding, NADP binding, auxin biosynthetic process |
Flavin-containing monooxygenase/TraesCS1A02G211100 | |
Flavin-containing monooxygenase/TraesCS5B02G531000 | |
Flavin-containing monooxygenase/TraesCS4A02G313200 | |
Flavin-containing monooxygenase/TraesCS7D02G538300 | |
Flavin-containing monooxygenase/TraesCS7A02G552000 | |
Flavin-containing monooxygenase/TraesCS2D02G012100 | |
Flavin-containing monooxygenase/TraesCS2B02G010100 | |
Flavin-containing monooxygenase/TraesCS2A02G011500 | |
Flavin-containing monooxygenase/TraesCS4B02G366800 | |
Flavin-containing monooxygenase/TraesCS4D02G360900 | |
Flavin-containing monooxygenase/TraesCS5A02G534500 | |
Flavin-containing monooxygenase/TraesCS7D02G538700 | |
Flavin-containing monooxygenase/TraesCS5D02G355700 | |
Flavin-containing monooxygenase/TraesCS5B02G350700 | |
Flavin-containing monooxygenase/TraesCS3A02G010900 | |
Flavin-containing monooxygenase/TraesCS5A02G349300 | |
Flavin-containing monooxygenase/TraesCS4D02G269000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grzesiak, M.T.; Hordyńska, N.; Maksymowicz, A.; Grzesiak, S.; Szechyńska-Hebda, M. Variation Among Spring Wheat (Triticum aestivum L.) Genotypes in Response to the Drought Stress. II—Root System Structure. Plants 2019, 8, 584. https://doi.org/10.3390/plants8120584
Grzesiak MT, Hordyńska N, Maksymowicz A, Grzesiak S, Szechyńska-Hebda M. Variation Among Spring Wheat (Triticum aestivum L.) Genotypes in Response to the Drought Stress. II—Root System Structure. Plants. 2019; 8(12):584. https://doi.org/10.3390/plants8120584
Chicago/Turabian StyleGrzesiak, Maciej T., Natalia Hordyńska, Anna Maksymowicz, Stanisław Grzesiak, and Magdalena Szechyńska-Hebda. 2019. "Variation Among Spring Wheat (Triticum aestivum L.) Genotypes in Response to the Drought Stress. II—Root System Structure" Plants 8, no. 12: 584. https://doi.org/10.3390/plants8120584
APA StyleGrzesiak, M. T., Hordyńska, N., Maksymowicz, A., Grzesiak, S., & Szechyńska-Hebda, M. (2019). Variation Among Spring Wheat (Triticum aestivum L.) Genotypes in Response to the Drought Stress. II—Root System Structure. Plants, 8(12), 584. https://doi.org/10.3390/plants8120584