Pectin-Rich Amendment Enhances Soybean Growth Promotion and Nodulation Mediated by Bacillus Velezensis Strains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Culture Conditions
2.2. Pectate Lyase Activity Test
2.3. Growth of Bv PGPR Strains Using Pectin as a Sole Carbon Source
2.4. Greenhouse Trials of Pectin and PGPR Amendments on Soybean to Assess Root Colonization, Growth Promotion, and Nodulation
2.4.1. Preparation of Pectin Powder and Liquid Suspensions
2.4.2. Field Soil Preparation
2.4.3. Soybean Seed Inoculation
2.4.4. Soybean Plant Growth Measurement
2.4.5. Selection of Bv Rifampicin-Resistant Mutants and Evaluation of Bv PGPR Strains Root Colonizing Capacity
2.4.6. Evaluation of Soybean Nodulation
2.5. Field Trial of Pectin and PGPR Amendments on Soybean Growth Promotion and Nodulation
2.5.1. Soil Type and Application of Bradyrhizobium Japonicum Inoculant
2.5.2. Soybean Seed Inoculation
2.5.3. Soybean Plant Growth Measurement
2.5.4. Evaluation of Soybean Nodulation
2.6. Greenhouse Trials of Orange Peel Liquid Suspension and PGPR Amendments on Soybean Growth Promotion and Nodulation in Field Soil
2.6.1. Growth of Bv PGPR Strains Using Orange Peel as a Sole Carbon Source
2.6.2. Preparation of Orange Peel Liquid Suspensions
2.6.3. Field Soil Preparation
2.6.4. Soybean Seed Inoculation
2.6.5. Soybean Plant Growth Measurement and Nodule Evaluation
2.7. Statistical Analyses and Experimental Design
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, F.; Dashti, N.; Hynes, R.; Smith, D.L. Plant growth promoting rhizobacteria and soybean [Glycine max (L.) Merr.] nodulation and nitrogen fixation at suboptimal root zone temperatures. Ann. Bot. 1996, 77, 453–460. [Google Scholar] [CrossRef]
- Rodríguez, H.; Fraga, R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 1999, 17, 319–339. [Google Scholar] [CrossRef]
- Rana, A.; Saharan, B.; Joshi, M.; Prasanna, R.; Kumar, K.; Nain, L. Identification of multi-trait PGPR isolates and evaluating their potential as inoculants for wheat. Ann. Microbiol. 2011, 61, 893–900. [Google Scholar] [CrossRef]
- Singh, J.S. Plant growth promoting rhizobacteria. Resonance 2013, 18, 275–281. [Google Scholar] [CrossRef]
- Ryu, C.-M.; Farag, M.A.; Hu, C.-H.; Reddy, M.S.; Wei, H.-X.; Paré, P.W.; Kloepper, J.W. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. USA 2003, 100, 4927–4932. [Google Scholar] [CrossRef] [PubMed]
- Idriss, E.E.; Makarewicz, O.; Farouk, A.; Rosner, K.; Greiner, R.; Bochow, H.; Richter, T.; Borriss, R. Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effecta. Microbiology 2002, 148, 2097–2109. [Google Scholar] [CrossRef]
- Buensanteai, N.; Yuen, G.; Prathuangwong, S. The biocontrol bacterium Bacillus amyloliquefaciens KPS46 produces auxin, surfactin and extracellular proteins for enhanced growth of soybean plant. Thai J. Agric. Sci. 2008, 41, 101–116. [Google Scholar]
- Danielsson, J.; Reva, O.; Meijer, J. Protection of oilseed rape (Brassica napus) toward fungal pathogens by strains of plant-associated Bacillus amyloliquefaciens. Microb. Ecol. 2007, 54, 134–140. [Google Scholar] [CrossRef]
- Fan, B.; Chen, X.H.; Budiharjo, A.; Bleiss, W.; Vater, J.; Borriss, R. Efficient colonization of plant roots by the plant growth promoting bacterium Bacillus amyloliquefaciens FZB42, engineered to express green fluorescent protein. J. Biotechnol. 2011, 151, 303–311. [Google Scholar] [CrossRef]
- Palazzini, J.M.; Dunlap, C.A.; Bowman, M.J.; Chulze, S.N. Bacillus velezensis RC 218 as a biocontrol agent to reduce Fusarium head blight and deoxynivalenol accumulation: Genome sequencing and secondary metabolite cluster profiles. Microbiol. Res. 2016, 192, 30–36. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, B.; Liu, H.; Han, J.; Zhang, Y. Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea. Biol. Control 2017, 105, 27–39. [Google Scholar] [CrossRef]
- Hossain, M.J.; Ran, C.; Liu, K.; Ryu, C.-M.; Rasmussen-Ivey, C.R.; Williams, M.A.; Hassan, M.K.; Choi, S.-K.; Jeong, H.; Newman, M. Deciphering the conserved genetic loci implicated in plant disease control through comparative genomics of Bacillus amyloliquefaciens subsp. plantarum. Front. Plant Sci. 2015, 6, 631. [Google Scholar] [CrossRef]
- Willats, W.G.; McCartney, L.; Mackie, W.; Knox, J.P. Pectin: Cell biology and prospects for functional analysis. Plant Mol. Biol. 2001, 47, 9–27. [Google Scholar] [CrossRef]
- Ridley, B.L.; O’Neill, M.A.; Mohnen, D. Pectins: Structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 2001, 57, 929–967. [Google Scholar] [CrossRef]
- Virk, B.; Sogi, D. Extraction and characterization of pectin from apple (Malus Pumila. Cv Amri) peel waste. Int. J. Food Prop. 2004, 7, 693–703. [Google Scholar] [CrossRef]
- Silva, I.M.; Gonzaga, L.V.; Amante, E.R.; Teófilo, R.F.; Ferreira, M.M.; Amboni, R.D. Optimization of extraction of high-ester pectin from passion fruit peel (Passiflora edulis flavicarpa) with citric acid by using response surface methodology. Bioresour. Technol. 2008, 99, 5561–5566. [Google Scholar]
- Kratchanova, M.; Pavlova, E.; Panchev, I. The effect of microwave heating of fresh orange peels on the fruit tissue and quality of extracted pectin. Carbohydr. Polym. 2004, 56, 181–185. [Google Scholar] [CrossRef]
- Maran, J.P.; Sivakumar, V.; Thirugnanasambandham, K.; Sridhar, R. Optimization of microwave assisted extraction of pectin from orange peel. Carbohydr. Polym. 2013, 97, 703–709. [Google Scholar] [CrossRef]
- Driouich, A.; Follet-Gueye, M.-L.; Vicré-Gibouin, M.; Hawes, M. Root border cells and secretions as critical elements in plant host defense. Curr. Opin. Plant Biol. 2013, 16, 489–495. [Google Scholar] [CrossRef]
- Hawes, M.; Brigham, L.; Wen, F.; Woo, H.; Zhu, Y. Function of root border cells in plant health: Pioneers in the Rhizosphere. Annu. Rev. Phytopathol. 1998, 36, 311–327. [Google Scholar] [CrossRef]
- Cannesan, M.A.; Durand, C.; Burel, C.; Gangneux, C.; Lerouge, P.; Ishii, T.; Laval, K.; Follet-Gueye, M.-L.; Driouich, A.; Vicré-Gibouin, M. Effect of arabinogalactan proteins from the root caps of Pisum sativum and Brassica napus on Aphanomyces euteiches zoospore chemotaxis and germination. Plant Physiol. 2012, 159, 1658–1670. [Google Scholar] [CrossRef] [PubMed]
- Rouse, A. Pectin: Distribution, Significance. In Citrus Science and Technology; Di dalam Nagy, S., Shaw dan, P.E., Veldhuis, M.K., Eds.; The AVI Publishing Company Inc.: Westport, CT, USA, 1977. [Google Scholar]
- El-Nawawi, S.A.; Shehata, F.R. Extraction of pectin from Egyptian orange peel. Factors affecting the extraction. Biol. Wastes 1987, 20, 281–290. [Google Scholar] [CrossRef]
- Anonymous. CP Kelco Pectin. Available online: https://www.cpkelco.com/products/pectin/ (accessed on 15 November 2019).
- Canteri-Schemin, M.H.; Fertonani, H.C.R.; Waszczynskyj, N.; Wosiacki, G. Extraction of pectin from apple pomace. Braz. Arch. Biol. Technol. 2005, 48, 259–266. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Chen, Q.; Lü, X. Pectin extracted from apple pomace and citrus peel by subcritical water. Food Hydrocoll. 2014, 38, 129–137. [Google Scholar] [CrossRef]
- Wu, K.; Fang, Z.; Guo, R.; Pan, B.; Shi, W.; Yuan, S.; Guan, H.; Gong, M.; Shen, B.; Shen, Q. Pectin enhances bio-control efficacy by inducing colonization and secretion of secondary metabolites by Bacillus amyloliquefaciens SQY 162 in the rhizosphere of tobacco. PLoS ONE 2015, 10, e0127418. [Google Scholar] [CrossRef]
- Murphey Coy, R.; Held, D.W.; Kloepper, J.W. Bacterial Inoculant Treatment of Bermudagrass Alters Ovipositional Behavior, Larval and Pupal Weights of the Fall Armyworm (Lepidoptera: Noctuidae). Environ. Entomol. 2017, 46, 831–838. [Google Scholar] [CrossRef]
- Liu, K.; Garrett, C.; Fadamiro, H.; Kloepper, J.W. Antagonism of black rot in cabbage by mixtures of plant growth-promoting rhizobacteria (PGPR). BioControl 2016, 61, 605–613. [Google Scholar] [CrossRef]
- Liu, K.; Newman, M.; McInroy, J.A.; Hu, C.-H.; Kloepper, J.W. Selection and assessment of plant growth-promoting rhizobacteria for biological control of multiple plant diseases. Phytopathology 2017, 107, 928–936. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; White, T.L.; Martinez, M.C.; McInroy, J.A.; Kloepper, J.W.; Klassen, W. Evaluation of plant growth-promoting rhizobacteria for control of Phytophthora blight on squash under greenhouse conditions. Biol. Control 2010, 53, 129–135. [Google Scholar] [CrossRef]
- Kobayashi, T.; Koike, K.; Yoshimatsu, T.; Higaki, N.; Suzumatsu, A.; OzAwA, T.; Hatada, Y.; Ito, S. Purification and properties of a low-molecular-weight, high-alkaline pectate lyase from an alkaliphilic strain of Bacillus. Biosci. Biotechnol. Biochem. 1999, 63, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Shingaki, R.; Kasahara, Y.; Iwano, M.; Kuwano, M.; Takatsuka, T.; Inoue, T.; Kokeguchi, S.; Fukui, K. Induction of L-form-like cell shape change of Bacillus subtilis under microculture conditions. Microbiology 2003, 149, 2501–2511. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.V.K.; Reddy, M.; Kloepper, J.; Lawrence, K.; Yellareddygari, S.; Zhou, X.; Sudini, H.; Reddy, E.S.; Groth, D.; Miller, M. Screening and selection of elite plant growth promoting rhizobacteria (PGPR) for suppression of Rhizoctonia solani and enhancement of rice seedling vigor. J. Pure Appl. Microbiol. 2011, 5, 641–651. [Google Scholar]
- Nasrin, S.; Hossain, M.J.; Liles, M.R. Draft genome sequence of Bacillus amyloliquefaciens AP183 with antibacterial activity against Methicillin-Resistant Staphylococcus aureus. Genome Announc. 2015, 3, e00162-15. [Google Scholar] [CrossRef]
- Zebelo, S.; Song, Y.; Kloepper, J.W.; Fadamiro, H. Rhizobacteria activates (+)-δ-cadinene synthase genes and induces systemic resistance in cotton against beet armyworm (Spodoptera exigua). Plant Cell Environ. 2016, 39, 935–943. [Google Scholar] [CrossRef]
- Ran, C. Isolation and Characterization of Bacillus spp. as Potential Probiotics for Channel Catfish, Ictalurus punctatus. Ph.D. Thesis, Auburn University, Auburn, AL, USA, 2013. [Google Scholar]
- Liu, K.; McInroy, J.A.; Hu, C.-H.; Kloepper, J.W. Mixtures of Plant-Growth-Promoting Rhizobacteria Enhance Biological Control of Multiple Plant Diseases and Plant-Growth Promotion in the Presence of Pathogens. Plant Dis. 2018, 102, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Yellareddygari, S.; Kumar, K.V.K.; Kloepper, J.; Lawrence, K.; Fadamiro, H.; Woods, F.; Reddy, M. Chapter fourty-five Greenhouse screening of PGPR isolates for the biological control of Rhizoctonia solani and compatibility with chemicals. In Recent Advances in Biofertilizers and Biofungicides (PGPR) for Sustainable Agriculture, Proceedings of 3rd Asian Conference on Plant Growth-Promoting Rhizobacteria (PGPR) and other Microbials, Manila, Philippines, 21–24 April 2013; Asian PGPR Society for Sustainable Agriculture: Hyderabad, India, 2014; p. 460. [Google Scholar]
- Bocco, A.; Cuvelier, M.-E.; Richard, H.; Berset, C. Antioxidant activity and phenolic composition of citrus peel and seed extracts. J. Agric. Food Chem. 1998, 46, 2123–2129. [Google Scholar] [CrossRef]
- Rafiq, S.; Kaul, R.; Sofi, S.; Bashir, N.; Nazir, F.; Nayik, G.A. Citrus peel as a source of functional ingredient: A review. J. Saudi Soc. Agric. Sci. 2016, 17, 351–358. [Google Scholar] [CrossRef]
- Maldonado, M.C.; Navarro, A.; Callieri, D.A. Production of pectinases by Aspergillus sp. using differently pretreated lemon peel as the carbon source. Biotechnol. Lett. 1986, 8, 501–504. [Google Scholar] [CrossRef]
- Treuer, T.L.; Choi, J.J.; Janzen, D.H.; Hallwachs, W.; Peréz-Aviles, D.; Dobson, A.P.; Powers, J.S.; Shanks, L.C.; Werden, L.K.; Wilcove, D.S. Low-cost agricultural waste accelerates tropical forest regeneration. Restor. Ecol. 2018, 26, 275–283. [Google Scholar] [CrossRef]
- Masciarelli, O.; Llanes, A.; Luna, V. A new PGPR co-inoculated with Bradyrhizobium japonicum enhances soybean nodulation. Microbiol. Res. 2014, 169, 609–615. [Google Scholar] [CrossRef]
- Halverson, L.; Handelsman, J. Enhancement of soybean nodulation by Bacillus cereus UW85 in the field and in a growth chamber. Appl. Environ. Microbiol. 1991, 57, 2767–2770. [Google Scholar] [PubMed]
Bv Strain | *Pectate Lyase Activity | OD600 | Reference |
---|---|---|---|
AP52 | +++ | 0.36 | Kumar et al., 2011 [34] |
AP67 | ++ | 0.51 | This study |
AP71 | ++ | 0.51 | Hossain et al., 2015 [12] |
AP75 | ++ | 0.49 | This study |
AP76 | ++ | 0.39 | This study |
AP77 | ++ | 0.55 | This study |
AP78 | ++ | 0.49 | This study |
AP79 | ++ | 0.4 | Hossain et al., 2015 [12] |
AP80 | +++ | 0.32 | This study |
AP81 | +++ | 0.35 | This study |
AP85 | ++ | 0.57 | This study |
AP86 | ++ | 0.4 | This study |
AP87 | +++ | 0.45 | This study |
AP108 | ++ | 0.66 | This study |
AP112 | +++ | 0.52 | This study |
AP135 | ++ | 0.52 | This study |
AP136 | ++ | 0.44 | Liu et al., 2016 [29] |
AP143 | +++ | 0.49 | Coy et al., 2017 [28] |
AP150 | ++ | 0.35 | This study |
AP183 | +++ | 0.54 | Nasrin et al., 2015 [35] |
AP184 | ++ | 0.6 | This study |
AP188 | +++ | 0.72 | Zebelo et al., 2016 [36] |
AP189 | ++ | 0.37 | This study |
AP190 | +++ | 0.27 | This study |
AP191 | +++ | 0.67 | This study |
AP192 | +++ | 0.66 | This study |
AP193 | ++ | 0.68 | Ran, 2013 [37] |
AP194 | ++ | 0.33 | Liu et al., 2016 [29] |
AP195 | ++ | 0.36 | Liu et al., 2016 [29] |
AP196 | ++ | 0.34 | This study |
AP197 | ++ | 0.38 | Liu et al., 2016 [29] |
AP198 | ++ | 0.35 | This study |
AP199 | +++ | 0.29 | Liu et al., 2016 [29] |
AP200 | +++ | 0.24 | Liu et al., 2016 [29] |
AP201 | ++ | 0.33 | Liu et al., 2016 [29] |
AP203 | +++ | 0.46 | Liu et al., 2016 [29] |
AP205 | ++ | 0.34 | This study |
AP207 | +++ | 0.24 | This study |
AP208 | +++ | 0.38 | Liu et al., 2016 [29] |
AP210 | ++ | 0.15 | Liu et al., 2016 [29] |
AP211 | ++ | 0.2 | This study |
AP212 | +++ | 0.22 | Liu et al., 2016 [29] |
AP213 | ++ | 0.29 | Liu et al., 2016 [29] |
AP214 | ++ | 0.2 | Liu et al., 2016 [29] |
AP215 | ++ | 0.09 | This study |
AP216 | ++ | 0.38 | This study |
AP218 | + | 0.1 | Coy et al., 2017 [28] |
AP219 | ++ | 0.21 | Kumar et al., 2011 [34] |
AP241 | ++ | 0.1 | This study |
AP260 | ++ | 0.17 | This study |
AP295 | ++ | 0.18 | Liu et al., 2016 [29] |
AP296 | +++ | 0.11 | This study |
AP297 | ++ | 0.22 | Liu et al., 2018 [38] |
AP298 | +++ | 0.22 | Liu et al., 2018 [38] |
AP299 | +++ | 0.19 | This study |
AP300 | ++ | 0.05 | This study |
AP301 | ++ | 0.09 | Yellareddygari et al., 2014 [39] |
AP304 | ++ | 0.2 | Kumar et al., 2011 [34] |
AP305 | ++ | 0.11 | Liu et al., 2016 [29] |
Treatment | Dry Shoot Weight (g) | Root Length (cm) | Dry Root Weight (g) | Root Colonization# (log CFU/g) |
---|---|---|---|---|
Control | 0.4bc | 24.2a | 0.07cd | 1.1c |
Pectin Powder (0.1%) | 0.3d | 18.6b | 0.07cd | 2.4c |
AP143 | 0.4b | 22.9a | 0.16a | 3.7b |
AP143+ Pectin Powder (0.1%) | 0.6ab | 22.8ab | 0.15ab | 4.1ab |
AP193 | 0.4bc | 25.3a | 0.10bc | 4.5a |
AP193+ Pectin Powder (0.1%) | 0.6a | 26.4a | 0.15ab | 4.9a |
Control | 0.9a | 20.7b | 0.23b | 1.2c |
Pectin Liquid (0.1%) | 0.1a | 23.1ab | 0.22b | 6.5b |
AP136 | 1.3a | 28.3ab | 0.21a | 7.7a |
AP136+ Pectin Liquid (0.1%) | 1.1a | 30.8a | 0.27a | 7.8a |
AP193 | 1.7a | 28.8ab | 0.34a | 7.4a |
AP193+ Pectin Liquid (0.1%) | 1.8a | 32.1a | 0.40a | 7.4a |
Treatment | DAP# | Shoot Length (cm) | Dry Shoot Weight (g) | Root Length (cm) | Dry Root Weight (g) |
---|---|---|---|---|---|
Control | 37.4b | 2.6ab | 14.5c | 0.7ab | |
Pectin | 41.9b | 3.6ab | 16.6bc | 0.7ab | |
AP136 | 35 DAP | 53.0a | 4.3a | 22.0ab | 0.9a |
AP136 + Pectin | 53.6a | 4.9a | 25.1a | 0.9a | |
AP193 | 32.7b | 2.5b | 13.4c | 0.5b | |
AP193 + Pectin | 38.4b | 3.6ab | 18.1bc | 0.6ab | |
Control | 70.6c | 13.8b | 12.1b | 1.7a | |
Pectin liquid | 74.5bc | 17.0a | 13.5b | 1.9a | |
AP136 | 55 DAP | 92.7a | 19.8a | 19.4a | 2.1a |
AP136 + Pectin | 95.6a | 20.6a | 24.7a | 2.3a | |
AP193 | 57.1c | 14.4b | 11.5b | 1.8a | |
AP193 + Pectin | 78.7ab | 16.9a | 19.8a | 1.8a |
Treatment | Plot Weight (kg) * | Test Weight (kg) ** |
---|---|---|
Control | 4.0ab | 16.6ab |
Pectin liquid (PL) | 4.5ab | 16.6ab |
AP136 + Pectin liquid (PL) | 5.6a | 20.4ab |
AP136 | 5.6a | 20.8a |
AP193 + Pectin liquid (PL) | 3.9ab | 16.5ab |
AP193 | 3.5b | 12.5b |
Treatment | Shoot Length (cm) | Root Length (cm) | Mean Nodule Numbers | Dry Nodule Weight (g) |
---|---|---|---|---|
Control | 46.8b | 22.4b | 11.6d | 0.02b |
OP 1 mg | 55.1ab | 25.8ab | 17.2cd | 0.03b |
OP 10 mg | 64.6a | 26.0ab | 15.1cd | 0.03b |
AP193 | 58.1a | 27.7ab | 27.2abc | 0.05ab |
AP203 | 65.6a | 27.1ab | 20.9bcd | 0.04ab |
AP193 + OP 1 mg | 53.7ab | 33.7a | 39.7a | 0.06a |
AP193 + OP 10 mg | 59.9ab | 29.9ab | 35.0ab | 0.06a |
AP203 + OP 1 mg | 56.0ab | 34.7a | 36.5a | 0.05ab |
AP203 + OP 10 mg | 53.6ab | 32.6ab | 37.7a | 0.06a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, M.K.; McInroy, J.A.; Jones, J.; Shantharaj, D.; Liles, M.R.; Kloepper, J.W. Pectin-Rich Amendment Enhances Soybean Growth Promotion and Nodulation Mediated by Bacillus Velezensis Strains. Plants 2019, 8, 120. https://doi.org/10.3390/plants8050120
Hassan MK, McInroy JA, Jones J, Shantharaj D, Liles MR, Kloepper JW. Pectin-Rich Amendment Enhances Soybean Growth Promotion and Nodulation Mediated by Bacillus Velezensis Strains. Plants. 2019; 8(5):120. https://doi.org/10.3390/plants8050120
Chicago/Turabian StyleHassan, Mohammad K., John A. McInroy, Jarrod Jones, Deepak Shantharaj, Mark R. Liles, and Joseph W. Kloepper. 2019. "Pectin-Rich Amendment Enhances Soybean Growth Promotion and Nodulation Mediated by Bacillus Velezensis Strains" Plants 8, no. 5: 120. https://doi.org/10.3390/plants8050120
APA StyleHassan, M. K., McInroy, J. A., Jones, J., Shantharaj, D., Liles, M. R., & Kloepper, J. W. (2019). Pectin-Rich Amendment Enhances Soybean Growth Promotion and Nodulation Mediated by Bacillus Velezensis Strains. Plants, 8(5), 120. https://doi.org/10.3390/plants8050120