The Protective Role of 28-Homobrassinolide and Glomus versiforme in Cucumber to Withstand Saline Stress
Abstract
:1. Introduction
2. Results
2.1. Plant Growth Attributes
2.2. Chlorophyll and Root Activity
2.3. Electrolyte Leakage and Leaf Relative Water Content
2.4. Photosynthetic Measurements
2.5. Colonization Percentage
2.6. Antioxidant Enzymes
2.6.1. Superoxide Dismutase (SOD) Activity
2.6.2. Peroxidase (POD) Activity
2.6.3. Catalase (CAT) Activity
2.6.4. Malondialdehyde Content (MDA)
2.7. Nitrogen, Phosphorous, Potassium, and Sodium
3. Discussion
3.1. HBL, AMF, and Their Combined Effect on Growth and Biomass under Salt Stress
3.2. HBL, AMF, and Their Combined Influence on Chlorophyll Content, Root Activity, and Photosynthesis
3.3. HBL, AMF, and Their Combined Effect on EC and LRWC
3.4. HBL, AMF, and Their Combined Effect on Changes of Antioxidant Enzymes
3.5. HBL, AMF, and Their Combined Effect on N, P, K, and Na+1 Ions
4. Materials and Methods
4.1. Mycorrhizal Inoculums
4.2. Plant Material and Mycorrhizal Fungus Inoculums
4.3. Pot Experiment
4.4. Plant Growth Attributes
4.5. Chlorophyll Content
4.6. Root Activity
4.7. Electrolyte Leakage (%)
4.8. Relative Leaf Water Content (%)
4.9. Photosynthetic Measurements
4.10. AMF Colonization
4.11. Antioxidant Enzymes
4.12. Nutrients Determination in Plants
4.13. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hashem, A.; Abd-Allah, E.F.; Alqarawi, A.A.; Al-Huqail, A.A.; Wirth, S.; Egamberdieva, D. The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Front. Microbiol. 2016, 7, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanin, M.; Ebel, C.; Ngom, M.; Laplaze, L.; Masmoudi, K. New insights on plant salt tolerance mechanisms and their potential use for breeding. Front. Plant Sci. 2016, 7, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flowers, T.J.; Yeo, A. Breeding for salinity resistance in crop plants: Where next? Funct. Plant Biol. 1995, 22, 875–884. [Google Scholar] [CrossRef]
- Mahajan, S.; Mahajan, S.; Tuteja, N.; Tuteja, N. Cold, salinity and drought stresses: An overview. Arch. Biochem. Biophys. 2005, 444, 139–158. [Google Scholar] [CrossRef]
- Hayat, S.; Hasan, S.A.; Yusuf, M.; Hayat, Q.; Ahmad, A. Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata. Environ. Exp. Bot. 2010, 69, 105–112. [Google Scholar] [CrossRef]
- Fariduddin, Q.; Mir, B.A.; Yusuf, M.; Ahmad, A. 24-epibrassinolide and/or putrescine trigger physiological and biochemical responses for the salt stress mitigation in Cucumis sativus L. Photosynthetica 2014, 52, 464–474. [Google Scholar] [CrossRef]
- Hayat, S.; Khalique, G.; Wani, A.S.; Alyemeni, M.N.; Ahmad, A. Protection of growth in response to 28-homobrassinolide under the stress of cadmium and salinity in wheat. Int. J. Biol. Macromol. 2014, 64, 130–136. [Google Scholar] [CrossRef]
- Pascual Serrano, D.; Vera Pasamontes, C.; Girón Moreno, R. Modelos Animales de Dolor Neuropático; Fundación Dialnet: Logroño, Spain, 2016; Volume 31, ISBN 9788578110796. [Google Scholar]
- Alyemeni, M.N.; Al-Quwaiz, S.M. Effect of 28-homobrassinolide on the performance of sensitive and resistant varieties of Vigna radiata. Saudi J. Biol. Sci. 2016, 23, 698–705. [Google Scholar] [CrossRef] [Green Version]
- Bajguz, A.; Hayat, S. Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol. Biochem. PPB/Soc. Physiol. Vég. 2009, 47, 1–8. [Google Scholar] [CrossRef]
- Müssig, C. Brassinosteroid-promoted growth. Plant Biol. 2005, 7, 110–117. [Google Scholar] [CrossRef]
- Clouse, S.D. Recent advances in brassinosteroid research: From molecular mechanisms to practical applications. J. Plant Growth Regul. 2003, 22, 273–275. [Google Scholar] [CrossRef] [PubMed]
- Bajguz, A. Metabolism of brassinosteroids in plants. Plant Physiol. Biochem. 2007, 45, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Bajguz, A.; Czerpak, R. Effect of brassinosteroids on growth and proton extrusion in the alga Chlorella vulgaris Beijerinck (Chlorophyceae). J. Plant Growth Regul. 1996, 15, 153–156. [Google Scholar] [CrossRef]
- Bajguz, A. Effect of brassinosteroids on nucleic acids and protein content in cultured cells of Chlorella vulgaris. Plant Physiol. Biochem. 2000, 38, 209–215. [Google Scholar] [CrossRef]
- Vardhini, B.V.; Anjum, N.A. Brassinosteroids make plant life easier under abiotic stresses mainly by modulating major components of antioxidant defense system. Front. Environ. Sci. 2015, 2, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Marakli, S.; Temel, A.; Gozukirmizi, N. Salt stress and Homobrassinosteroid Interactions during germination in barley roots. Not. Bot. Hortic. Agrobot. Cluj-Napoca 2015, 42, 446–452. [Google Scholar] [CrossRef] [Green Version]
- Talaat, N.B.; Shawky, B.T. 24-Epibrassinolide alleviates salt-induced inhibition of productivity by increasing nutrients and compatible solutes accumulation and enhancing antioxidant system in wheat (Triticum aestivum L.). Acta Physiol. Plant 2013, 35, 729–740. [Google Scholar] [CrossRef]
- Rajewska, I.; Talarek, M.; Bajguz, A. Brassinosteroids and response of plants to heavy metals action. Front. Plant Sci. 2016, 7, 629. [Google Scholar] [CrossRef] [Green Version]
- Egamberdieva, D.; Wirth, S.; Li, L.; Abd-Allah, E.F.; Lindström, K. Microbial cooperation in the rhizosphere improves liquorice growth under salt stress. Bioengineered 2017, 8, 433–438. [Google Scholar] [CrossRef] [Green Version]
- Parniske, M. Arbuscular mycorrhiza: The mother of plant root endosymbioses. Nat. Rev. Microbiol. 2008, 6, 763–775. [Google Scholar] [CrossRef]
- Porcel, R.; Aroca, R.; Ruiz-Lozano, J.M. Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron. Sustain. Dev. 2012, 32, 181–200. [Google Scholar] [CrossRef] [Green Version]
- Berruti, A.; Lumini, E.; Balestrini, R.; Bianciotto, V. Arbuscular mycorrhizal fungi as natural biofertilizers: Let’s benefit from past successes. Front. Microbiol. 2016, 6, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schweiger, R.; Baier, M.C.; Persicke, M.; Müller, C. High specificity in plant leaf metabolic responses to arbuscular mycorrhiza. Nat. Commun. 2014, 5, 3886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gianinazzi, S.; Gollotte, A.; Binet, M.N.; van Tuinen, D.; Redecker, D.; Wipf, D. Agroecology: The key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 2010, 20, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.C.; Martinez-Medina, A.; Lopez-Raez, J.A.; Pozo, M.J. Mycorrhiza-induced resistance and priming of plant defenses. J. Chem. Ecol. 2012, 38, 651–664. [Google Scholar] [CrossRef]
- Aliasgharzadeh, N.; Saleh Rastin, N.; Towfighi, H.; Alizadeh, A. Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza 2001, 11, 119–122. [Google Scholar] [CrossRef]
- Khan, A.G. The occurrence of mycorrhizas in halophytes, hydrophytes and xerophytes, and of endogone spores in adjacent soils. Microbiology 1974, 81, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.Q.; Tang, M.; Zhang, H.Q. Arbuscular mycorrhizal fungi enhanced the growth, photosynthesis, and calorific value of black locust under salt stress. Photosynthetica 2017, 55, 378–385. [Google Scholar] [CrossRef]
- Hajiboland, R.; Aliasgharzadeh, N.; Laiegh, S.F.; Poschenrieder, C. Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 2010, 331, 313–327. [Google Scholar] [CrossRef]
- Zuccarini, P.; Okurowska, P. Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. J. Plant Nutr. 2008, 31, 497–513. [Google Scholar] [CrossRef]
- Miransari, M. Use of microbes for the alleviation of soil stresses. In Use Microbes Alleviation Soil Stress; Springer: Berlin/Heidelberg, Germany, 2014; Volume 1, pp. 1–162. [Google Scholar] [CrossRef]
- Ghazanfar, B.; Cheng, Z.; Ahmad, I.; Khan, A.R.; Hanqiang, L.; Haiyan, D.; Fang, C. Synergistic and individual effect of glomus etunicatum root colonization and acetyl salicylic acid on root activity and architecture of tomato plants under moderate nacl stress. Pak. J. Bot. 2015, 47, 2047–2054. [Google Scholar]
- Al-Karaki, G.N.; Clark, R.B. Growth, mineral acquisition, and water use by mycorrhizal wheat grown under water stress. J. Plant Nutr. 1998, 21, 263–276. [Google Scholar] [CrossRef]
- Ruiz-Lozano, J.M. Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 2003, 13, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Karlidag, H.; Yildirim, E.; Turan, M. Role of 24-epibrassinolide in mitigating the adverse effects of salt stress on stomatal conductance, membrane permeability, and leaf water content, ionic composition in salt stressed strawberry (Fragaria× ananassa). Sci. Hortic. 2011, 130, 133–140. [Google Scholar] [CrossRef]
- Hashem, A.; Abd_Allah, E.F.; Alqarawi, A.A.; Alwhibi Mona, S.; Alenazi, M.M.; Dilfuza, E.; Ahmad, P. Arbuscular mycorrhizal fungi mitigates NaCl induced adverse effects on Solanum lycopersicum L. Pak. J. Bot. 2015, 47, 327–340. [Google Scholar]
- Kaya, C.; Ashraf, M.; Sonmez, O.; Aydemir, S.; Tuna, A.L.; Cullu, M.A. The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity. Sci. Hortic. 2009, 121, 1–6. [Google Scholar] [CrossRef]
- Ahmad, H.; Hayat, S.; Ali, M.; Imran Ghani, M.; Zhihui, C. Regulation of growth and physiological traits of cucumber (Cucumis sativus L.) through various levels of 28-Homobrassinolide under salt stress conditions. Can. J. Plant Sci. 2017, 98, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Hayat, S.; Maheshwari, P.; Wani, A.S.; Irfan, M.; Alyemeni, M.N.; Ahmad, A. Comparative effect of 28 homobrassinolide and salicylic acid in the amelioration of NaCl stress in Brassica juncea L. Plant Physiol. Biochem. 2012, 53, 61–68. [Google Scholar] [CrossRef]
- Evelin, H.; Kapoor, R.; Giri, B. Arbuscular mycorrhizal fungi in alleviation of salt stress: A review. Ann. Bot. 2009, 104, 1263–1280. [Google Scholar] [CrossRef] [Green Version]
- Zeng, H.; Tang, Q.; Hua, X. Arabidopsis brassinosteroid mutants det2-1 and bin2-1 display altered salt tolerance. J. Plant Growth Regul. 2010, 29, 44–52. [Google Scholar] [CrossRef]
- Ahmad, P.; Azooz, M.M.; Prasad, M.N.V. Ecophysiology and Responses of Plants Under Salt Stress; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 9781461447474. [Google Scholar]
- Niu, J.; Ahmad Anjum, S.; Wang, R.; Li, J.; Liu, M.; Song, J.; Zohaib, A.; Lv, J.; Wang, S.; Zong, X. Exogenous application of brassinolide can alter morphological and physiological traits of Leymus chinensis (Trin.) Tzvelev under room and high temperatures. Chil. J. Agric. Res. 2016, 76, 27–33. [Google Scholar] [CrossRef]
- Ekinci, M.; Yildirim, E.; Dursun, A.; Turan, M. Mitigation of salt stress in lettuce (Lactuca sativa L. var. Crispa) by seed and foliar 24-epibrassinolide treatments. HortScience 2012, 47, 631–636. [Google Scholar] [CrossRef]
- Ali, B.; Hayat, S.; Fariduddin, Q.; Ahmad, A. 24-Epibrassinolide protects against the stress generated by salinity and nickel in Brassica juncea. Chemosphere 2008, 72, 1387–1392. [Google Scholar] [CrossRef] [PubMed]
- Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- Greco, M.; Chiappetta, A.; Bruno, L.; Bitonti, M.B. In posidonia oceanica cadmium induces changes in DNA methylation and chromatin patterning. J. Exp. Bot. 2012, 63, 695–709. [Google Scholar] [CrossRef] [Green Version]
- Pedranzani, H.; Rodríguez-Rivera, M.; Gutiérrez, M.; Porcel, R.; Hause, B.; Ruiz-Lozano, J.M. Arbuscular mycorrhizal symbiosis regulates physiology and performance of Digitaria eriantha plants subjected to abiotic stresses by modulating antioxidant and jasmonate levels. Mycorrhiza 2016, 26, 141–152. [Google Scholar] [CrossRef] [Green Version]
- Sasse, J.M. Physiological actions of brassinosteroids: An update. J. Plant Growth Regul. 2003, 22, 276–288. [Google Scholar] [CrossRef]
- Deinlein, U.; Stephan, A.B.; Horie, T.; Luo, W.; Xu, G.; Schroeder, J.I. Plant salt-tolerance mechanisms. Trends Plant Sci. 2014, 19, 371–379. [Google Scholar] [CrossRef] [Green Version]
- Ali, B.; Hayat, S.; Ahmad, A. 28-Homobrassinolide ameliorates the saline stress in chickpea (Cicer arietinum L.). Environ. Exp. Bot. 2007, 59, 217–223. [Google Scholar] [CrossRef]
- Ruiz-Lozano, J.M.; Collados, C.; Barea, J.M.; Azcón, R. Cloning of cDNAs encoding SODs from lettuce plants which show differential regulation by arbuscular mycorrhizal symbiosis and by drought stress. J. Exp. Bot. 2001, 52, 2241–2242. [Google Scholar] [CrossRef]
- Cao, S.; Xu, Q.; Cao, Y.; Qian, K.; An, K.; Zhu, Y.; Binzeng, H.; Zhao, H.; Kuai, B. Loss-of-function mutations in DET2 gene lead to an enhanced resistance to oxidative stress in Arabidopsis. Physiol. Plant 2005, 123, 57–66. [Google Scholar] [CrossRef]
- Goda, H. Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiol. 2002, 130, 1319–1334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, K.; Zimmermann, S.D. The role of mycorrhizal associations in plant potassium nutrition. Front. Plant Sci. 2014, 5, 337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garg, N.; Pandey, R. Effectiveness of native and exotic arbuscular mycorrhizal fungi on nutrient uptake and ion homeostasis in salt-stressed Cajanus cajan L. (Millsp.) genotypes. Mycorrhiza 2014, 165–180. [Google Scholar] [CrossRef] [PubMed]
- Bücking, H.; Ambilwade, P. The role of the mycorrhizal symbiosis in Nutrient uptake of plants and the Regulatory mechanisms underlying These transport processes. Plant Sci. 2012, 4, 108–132. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, H.L.; Hartley, A.E.; Vogelsang, K.M.; Bever, J.D.; Schultz, P.A. Arbuscular mycorrhizal fungi do not enhance nitrogen acquisition and growth of old-field perennials under low nitrogen supply in glasshouse culture. New Phytol. 2005, 167, 869–880. [Google Scholar] [CrossRef]
- Hammer, E.C.; Pallon, J.; Wallander, H.; Olsson, P.A. Tit for tat? A mycorrhizal fungus accumulates phosphorus under low plant carbon availability. FEMS Microbiol. Ecol. 2011, 76, 236–244. [Google Scholar] [CrossRef] [Green Version]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Clemensson-Lindell, A. Triphenyltetrazolium chloride as an indicator of fine-root vitality and environmental stress in coniferous forest stands: Applications and limitations. Plant Soil 1994, 159, 297–300. [Google Scholar] [CrossRef]
- Sullivan, C.; Ross, W. Selection for drought and heat tolerance in grain sorghum. Stress Physiol. Crop. Plants 1979, 263–281. [Google Scholar]
- Smart, R.E.; Bingham, G.E. Rapid estimates of relative water content. Plant Physiol. 1974, 53, 258–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, J.M.; Hayman, D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970, 55, 158–161. [Google Scholar] [CrossRef]
- McGonigle, T.P.; Miller, M.H.; Evans, D.G.; Fairchild, G.L.; Swan, J.A. A new method which gives an objective measure of colonization of roots by vesicular—Arbuscular mycorrhizal fungi. New Phytol. 1990, 115, 495–501. [Google Scholar] [CrossRef]
- Stewart, R.R.C.; Bewley, J.D. Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiol. 1980, 65, 245–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polle, A.; Otter, T.; Seifert, F. Apoplastic peroxidases and lignification in needles of norway spruce (Picea-abies L). Plant Physiol. 1994, 106, 53–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chance, B.; Maehly, A.C. Assay of catalases and peroxidases. Methods Enzymol. 1955, 2, 764–775. [Google Scholar] [CrossRef]
- Dhindsa, R.S.; Plumb-Dhindsa, P.L.; Reid, D.M. Leaf senescence and lipid peroxidation: Effects of some phytohormones, and scavengers of free radicals and singlet oxygen. Physiol. Plant 1982, 56, 453–457. [Google Scholar] [CrossRef]
- Steyermark, A. Quantitative Organic Microanalysis; Elsevier: Amsterdam, The Netherlands, 1961; p. 665. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watandbe, F.; Dean, L. Estimation of available phosphorus in soil by extraction with sodium Bicarbonate. J. Chem. Inf. Model. 1954, 53, 1689–1699. [Google Scholar] [CrossRef]
Treatments | Shoot Length (cm) | Root Length (cm) | Shoot Fresh Weight (g) | Shoot Dry Weight (g) | Root Fresh Weight (g) | Root Dry Weight (g) | |
---|---|---|---|---|---|---|---|
Jinyou 1# (salt sensitive) | |||||||
CK | 0 mM | 94.8 ± 1.6 b | 53.4 ± 2.7 a | 101.0 ± 4.0 b | 15.7 ± 1.9 ab | 18.6 ± 0.8 ab | 3.0 ± 0.1 a |
100 mM | 64.5 ± 1.2 d | 35.1 ± 2.1 c | 65.2 ± 4.1 d | 7.8 ± 1.5 d | 7.7 ± 1.3 d | 0.7 ± 0.1 c | |
HBL | 0 mM | 97.6 ± 2.1 ab | 54.1 ± 1.6 a | 110.6 ± 4.5 b | 16.1 ± 2.3 ab | 19.1 ± 0.5 ab | 3.0 ± 0.2 a |
100 mM | 72.4 ± 2.9 c | 42.8 ± 1.3 b | 77.5 ± 3.6 cd | 10.4 ± 1.0 cd | 11.8 ± 1.5 c | 1.2 ± 0.2 bc | |
AMF | 0 mM | 99.3 ± 2.6 ab | 53.1 ± 1.0 a | 129.9 ± 4.0 a | 17.9 ± 1.3 a | 20.1 ± 1.2 a | 3.4 ± 0.2 a |
100 mM | 73.6 ± 2.1 c | 43.8 ± 2.1 b | 68.1 ± 4.7 cd | 11.4 ± 0.7 cd | 12.2 ± 1.6 c | 1.3 ± 0.3 bc | |
HBL + AMF | 0 mM | 101.5 ± 2.8 a | 54.6 ± 1.8 a | 135.2 ± 3.1 a | 18.9 ± 1.0 a | 21.0 ± 1.1 a | 3.8 ± 0.3 a |
100 mM | 75.4 ± 1.5 c | 45.8 ± 1.7 b | 81.1 ± 5.2 c | 12.4 ± 0.5 bc | 14.2 ± 1.1 bc | 1.7 ± 0.3 b | |
CCMC (salt tolerant) | |||||||
CK | 0 mM | 84.4 ± 1.5 ab | 48.7 ± 2.9 abc | 101.0 ± 2.5 b | 16.7 ± 2.1 abc | 17.8 ± 2.5 abc | 3.7 ± 0.1 b |
100 mM | 65.1 ± 1.5 d | 32.5 ± 2.3 d | 60.9 ± 3.1 d | 8.7 ± 1.5 d | 10.7 ± 1.2 d | 0.8 ± 0.1 d | |
HBL | 0 mM | 87.9 ± 2.9 a | 49.4 ± 3.7 abc | 103.7 ± 1.2 ab | 17.2 ± 2.3 abc | 19.31 ± 3.1 abc | 3.9 ± 0.2 ab |
100 mM | 75.0 ± 2.0 c | 37.1 ± 3.1 d | 79.6 ± 2.3 c | 12.1 ± 1.4 cd | 12.9 ± 1.3 cd | 2.1 ± 0.2 c | |
AMF | 0 mM | 89.4 ± 2.9 a | 51.9 ± 3.5 ab | 106.5 ± 3.8 ab | 19.0 ± 2.0 ab | 20.2 ± 1.6 ab | 4.3 ± 0.1 ab |
100 mM | 76.9 ± 1.1 bc | 38.5 ± 3.9 cd | 78.9 ± 3.1 c | 12.3 ± 0.7 cd | 14.7 ± 1.2 bcd | 2.2 ± 0.3 c | |
HBL + AMF | 0 mM | 90.4 ± 2.8 a | 53.3 ± 3.9 a | 108.0 ± 1.4 a | 21.9 ± 0.7 a | 22.1 ± 1.5 a | 4.4 ± 0.1 a |
100 mM | 78.2 ± 2.4 bc | 40.7 ± 2.8 bcd | 83.3 ± 2.2 c | 13.0 ± 1.5 bc | 15.0 ± 1.5 bcd | 2.4 ± 0.1 c |
Treatments | Chlorophyll a (mg g−1 FW) | Chlorophyll b (mg g−1 FW) | Chlorophyll a + b (mg g−1 FW) | Root Activity (mg g−1 h−1) | |
---|---|---|---|---|---|
Jinyou 1# (salt sensitive) | |||||
CK | 0 mM | 16.5 ± 0.2 bc | 4.3 ± 0.2 a | 20.9 ± 0.2 c | 21.8 ± 0.5 a |
100 mM | 12.3 ± 0.1 e | 2.3 ± 0.1 d | 14.7 ± 0.1 f | 10.8 ± 0.1 d | |
HBL | 0 mM | 17.1 ± 0.1 ab | 4.4 ± 0.1 a | 21.6 ± 0.1 ab | 22.0 ± 0.8 a |
100 mM | 15.1 ± 0.2 d | 3.4 ± 0.1 bc | 18.6 ± 0.3 e | 13.1 ± 0.2 c | |
AMF | 0 mM | 16.6 ± 0.1 bc | 4.4 ± 0.1 a | 21.0 ± 0.2 bc | 22.6 ± 0.2 a |
100 mM | 15.2 ± 0.3 d | 3.1 ± 0.1 c | 18.4 ± 0.3 e | 14.0 ± 0.5 bc | |
HBL + AMF | 0 mM | 17.4 ± 0.2 a | 4.5 ± 0.1 a | 22.0 ± 0.1 a | 23.5 ± 0.3 a |
100 mM | 15.7 ± 0.1 cd | 3.5 ± 0.1 b | 19.3 ± 0.1 d | 15.2 ± 0.4 b | |
CCMC (salt tolerant) | |||||
CK | 0 mM | 17.3 ± 0.1 a | 4.9 ± 0.4 a | 22.3 ± 0.5 a | 25.5 ± 1.3 a |
100 mM | 12.4 ± 0.3 c | 2.8 ± 0.2 b | 15.3 ± 0.1 c | 13.0 ± 0.7 c | |
HBL | 0 mM | 17.4 ± 0.1 a | 5.3 ± 0.2 a | 22.8 ± 0.3 a | 26.1 ± 1.3 a |
100 mM | 14.7 ± 0.1 b | 4.1 ± 0.5 ab | 18.9 ± 0.6 b | 18.2 ± 1.4 b | |
AMF | 0 mM | 17.4 ± 0.1 a | 5.1 ± 0.3 a | 22.5 ± 0.2 a | 26.8 ± 1.1 a |
100 mM | 14.9 ± 0.2 b | 4.1 ± 0.5 ab | 19.0 ± 0.5 b | 19.1 ± 0.6 b | |
HBL + AMF | 0 mM | 17.5 ± 0.1 a | 5.6 ± 0.2 a | 23.1 ± 0.1 a | 28.1 ± 0.4 a |
100 mM | 15.2 ± 0.1 b | 4.5 ± 0.2 ab | 19.8 ± 0.3 b | 21.1 ± 0.2 b |
Cultivar | Treatments | SOD (µg−1 FW h−1) | ||||
---|---|---|---|---|---|---|
10 Days | 20 Days | 30 Days | 40 Days | |||
Jinyou 1# (salt sensitive) | CK | 0 mM | 333.5 ± 13.3 cd | 349.5 ± 15.3 c | 345.7 ± 17.4 c | 350.3 ± 18.1 c |
100 mM | 467.7 ± 28.1 a | 605.2 ± 18.2 a | 587.3 ± 23.1 ab | 514.6 ± 18.9 b | ||
HBL | 0 mM | 324.8 ± 16.9 cd | 357.6 ± 21.9 c | 351.6 ± 19.2 c | 348.1 ± 25.1 c | |
100 mM | 469.6 ± 23.2 a | 589.6 ± 14.3 ab | 627.8 ± 12.4 a | 559.5 ± 15.5 ab | ||
AMF | 0 mM | 319.9 ± 15.8 d | 341.1 ± 24.8 c | 342.6 ± 24.3 c | 347.2 ± 23.7 c | |
100 mM | 382.1 ± 17.5 bc | 526.2 ± 25.5 b | 565.6 ± 17.5 b | 592.3 ± 20.7 a | ||
HBL + AMF | 0 mM | 332.8 ± 21.3 cd | 344.8 ± 21.3 c | 344.4 ± 18.8 c | 353.8 ± 20.6 c | |
100 mM | 401.3 ± 20.2 b | 565.3 ± 22.3 b | 554.6 ± 23.5 b | 604.1 ± 23.7 a | ||
POD (µg-g−1 FW min−1) | ||||||
10 days | 20 days | 30 days | 40 days | |||
CK | 0 mM | 706.1 ± 25.2 d | 738.5 ± 18.5 c | 759.6 ± 22.5 c | 774.6 ± 18.6 c | |
100 mM | 1093.8 ± 22.7 c | 1177.1 ± 24.8 b | 1184.1 ± 20.6 b | 1168.1 ± 24.1 b | ||
HBL | 0 mM | 742.5 ± 15.3 d | 754.7 ± 22.8 c | 748.9 ± 18.2 c | 782.5 ± 19.3 c | |
100 mM | 1230.6 ± 22.8 a | 1304.3 ± 16.4 a | 1237.9 ± 22.4 ab | 1249.2 ± 14.7 a | ||
AMF | 0 mM | 724.2 ± 21.6 d | 768.1 ± 12.3 c | 773.6 ± 20.7 c | 801.8 ± 17.1 c | |
100 mM | 1132 ± 12.4 ac | 1190.3 ± 19.7 b | 1178.4 ± 24.9 b | 1262.2 ± 16.2 a | ||
HBL + AMF | 0 mM | 764.2 ± 24.7 d | 772.5 ± 10.4 c | 783.8 ± 22.2 c | 811.1 ± 14.4 c | |
100 mM | 1171 ± 18.4 ab | 1262.6 ± 25.7 a | 1263.4 ± 17.1 a | 1292.6 ± 16.4 a | ||
CAT (µg-g−1 FW min−1) | ||||||
10 days | 20 days | 30 days | 40 days | |||
CK | 0 mM | 327.8 ± 26.1 b | 302.9 ± 14.2 b | 317.7 ± 18.7 c | 326.5 ± 19.6 c | |
100 mM | 488.3 ± 21.6 a | 553.2 ± 14.4 a | 593.9 ± 13.1 b | 620.9 ± 17.3 b | ||
HBL | 0 mM | 341 ± 28.8 b | 335.8 ± 14.5 b | 322.3 ± 16.4 c | 332.2 ± 18.5 c | |
100 mM | 509.6 ± 17.4 a | 588.1 ± 25.1 a | 602.5 ± 14.4 ab | 665.8 ± 22.7 ab | ||
AMF | 0 mM | 348.4 ± 24.9 b | 346.8 ± 21.9 b | 336.1 ± 17.6 c | 342.7 ± 23.3 c | |
100 mM | 475.9 ± 29.6 a | 567.2 ± 15.8 a | 616.2 ± 15.2 ab | 678.1 ± 19.6 ab | ||
HBL + AMF | 0 mM | 349.4 ± 26.7 b | 352.4 ± 23 b | 339.8 ± 14.6 c | 348.5 ± 14.5 c | |
100 mM | 499.4 ± 18.1 a | 562.4 ± 22.1 a | 625.4 ± 19.3 a | 722.9 ± 18.1 a | ||
MDA (mmol g−1 FW) | ||||||
10 days | 20 days | 30 days | 40 days | |||
CK | 0 mM | 1.03 ± 0.14 c | 1.66 ± 0.56 c | 1.63 ± 0.18 c | 1.72 ± 0.07 c | |
100 mM | 1.89 ± 0.26 a | 2.95 ± 0.40 a | 3.72 ± 0.20 a | 4.26 ± 0.20 a | ||
HBL | 0 mM | 1.08 ± 0.18 c | 1.48 ± 0.44 c | 1.51 ± 0.22 c | 1.64 ± 0.17 c | |
100 mM | 1.77 ± 0.17 ab | 2.41 ± 0.51 ab | 3.27 ± 0.26 ab | 4.11 ± 0.24 ab | ||
AMF | 0 mM | 1.11 ± 0.10 c | 1.54 ± 0.36 c | 1.59 ± 0.21 c | 1.63 ± 0.07 c | |
100 mM | 1.82 ± 0.13 ab | 2.44 ± 0.37 ab | 3.30 ± 0.27 ab | 3.91 ± 0.15 ab | ||
HBL + AMF | 0 mM | 1.18 ± 0.05 c | 1.64 ± 0.30 c | 1.50 ± 0.22 c | 1.61 ± 0.16 c | |
100 mM | 1.81 ± 0.16 b | 2.4 ± 0.49 b | 3.39 ± 0.27 b | 3.85 ± 0.15 b |
Cultivar | NaCl (100 mM) | Treatments | SOD (µg−1 FW h−1) | |||
---|---|---|---|---|---|---|
10 Days | 20 Days | 30 Days | 40 Days | |||
CCMC (salt tolerant) | CK | 0 mM | 498.2 ± 18.2 c | 511.2 ± 20.6 c | 534.5 ± 19.5 d | 519.8 ± 18.7 e |
100 mM | 669.7 ± 19.8 ab | 788.6 ± 23.2 ab | 679.4 ± 15.3 c | 730.4 ± 23.1 c | ||
HBL | 0 mM | 503.8 ± 23.5 c | 513.6 ± 19.3 c | 567.1 ± 17 d | 525.4 ± 15.3 d | |
100 mM | 697.8 ± 20.8 a | 806.9 ± 27.4 a | 723.9 ± 13.3 bc | 754.2 ± 17 b | ||
AMF | 0 mM | 499.6 ± 25.5 c | 506.3 ± 21.9 c | 563.8 ± 13.9 d | 527.7 ± 16.3 d | |
100 mM | 671.7 ± 20.6 ab | 734.8 ± 20.1 b | 732.5 ± 20.9 b | 778.6 ± 17.3 ab | ||
HBL + AMF | 0 mM | 504.7 ± 23.5 c | 517.7 ± 20.9 c | 569.6 ± 16.1 d | 528.6 ± 11.2 d | |
100 mM | 632.9 ± 26.2 b | 760.3 ± 19.9 ab | 753.5 ± 18.9 a | 827.7 ± 12.7 a | ||
POD (µg-g−1 FW min−1) | ||||||
10 days | 20 days | 30 days | 40 days | |||
CK | 0 mM | 930.4 ± 21.6 c | 976.2 ± 15.7 c | 981.1 ± 15.9 c | 997.6 ± 16.5 d | |
100 mM | 1311.1 ± 29.7 b | 1332.2 ± 23.4 b | 1359.5 ± 12.3 b | 1318.7 ± 13.5 c | ||
HBL | 0 mM | 944.9 ± 22.4 c | 981.4 ± 21.4 c | 986.2 ± 16.8 c | 1002.2 ± 14.5 d | |
100 mM | 1401.5 ± 23.1 a | 1427.3 ± 24.8 a | 1398.1 ± 21.4 ab | 1373.1 ± 15.3 b | ||
AMF | 0 mM | 948.4 ± 27.9 c | 988.2 ± 22.6 c | 993.2 ± 20.4 c | 1009.7 ± 14.3 d | |
100 mM | 1342.6 ± 28.3 ab | 1367.2 ± 24.5 ab | 1409.9 ± 19.9 ab | 1415.1 ± 15.6 ab | ||
HBL + AMF | 0 mM | 956.2 ± 19.5 c | 996.2 ± 19.1 c | 997.5 ± 17.1 c | 1018.5 ± 18.4 d | |
100 mM | 1382.7 ± 18.2 a | 1384.2 ± 25.1 ab | 1429.8 ± 18.8 a | 1433.3 ± 19.6 a | ||
CAT (µg-g−1 FW min−1) | ||||||
10 days | 20 days | 30 days | 40 days | |||
CK | 0 mM | 468.3 ± 22.5 b | 488.5 ± 20.3 b | 498.7 ± 16.1 c | 508.2 ± 11.7 d | |
100 mM | 623.6 ± 27.2 a | 729.2 ± 22.5 a | 761.6 ± 19.8 a | 845.3 ± 15.6 c | ||
HBL | 0 mM | 516.5 ± 33.3 b | 504.3 ± 18.9 b | 523.1 ± 23.6 c | 517.6 ± 15.6 d | |
100 mM | 649.3 ± 27.6 a | 756.8 ± 13.2 a | 819.4 ± 23.7 b | 891.4 ± 18.1 b | ||
AMF | 0 mM | 502.1 ± 24.3 b | 525.8 ± 21.1 b | 529.8 ± 20.7 c | 539.1 ± 15.2 d | |
100 mM | 641.6 ± 34.1 a | 718.3 ± 12.8 a | 831.1 ± 21.8 b | 903.3 ± 20.8 ab | ||
HBL + AMF | 0 mM | 510.9 ± 11.9 b | 536.2 ± 15.5 b | 535.9 ± 23.3 c | 544.7 ± 21.2 d | |
100 mM | 653.9 ± 34.2 a | 746.7 ± 11.9 a | 863.7 ± 21.4 b | 936.8 ± 14.3 a | ||
MDA (mmol g−1 FW) | ||||||
10 days | 20 days | 30 days | 40 days | |||
CK | 0 mM | 1.84 ± 0.09 c | 2.21 ± 0.09 c | 2.45 ± 0.04 c | 2.60 ± 0.01 c | |
100 mM | 2.52 ± 0.09 a | 3.72 ± 0.06 a | 4.37 ± 0.16 a | 4.93 ± 0.13 a | ||
HBL | 0 mM | 1.88 ± 0.05 c | 2.23 ± 0.11 c | 2.42 ± 0.03 c | 2.56 ± 0.06 c | |
100 mM | 2.41 ± 0.06 ab | 3.31 ± 0.08 b | 3.98 ± 0.07 b | 4.70 ± 0.13 ab | ||
AMF | 0 mM | 1.90 ± 0.04 c | 2.25 ± 0.09 c | 2.41 ± 0.02 c | 2.55 ± 0.06 c | |
100 mM | 2.45 ± 0.05 ab | 3.37 ± 0.07 b | 3.87 ± 0.12 b | 4.60 ± 0.15 ab | ||
HBL + AMF | 0 mM | 1.90 ± 0.06 c | 2.17 ± 0.10 c | 2.38 ± 0.10 c | 2.54 ± 0.11 c | |
100 mM | 2.36 ± 0.08 b | 3.34 ± 0.06 b | 3.97 ± 0.09 b | 4.57 ± 0.13 b |
NaCl (100 mM) | Treatments | Nitrogen (µg/L) | Phosphorus (µg/L) | Potassium (µg/L) | Sodium (µg/L) | K/Na ratio | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Shoot | Root | Shoot | Root | Shoot | Root | Shoot | Root | Shoot | Root | ||
Jinyou 1# (salt sensitive) | |||||||||||
CK | 0 mM | 48.7 ± 2.1 a | 16.6 ± 2.6 a | 43.8 ± 0.8 a | 98.8 ± 1.0 c | 84.1 ± 1.2 b | 86.6 ± 1.1 e | 23.7 ± 0.8 d | 29.7 ± 2.5 d | 3.5 ± 0.1 b | 2.9 ± 0.2 c |
100 mM | 29.3 ± 0.5 d | 12.2 ± 2.7 a | 28.1 ± 0.6 d | 83.6 ± 2.4 e | 50.4 ± 1.1 e | 139.7 ± 1.3 a | 156.5 ± 1.3 a | 149.6 ± 2.5 a | 0.3 ± 0.1 c | 0.9 ± 0.1 d | |
HBL | 0 mM | 49.3 ± 3.3 a | 21.2 ± 3.7 a | 44.8 ± 1.0 a | 105.7 ± 0.4 b | 86.1 ± 0.8 b | 92.3 ± 1.1 de | 22.9 ± 1.3 d | 24.5 ± 2.1 d | 3.7 ± 0.2 b | 3.8 ± 0.3 bc |
100 mM | 36.3 ± 0.8 c | 14.3 ± 2.0 a | 31.5 ± 1.5 cd | 87.4 ± 2.6 de | 57.9 ± 1.6 d | 123.1 ± 1.2 b | 90.3 ± 1.7 b | 127.4 ± 3.1 b | 0.6 ± 0.1 c | 0.9 ± 0.3 d | |
AMF | 0 mM | 52.1 ± 2.3 a | 18.7 ± 2.5 a | 46.6 ± 0.5 a | 110.9 ± 2.0 b | 89.1 ± 1.7 ab | 96.6 ± 1.0 cd | 19.8 ± 0.8 d | 24.3 ± 2.0 d | 4.5 ± 0.1 a | 4.0 ± 0.3 b |
100 mM | 38.1 ± 1.9 bc | 14.9 ± 3.7 a | 33.9 ± 1.8 bc | 91.7 ± 2.6 cd | 61.9 ± 1.3 d | 116.3 ± 1.1 b | 88.1 ± 1.5 bc | 113.0 ± 2.8 c | 0.7 ± 0.1 c | 1.0 ± 0.3 d | |
HBL + AMF | 0 mM | 53.7 ± 1.5 a | 24.4 ± 3.8 a | 47.2 ± 1.4 a | 118.9 ±1.7 a | 93.2 ± 1.7 a | 101.5 ± 1.8 c | 19.5 ± 1.6 d | 20.1 ± 1.9 d | 4.8 ± 0.1 a | 5.1 ± 0.5 a |
100 mM | 42.7 ± 0.6 b | 16.3 ± 3.1 a | 35.7 ± 0.2 b | 93.3 ± 1.1 c | 67.9 ± 1.3 c | 106.7 ± 1.5 c | 82.6 ± 0.6 c | 103.4 ± 2.3 c | 0.8 ± 0.1 c | 1.0 ± 0.3 d | |
CCMC (salt tolerant) | |||||||||||
CK | 0 mM | 44.8 ± 1.3 ab | 10.2 ± 0.9 a | 47.9 ± 1.0 c | 124.1 ± 2.4 b | 86.4 ± 0.9 c | 83.0 ± 2.4 f | 25.6 ± 2.0 c | 27.7 ± 1.1 d | 3.4 ± 0.3 b | 2.9 ± 0.1 c |
100 mM | 31.7 ± 1.8 c | 6.6 ± 1.0 a | 31.8 ± 0.4 f | 84.1 ± 2.2 e | 54.6 ± 0.7 f | 130.5 ± 2.1 a | 136.4 ± 2.1 a | 146.1 ± 1.4 a | 0.4 ± 0.1 c | 0.8 ± 0.1 d | |
HBL | 0 mM | 45.1 ± 2.4 ab | 11.03 ± 2.1 a | 49.9 ± 1.5 bc | 127.8.8 ± 3.1 ab | 88.9 ± 0.8 bc | 86.5 ± 2.7 ef | 23.7 ± 2.5 c | 24.4 ± 1.4 de | 3.8 ± 0.1 b | 3.5 ± 0.2 b |
100 mM | 35.3 ± 2.5 bc | 7.1 ± 2.4 a | 37.5 ± 1.0 e | 94.4 ± 1.1 de | 62.8 ± 1.2 e | 121.0 ± 2.9 b | 91.0 ± 2.0 b | 124.1 ± 1.5 b | 0.6 ± 0.1 c | 0.9 ± 0.1 d | |
AMF | 0 mM | 48.9 ± 2.0 a | 12.7 ± 1.4 a | 51.6 ± 1.2 ab | 132.8 ± 3.2 ab | 91.8 ± 0.7 ab | 89.5 ± 2.2 de | 22.5 ± 2.7 c | 22.8 ± 1.2 de | 4.2 ± 0.4 ab | 3.9 ± 0.1 b |
100 mM | 41.7 ± 2.0 ab | 8.1 ± 0.9 a | 39.7 ± 0.9 de | 105.4 ± 3.3 cd | 67.2 ± 1.0 e | 115.5 ± 1.8 b | 87.9 ± 2.9 b | 112.5 ± 1.5 c | 0.7 ± 0.1 c | 1.0 ± 0.2 d | |
HBL + AMF | 0 mM | 50.4 ± 1.7 a | 13.4 ± 1.1 a | 53.5 ± 0.7 a | 139.1 ± 2.1 a | 94.3 ± 0.4 a | 94.8 ± 1.9 d | 18.7 ± 2.6 c | 20.4 ± 1.3 e | 5.2 ± 03 a | 4.6 ± 0.2 a |
100 mM | 43.3 ± 2.2 ab | 9.4 ± 1.9 a | 41.4 ± 0.3 d | 111.3 ± 1.8 c | 72.8 ± 0.9 d | 108.2±1.4 c | 85.2 ± 2.3 b | 107.4 ± 1.6 e | 0.8 ± 0.2 c | 1.0 ± 0.1 d |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, H.; Hayat, S.; Ali, M.; Liu, H.; Chen, X.; Li, J.; Cheng, Z. The Protective Role of 28-Homobrassinolide and Glomus versiforme in Cucumber to Withstand Saline Stress. Plants 2020, 9, 42. https://doi.org/10.3390/plants9010042
Ahmad H, Hayat S, Ali M, Liu H, Chen X, Li J, Cheng Z. The Protective Role of 28-Homobrassinolide and Glomus versiforme in Cucumber to Withstand Saline Stress. Plants. 2020; 9(1):42. https://doi.org/10.3390/plants9010042
Chicago/Turabian StyleAhmad, Husain, Sikandar Hayat, Muhammad Ali, Hongjiu Liu, Xuejin Chen, Jianming Li, and Zhihui Cheng. 2020. "The Protective Role of 28-Homobrassinolide and Glomus versiforme in Cucumber to Withstand Saline Stress" Plants 9, no. 1: 42. https://doi.org/10.3390/plants9010042
APA StyleAhmad, H., Hayat, S., Ali, M., Liu, H., Chen, X., Li, J., & Cheng, Z. (2020). The Protective Role of 28-Homobrassinolide and Glomus versiforme in Cucumber to Withstand Saline Stress. Plants, 9(1), 42. https://doi.org/10.3390/plants9010042