Physiological, Biochemical and Reproductive Studies on Valeriana wallichii, a Critically Endangered Medicinal Plant of the Himalayan Region Grown under In-Situ and Ex-Situ Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. Histochemical Detection of Reactive Oxygen Species; O2− and H2O2 Accumulation
2.2.1. H2O2 Content
2.2.2. Lipid Peroxidation
2.2.3. Determination of Reduced Glutathione Content
2.3. Anti-Oxidant Enzymes Activity
2.4. Phenolics/Flavonoids Metabolism: Enzyme Activities
2.4.1. Estimation of Total Phenolic Content
2.4.2. Estimation of Total Flavonoids
2.5. Proline Metabolism-Related Enzymes
2.6. Measurement of Plant Fresh Weight and Plant Dry Weight
2.7. Measurement of Leaf Area, Length of Rhizome and Length of Petiole
2.8. Gas Exchange Parameters
2.9. Chlorophyll a Fluorescence Measurements
2.10. Total Chlorophyll and Carotenoid Content
2.11. Reproductive Output
2.12. Seed Germination and Seed to Seed Cycle
2.13. Ex-Situ Conservation
2.14. Statistical Analysis
3. Results
3.1. Superoxide Ion Accumulation in In-Situ and Ex-Situ Grown Plants of Valeriana wallichii
3.2. H2O2 Accumulation in In-Situ and Ex-Situ Grown Plants of Valeriana wallichii
3.3. H2O2 and TBARS Content in In-Situ and Ex-Situ Grown Plants of Valeriana wallichii
3.4. Proline Metabolism Enzymes in In-Situ and Ex-Situ Grown Plants of Valeriana wallichii
3.5. Phenolics Metabolismin In-Situ and Ex-Situ Grown Plants of Valeriana wallichii
3.6. Gas Exchange Attributes in In-Situ and Ex-Situ Grown Plants of Valeriana wallichii
3.7. Quantum Yield, Chlorophyll Fluorescence and Reaction Centre ETR in In-Situ and Ex-Situ Grown Plants
3.8. Fresh Weight and Dry Weight in In-Situ and Ex-Situ Grown Plants of Valeriana wallichii
3.9. Leaf Area, Length of Rhizome and Length of Petiole in In-Situ and Ex-Situ Grown Plants of Valeriana wallichii
3.10. Chlorophyll and Carotenoid Content in In-Situ and Ex-Situ Grown Plants of Valeriana wallichii
3.11. GSH Content in In-Situ and Ex-Situ Grown Plants of Valeriana wallichii
3.12. Antioxidants Enzyme in In-Situ and Ex-Situ Grown Plants of Valeriana wallichii
3.13. Reproductive Output in In-Situ and Ex-Situ Grown Plants of Valeriana wallichii
3.14. Seed Germination and Seed to Seed Cycle in In-Situ and Ex-Situ Grown Plants of Valeriana wallichii
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sundaresan, N.; Ilango, K. Review on Valeriana Species-Valeriana wallichii and Valeriana jatamansi. J. Pharm. Sci. Res. 2018, 10, 2697–2701. [Google Scholar]
- Ekhteraei Tousi, S.; Radjabian, T.; Ebrahimzadeh, H.; Niknam, V. Enhanced production of valerenic acids and valepotriates by in vitro cultures of Valeriana officinalis L. Int. J. Plant Prod. 2010, 4, 209–222. [Google Scholar]
- Pandian, D.; Nagarajan, N. Comparison of chemical composition and antioxidant potential of hydrodistilled oil and supercritical fluid CO2 extract of Valeriana wallichi DC. J. Nat. Prod. Res. 2015, 1, 25–30. [Google Scholar]
- Chappell, J. Biochemistry and Molecular Biology of the Isoprenoid Biosynthetic Pathway in Plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1995, 46, 521–547. [Google Scholar] [CrossRef]
- Sangwan, N.; Farooqi, A.; Shabih, F.; Sangwan, R.S. Regulation of essential oil production in plants. Plant Growth Regul. 2001, 34, 3–21. [Google Scholar] [CrossRef]
- Khajuria, A.; Sharma, P.; Verma, S.; Karihaloo, J.L. Genetic Diversity in Valeriana wallichii DC., a Medicinally Important Threatened Species as Assessed by Random Amplified Polymorphic DNA in Two Himalayan States of India. Proc. Natl. Acad. Sci. USA India Sect. B Biol. Sci. 2014, 84, 579–585. [Google Scholar] [CrossRef]
- Mustafavi, S.H.; Shekari, F.; Maleki, H.H.; Nasiri, Y. Effect of Water Stress on some Quantitative and Qualitative Traits of Valerian (Valeriana officinalis L.) Plants. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Hortic. 2016, 73. [Google Scholar] [CrossRef] [Green Version]
- Khajuria, A.; Susheel, V.; Puneet, S. Stylar movement in Valeriana wallichii DC.—A contrivance for reproductive assurance and species survival. Curr. Sci. 2011, 100, 1143–1144. [Google Scholar]
- Zhu, J.-K. Abiotic Stress Signaling and Responses in Plants. Cell 2016, 167, 313–324. [Google Scholar] [CrossRef] [Green Version]
- Ertani, A.; Mietto, A.; Borin, M.; Nardi, S. Chromium in Agricultural Soils and Crops: A Review. Water Air Soil Pollut. 2017, 228. [Google Scholar] [CrossRef]
- Wakeel, A.; Ali, I.; Wu, M.; Raza Kkan, A.; Jan, M.; Ali, A.; Liu, Y.; Ge, S.; Wu, J.; Liu, B.; et al. Ethylene mediates dichromate-induced oxidative stress and regulation of the enzymatic antioxidant system-related transcriptome in Arabidopsis thaliana. Environ. Exp. Bot. 2018, 161, 166–179. [Google Scholar] [CrossRef]
- Baker, N.R. Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo. Annu. Rev. Plant Biol. 2008, 59, 89–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Per, T.S.; Khan, N.A.; Reddy, P.S.; Masood, A.; Hasanuzzaman, M.; Khan, M.I.R.; Anjum, N.A. Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics. Plant Physiol. Biochem. 2017, 115, 126–140. [Google Scholar] [CrossRef] [PubMed]
- Ni, Z.; Lu, Q.; Huo, H.; Zhang, H. Estimation of Chlorophyll Fluorescence at Different Scales: A Review. Sensors 2019, 19, 3000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murchie, E.H.; Lawson, T. Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. J. Exp. Bot. 2013, 64, 3983–3998. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Upadhyay, A.K.; Singh, D.V.; Singh, J.S.; Singh, D.P. Photosynthetic performance, nutrient status and lipid yield of microalgae Chlorella vulgaris and Chlorococcum humicola under UV-B exposure. Curr. Res. Biotechnol. 2019, 1, 65–77. [Google Scholar] [CrossRef]
- Asgher, M.; Per, T.S.; Verma, S.; Pandith, S.A.; Masood, A.; Khan, N.A. Ethylene Supplementation Increases PSII Efficiency and Alleviates Chromium-Inhibited Photosynthesis Through Increased Nitrogen and Sulfur Assimilation in Mustard. J. Plant Growth Regul. 2018, 37, 1300–1317. [Google Scholar] [CrossRef]
- Sehar, Z.; Masood, A.; Khan, N.A. Nitric oxide reverses glucose-mediated photosynthetic repression in wheat (Triticum aestivum L.) under salt stress. Environ. Exp. Bot. 2019, 161, 277–289. [Google Scholar] [CrossRef]
- Apel, K.; Hirt, H. REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef] [Green Version]
- Vicente, O.; Boscaiu, M. Flavonoids: Antioxidant Compounds for Plant Defence… and for a Healthy Human Diet. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 2018, 46, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Khajuria, A. Conservation Biology of Three Overexploited Medicinal Plants of North-West Himalyan Region; BGSBU: Rajouri, India, 2013. [Google Scholar]
- Michalak, A. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol. J. Environ. Stud. 2006, 15, 523–530. [Google Scholar]
- Keilig, K.; Ludwig-Mueller, J. Effect of flavonoids on heavy metal tolerance in Arabidopsis thaliana seedlings. Bot. Stud. 2009, 50, 311–318. [Google Scholar]
- Rezazadeh, A.; Ghasemnezh, A.; Barani, M.; Telmadarre, T. Effect of Salinity on Phenolic Composition and Antioxidant Activity of Artichoke (Cynara scolymus L.) Leaves. Res. J. Med. Plant 2012, 6, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Mishra, B.; Sangwan, N.S. Amelioration of cadmium stress in Withania somnifera by ROS management: Active participation of primary and secondary metabolism. Plant Growth Regul. 2019, 87, 403–412. [Google Scholar] [CrossRef]
- Kavi Kishor, P.B. Role of proline in cell wall synthesis and plant development and its implications in plant ontogeny. Front. Plant Sci. 2015, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asgher, M.; Per, T.S.; Anjum, S.; Khan, M.I.R.; Masood, A.; Verma, S.; Khan, N.A. Contribution of Glutathione in Heavy Metal Stress Tolerance in Plants. In Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress; Springer: Singapore, 2018; pp. 297–313. [Google Scholar] [CrossRef]
- Ball, L.; Accotto, G.-P.; Bechtold, U.; Creissen, G.; Funck, D.; Jimenez, A.; Kular, B.; Leyland, N.; Mejia-Carranza, J.; Reynolds, H.; et al. Evidence for a Direct Link between Glutathione Biosynthesis and Stress Defense Gene Expression in Arabidopsis. Plant Cell 2004, 16, 2448–2462. [Google Scholar] [CrossRef] [Green Version]
- Bhat, H.A.; Kaur, T.; Bhat, R.; Vyas, D. Physiological and biochemical plasticity ofLepidium latifoliumas ‘sleeper weed’ in Western Himalayas. Physiol. Plant. 2015, 156, 278–293. [Google Scholar] [CrossRef]
- Gallé, Á.; Czékus, Z.; Bela, K.; Horváth, E.; Ördög, A.; Csiszár, J.; Poór, P. Plant Glutathione Transferases and Light. Front. Plant Sci. 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Samuilov, S.; Rademacher, N.; Brilhaus, D.; Flachbart, S.; Arab, L.; Kopriva, S.; Weber, A.P.M.; Mettler-Altmann, T.; Rennenberg, H. Knock-Down of the Phosphoserine Phosphatase Gene Effects Rather N- Than S-Metabolism in Arabidopsis thaliana. Front. Plant Sci. 2018, 9. [Google Scholar] [CrossRef]
- Okuda, T.; Matsuda, Y.; Yamanaka, A.; Sagisaka, S. Abrupt Increase in the Level of Hydrogen Peroxide in Leaves of Winter Wheat Is Caused by Cold Treatment. Plant Physiol. 1991, 97, 1265–1267. [Google Scholar] [CrossRef] [Green Version]
- Dhindsa, R.S.; Plumb-Dhindsa, P.; Thorpe, T.A. Leaf Senescence: Correlated with Increased Levels of Membrane Permeability and Lipid Peroxidation, and Decreased Levels of Superoxide Dismutase and Catalase. J. Exp. Bot. 1981, 32, 93–101. [Google Scholar] [CrossRef]
- Anderson, M.E. [70] Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol. 1985, 113, 548–555. [Google Scholar] [PubMed]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Kováčik, J.; Klejdus, B.; Hedbavny, J.; Štork, F.; Bačkor, M. Comparison of cadmium and copper effect on phenolic metabolism, mineral nutrients and stress-related parameters in Matricaria chamomilla plants. Plant Soil 2009, 320, 231–242. [Google Scholar] [CrossRef]
- Ali, M.; Hahn, E.-J.; Paek, K.-Y. Methyl jasmonate and salicylic acid induced oxidative stress and accumulation of phenolics in Panax ginseng bioreactor root suspension cultures. Molecules 2007, 12, 607–621. [Google Scholar] [CrossRef] [Green Version]
- Khatun, S.; Bandyopadhyay, P.; Chatterjee, N.C. Phenols with their oxidizing enzymes in defense against black spot of rose (Rosa centifolia). Asian J. Exp. 2009, 23, 249–252. [Google Scholar]
- Chang, C.-C.; Yang, M.-H.; Wen, H.-M.; Chern, J.-C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar]
- Huang, A.H.; Cavalieri, A.J. Proline oxidase and water stress-induced proline accumulation in spinach leaves. Plant Physiol. 1979, 63, 531–535. [Google Scholar] [CrossRef] [Green Version]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts, polyphenoxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Yeap Foo, L. Antioxidant activities of polyphenols from sage (Salvia officinalis). Food Chem. 2001, 75, 197–202. [Google Scholar] [CrossRef]
- Asgher, M.; Khan, N.A.; Khan, M.I.R.; Fatma, M.; Masood, A. Ethylene production is associated with alleviation of cadmium-induced oxidative stress by sulfur in mustard types differing in ethylene sensitivity. Ecotoxicol. Environ. Saf. 2014, 106, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Gengmao, Z.; Quanmei, S.; Yu, H.; Shihui, L.; Changhai, W. The Physiological and Biochemical Responses of a Medicinal Plant (Salvia miltiorrhiza L.) to Stress Caused by Various Concentrations of NaCl. PLoS ONE 2014, 9, e89624. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.A.; Asgher, M.; Per, T.S.; Masood, A.; Fatma, M.; Khan, M.I.R. Ethylene Potentiates Sulfur-Mediated Reversal of Cadmium Inhibited Photosynthetic Responses in Mustard. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.I.R.; Nazir, F.; Asgher, M.; Per, T.S.; Khan, N.A. Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J. Plant Physiol. 2015, 173, 9–18. [Google Scholar] [CrossRef]
- Iqbal, N.; Nazar, R.; Syeed, S.; Masood, A.; Khan, N.A. Exogenously-sourced ethylene increases stomatal conductance, photosynthesis, and growth under optimal and deficient nitrogen fertilization in mustard. J. Exp. Bot. 2011, 62, 4955–4963. [Google Scholar] [CrossRef] [Green Version]
- Dai, H.; Xiao, C.; Liu, H.; Tang, H. Combined NMR and LC-MS Analysis Reveals the Metabonomic Changes in Salvia miltiorrhiza Bunge Induced by Water Depletion. J. Proteome Res. 2010, 9, 1460–1475. [Google Scholar] [CrossRef]
- Dai, H.; Xiao, C.; Liu, H.; Hao, F.; Tang, H. Combined NMR and LC-DAD-MS analysis reveals comprehensive metabonomic variations for three phenotypic cultivars of Salvia Miltiorrhiza Bunge. J. Proteome Res. 2010, 9, 1565–1578. [Google Scholar] [CrossRef]
- Szabados, L.; Savouré, A. Proline: A multifunctional amino acid. Trends Plant Sci. 2010, 15, 89–97. [Google Scholar] [CrossRef]
- Sabir, F.; Sangwan, R.S.; Kumar, R.; Sangwan, N.S. Salt Stress-induced Responses in Growth and Metabolism in Callus Cultures and Differentiating In Vitro Shoots of Indian Ginseng (Withania somnifera Dunal). J. Plant Growth Regul. 2012, 31, 537–548. [Google Scholar] [CrossRef]
- Bourgou, S.; Kchouk, M.E.; Bellila, A.; Marzouk, B. Effect of salinity on phenolic composition and biological activity of Nigella sativa. Acta Hortic. 2010, 57–60. [Google Scholar] [CrossRef]
- Oueslati, S.; Karray-Bouraoui, N.; Attia, H.; Rabhi, M.; Ksouri, R.; Lachaal, M. Physiological and antioxidant responses of Mentha pulegium (Pennyroyal) to salt stress. Acta Physiol. Plant. 2009, 32, 289–296. [Google Scholar] [CrossRef]
- Singh, M.; Singh, V.P.; Prasad, S.M. Nitrogen modifies NaCl toxicity in eggplant seedlings: Assessment of chlorophyll a fluorescence, antioxidative response and proline metabolism. Biocatal. Agric. Biotechnol. 2016, 7, 76–86. [Google Scholar] [CrossRef]
- Sgherri, C.; Cosi, E.; Navari-Izzo, F. Phenols and antioxidative status of Raphanus sativus grown in copper excess. Physiol. Plant. 2003, 118, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Noctor, G.; Mhamdi, A.; Chaouch, S.; Han, Y.; Neukermans, J.; Marquez-Garcia, B.; Queval, G.; Foyer, C.H. Glutathione in plants: An integrated overview. Plant Cell Environ. 2011, 35, 454–484. [Google Scholar] [CrossRef] [PubMed]
- Meyer, A.J.; Hell, R. Glutathione homeostasis and redox-regulation by sulfhydryl groups. Photosynth. Res. 2005, 86, 435–457. [Google Scholar] [CrossRef]
- Kabir, A.H. Biochemical and molecular changes in rice seedlings (Oryza sativa L.) to cope with chromium stress. Plant Biol. 2016, 18, 710–719. [Google Scholar] [CrossRef]
- Siripornadulsil, S.; Traina, S.; Verma, D.P.S.; Sayre, R.T. Molecular Mechanisms of Proline-Mediated Tolerance to Toxic Heavy Metals in Transgenic Microalgae. Plant Cell 2002, 14, 2837–2847. [Google Scholar] [CrossRef]
- Matysik, J.; Alia, A.; Bhalu, B.; Mohanty, P. Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr. Sci. 2002, 82, 525–532. [Google Scholar]
- Guo, J.; Dai, X.; Xu, W.; Ma, M. Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 2008, 72, 1020–1026. [Google Scholar] [CrossRef] [PubMed]
- Gimeno, T.E.; Saavedra, N.; Ogée, J.; Medlyn, B.E.; Wingate, L. A novel optimization approach incorporating non-stomatal limitations predicts stomatal behaviour in species from six plant functional types. J. Exp. Bot. 2019, 70, 1639–1651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameters Studied | In-Situ Grown Plants | Ex-Situ Grown Plants | p-Value |
---|---|---|---|
H2O2 content (nmol g−1 FW) | 48.2 ± 5.05 b | 70.5 ± 6.8 a | <0.05 * |
TBARS content (nmol g−1 FW) | 4.8 ± 0.9 b | 14.5 ± 1.2 a | <0.001 *** |
GSH content (nmol g−1 FW) | 280.3 ± 19 a | 307.2 ± 21 a | 0.3700 |
Catalase activity (mg protein min−1) | 107.2 ± 5.36 a | 119.6 ± 5.98 a | 0.1611 |
Superoxide dismutase activity (mg protein min−1) | 4.8 ± 0.24 a | 5.3 ± 0.26 a | 0.1953 |
Ascorbate peroxidase activity (mg protein min−1) | 0.9 ± 0.04 b | 0.13 ± 0.06 a | <0.001 *** |
Total phenolics content (mg g−1 DW) | 0.5 ± 0.08 b | 1.2 ± 0.07 a | <0.001 *** |
Proline content (mg g−1 FW) | 4.1 ± 0.92 b | 12.2 ± 1.2 a | <0.001 *** |
Ornithine aminotransferase (U mg protein min−1) | 6.2 ± 0.99 a | 9.3 ± 1.1 a | 0.0695 |
Pyrroline-5corboxylate reductase (P5C) (U mg protein min−1) | 10.4 ± 1.2 a | 12.1 ± 1.3 a | 0.3647 |
Proline oxidase (U mg protein min−1) | 0.05 ± 0.006 a | 0.03 ± 0.007 a | 0.0619 |
Glucose-6-phosphate dehydrogenase (U mg protein min−1) | 7.2 ± 1.0 b | 18.3 ± 2.1 a | <0.01 ** |
Shikimic acid dehydrogenese (U mg protein min−1) | 2.2 ± 0.5 a | 3.1 ± 0.6 a | 0.2585 |
Phenylalanine lyase (U mg protein min−1) | 2.6 ± 0.6 a | 3.4 ± 0.4 a | 0.2995 |
Flavonoids content (mg g−1 DW) | 0.40 ± 0.008 a | 0.45 ± 0.07 a | 0.001 |
Total chlorophyll content (mg g−1 FW) | 2.4 ± 0.3 a | 1.8 ± 0.2 a | 0.1347 |
Carotenoid content (mg g−1 FW) | 0.6 ± 0.02 b | 0.9 ± 0.007 a | <0.001 *** |
S. No. | Kind of Treatment | No. of Flowers Under Observation | No. of Fruits Formed | No. of Plants to Which the Flowers Belonged | Percent Fruit Set |
---|---|---|---|---|---|
1. | Open pollination in-situ conditions | 3647 | 1533 | 21 | 42.03% |
2. | Open pollination under ex-situ conditions | 17,241 | 11,125 | 53 | 64.5% |
Activity | March | April | May | August | ||||
---|---|---|---|---|---|---|---|---|
In-Situ | Ex-Situ | In-Situ | Ex-Situ | In-Situ | Ex-Situ | In-Situ | Ex-Situ | |
No. of seeds put for germination | 150 | 150 | 150 | 207 | 150 | 100 | 150 | 139 |
No. of seeds germinated | 95 | 116 | 65 | 157 | 45 | 73 | 9 | 76 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asgher, M.; Verma, S.; Khan, N.A.; Vyas, D.; Kumari, P.; Rashid, S.; Khan, S.; Qadir, S.; Ajmal Ali, M.; Ahmad, P. Physiological, Biochemical and Reproductive Studies on Valeriana wallichii, a Critically Endangered Medicinal Plant of the Himalayan Region Grown under In-Situ and Ex-Situ Conditions. Plants 2020, 9, 131. https://doi.org/10.3390/plants9020131
Asgher M, Verma S, Khan NA, Vyas D, Kumari P, Rashid S, Khan S, Qadir S, Ajmal Ali M, Ahmad P. Physiological, Biochemical and Reproductive Studies on Valeriana wallichii, a Critically Endangered Medicinal Plant of the Himalayan Region Grown under In-Situ and Ex-Situ Conditions. Plants. 2020; 9(2):131. https://doi.org/10.3390/plants9020131
Chicago/Turabian StyleAsgher, Mohd, Susheel Verma, Nafees A. Khan, Dhiraj Vyas, Priyanka Kumari, Shaista Rashid, Sajid Khan, Shaista Qadir, Mohammad Ajmal Ali, and Parvaiz Ahmad. 2020. "Physiological, Biochemical and Reproductive Studies on Valeriana wallichii, a Critically Endangered Medicinal Plant of the Himalayan Region Grown under In-Situ and Ex-Situ Conditions" Plants 9, no. 2: 131. https://doi.org/10.3390/plants9020131
APA StyleAsgher, M., Verma, S., Khan, N. A., Vyas, D., Kumari, P., Rashid, S., Khan, S., Qadir, S., Ajmal Ali, M., & Ahmad, P. (2020). Physiological, Biochemical and Reproductive Studies on Valeriana wallichii, a Critically Endangered Medicinal Plant of the Himalayan Region Grown under In-Situ and Ex-Situ Conditions. Plants, 9(2), 131. https://doi.org/10.3390/plants9020131