The Woody Planet: From Past Triumph to Manmade Decline
Abstract
:1. The Importance of Woody Species
2. The Origin of Woody Plants
3. How Much of the Vegetal World Is Woody Today?
4. Domination of Woody Species
5. The Manmade Decline
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Plant Group | Family | No Genera/No Species | Life Forms |
---|---|---|---|
GYMNOSPERMS | |||
Cycadales * | Cycadaceae | 1/107 | O |
Zamiaceae | 9/230 | O | |
Ginkgoales * | Ginkgoaceae | 1/1 | T |
Welwitschiales * | Welwitschiaceae | 1/1 | O |
Gnetales * | Gnetaceae | 1/43 | L, t |
Ephedrales * | Ephedraceae | 1/68 | S, l |
Pinales * | Pinaceae | 11/228 | T, s |
Araucariales * | Araucariaceae | 3/37 | T |
Podocarpaceae | 19/187 | T, S | |
Cupressales * | Sciadopithyaceae | 1/1 | T |
Cupressaceae | 29/149 | T, S | |
Cephalotaxaceae | 1/8 | T, S | |
Taxaceae | 5/20 | T, S | |
BASAL DICOTS | |||
Amborellales * | Amborellaceae | 1/1 | T |
Austrobaileyales * | Austrobaileyaceae | 1/1 | L |
Trimeniaceae | 1/8 | T, S, L | |
Schisandraceae | 3/85 | T, S, L | |
Canellales * | Canellaceae | 5/23 | T, s |
Winteraceae | 5/65 | S, T, l | |
Magnoliales * | Myristicaceae | 21/520 | T, s |
Magnoliaceae | 2/294 | T, S | |
Degeneriaceae | 1/2 | T | |
Himantandraceae | 1/2 | T | |
Eupomatiaceae | 1/3 | S, t | |
Annonaceae | 105/2500 | T, S, L | |
Laurales * | Calycanthaceae | 3/10 | S, T |
Siparunaceae | 2/75 | S, T, l | |
Gomortegaceae | 1/1 | T | |
Atherospermataceae | 6/16 | T, S | |
Hernandiaceae | 5/58 | T, S, L | |
Monimiaceae | 24/217 | T, S, L | |
Lauraceae | 45/2850 | T, S | |
EUDICOTS | |||
Ranunculales | Eupteleaceae | 1/2 | T, S |
Lardizabalaceae | 7/40 | L, s | |
Proteales | Sabiaceae | 3/66 | T, S, L |
Platanaceae | 1/8 | T | |
Proteaceae | 83/1660 | S, T, o | |
Trochodendrales * | Trochodendraceae | 2/2 | T, S |
Gunnerales | Myrothamnaceae | 1/2 | S |
Saxifragales | Peridiscaceae | 4/12 | T, S |
Altingiaceae | 1/15 | T, S | |
Hamamelidaceae | 26/86 | S, T | |
Cercidiphyllaceae | 1/2 | T | |
Daphniphyllaceae | 1/30 | T, S | |
Iteaceae | 2/18 | T, S, l | |
Grossulariaceae | 1/150 | S | |
Aphanopetalaceae | 1/2 | L | |
Tetracarpaeaceae | 1/1 | S | |
Vitales * | Vitaceae | 14/910 | L, S, T |
Fabales | Quillajaceae | 1/3 | T |
Surianaceae | 5/8 | T, S | |
Rosales | Barbeyaceae | 1/1 | T |
Elaeagnaceae | 3/60 | S, T, l | |
Ulmaceae | 7/54 | T, S | |
Fagales * | Nothofagaceae | 1/43 | T, S |
Fagaceae | 8/927 | T, s | |
Myricaceae | 3/57 | S, t | |
Juglandaceae | 10/60 | T, s | |
Casuarinaceae | 4/91 | T, S | |
Ticodendraceae | 1/1 | T | |
Betulaceae | 6/167 | T, S | |
Cucurbitales | Anisophylleaceae | 4/71 | T, S |
Corynocarpaceae | 1/5 | T, S | |
Tetramelaceae | 2/2 | T | |
Celastrales | Lepidobotryaceae | 2/2 | T |
Oxalidales | Huaceae | 2/4 | T, S |
Connaraceae | 12/180 | T, S, L | |
Cunoniaceae | 27/330 | T, S | |
Elaeocarpaceae | 12/615 | T, S | |
Brunelliaceae | 1/60 | T | |
Malpighiales | Pandaceae | 3/17 | T, S |
Irvingiaceae | 3/13 | T | |
Ctenolophonaceae | 1/2 | T | |
Rhizophoraceae | 15/147 | T, S | |
Erythroxylaceae | 4/242 | S, T | |
Bonnetiaceae | 3/35 | T, S | |
Clusiaceae | 13/750 | S, T | |
Calophyllaceae | 14/475 | T | |
Caryocaraceae | 2/26 | T, S | |
Lophopyxidaceae | 1/1 | S | |
Putranjivaceae | 2/216 | T, S | |
Centroplacaceae | 2/6 | T | |
Balanopaceae | 1/9 | T, S | |
Trigoniaceae | 5/28 | T, S, l | |
Dichapetalaceae | 3/170 | T, S, L | |
Chrysobalanaceae | 18/533 | T, S | |
Humiriaceae | 8/56 | T, S | |
Goupiaceae | 1/2 | T | |
Lacistemataceae | 2/14 | S, T | |
Salicaceae | 56/1220 | S, T | |
Ixonanthaceae | 3/17 | T, S | |
Picrodendraceae | 25/96 | T, S | |
Myrtales | Combretaceae | 10/530 | T, S, L |
Vochysiaceae | 7/217 | S, T | |
Myrtaceae | 132/5950 | T, S | |
Crypteroniaceae | 3/13 | T | |
Alzateaceae | 1/1 | T, s | |
Penaeaceae | 9/32 | S, T | |
Crossosomatales | Aphloiaceae | 1/1 | S, t |
Geissolomataceae | 1/1 | S | |
Strasburgeriaceae | 2/2 | T | |
Staphyleaceae | 2/45 | T, S | |
Guamatelaceae | 1/1 | S | |
Stachyuraceae | 1/8 | S, T, l | |
Crossosomataceae | 4/10 | S, t | |
Picramniales * | Picramniaceae | 3/49 | T, S |
Sapindales | Kirkiaceae | 1/6 | S, T |
Burseraceae | 19/615 | T, S | |
Anacardiacaeae | 83/860 | T, S, L | |
Simaroubaceae | 22/108 | T, S | |
Meliaceae | 53/600 | T, S | |
Huerteales | Petenaeaceae | 1/1 | T, s |
Gerrardinaceae | 1/2 | S, t | |
Tapisciaceae | 2/6 | T | |
Dipentodontaceae | 2/20 | T, S | |
Malvales | Muntingiaceae | 3/3 | T, S |
Sphaerosepalaceae | 2/18 | T, S | |
Sarcolaenaceae | 10/71 | T, S | |
Dipterocarpaceae | 16/695 | T | |
Brassicales | Akaniaceae | 2/2 | T |
Caricaceae | 6/35 | T, S | |
Setchellanthaceae | 1/1 | S | |
Koeberliniaceae | 1/2 | S, T | |
Bataceae | 1/2 | S | |
Salvadoraceae | 3/11 | S, T | |
Tiganophytaceae | 1/1 | S | |
Pentadiplandraceae | 1/1 | S, l | |
Capparaceae | 30/324 | S, T | |
Berberidopsidales | Aextoxicaceae | 1/1 | T |
Berberidopsidaceae | 2/3 | L | |
Santalales | Olacaceae | 29/180 | T, S, L |
Opiliaceae | 11/33 | T, S, l | |
Misodendraceae | 1/8 | S | |
Loranthaceae | 76/1050 | S, t, l | |
Caryophyllales | Tamaricaceae | 4/78 | S, T |
Dioncophyllaceae | 3/3 | S, L | |
Ancistrocladaceae | 1/21 | L, S | |
Rhabdodendraceae | 1/3 | S, T | |
Simmondsiaceae | 1/1 | S | |
Physenaceae | 1/2 | S, T | |
Asteropeiaceae | 1/8 | T, S | |
Achatocarpaceae | 2/11 | S, T | |
Stegnospermataceae | 1/4 | T, S | |
Barbeuiaceae | 1/1 | L | |
Sarcobataceae | 1/2 | S | |
Didiereaceae | 7/22 | T, S, l | |
Cornales | Nyssaceae | 5/37 | T |
Curtisiaceae | 1/1 | T | |
Ericales | Marcgraviaceae | 7/120 | L, S, t |
Tetrameristaceae | 3/5 | T, S | |
Fouquieriaceae | 1/11 | S, T | |
Lecythidaceae | 25/355 | T, s | |
Sladeniaceae | 2/3 | T | |
Pentaphylacaceae | 12/330 | T, S | |
Sapotaceae | 54/1273 | T, S, L | |
Ebenaceae | 4/800 | S, T | |
Theaceae | 9/240 | T, S | |
Symplocaceae | 2/260 | T, S | |
Styracaceae | 11/160 | T, S | |
Roridulaceae | 1/2 | S | |
Actinidiaceae | 3/360 | L, T, S | |
Clethraceae | 2/75 | S, T | |
Cyrillaceae | 2/2 | S, T | |
Icacinales | Oncothecaceae | 1/2 | T, S |
Icacinaceae | 25/165 | T, S, L | |
Metteniusales | Metteniusaceae | 11/50 | T, S, l |
Garryales * | Eucommiaceae | 1/1 | T |
Garryaceae | 2/25 | T, S | |
Gentianales | Gelsemiaceae | 3/11 | S, T, L |
Solanales | Montiniaceae | 3/5 | S, T |
Lamiales | Plocospermataceae | 1/1 | S, T |
Oleaceae | 26/790 | S, T, L | |
Schlegeliaceae | 4/37 | T, S, L | |
Thomandersiaceae | 1/6 | S, T | |
Paulowniaceae | 3/8 | T, L | |
Aquifoliales * | Stemonuraceae | 12/90 | S, T |
Cardiopteridaceae | 5/43 | T, S, l | |
Phyllonomaceae | 1/4 | T, S | |
Helwingiaceae | 1/4 | S, t | |
Aquifoliaceae | 1/500 | T, S | |
Asterales | Rousseaceae | 4/6 | S, T, l |
Alseuosmiaceae | 5/13 | S | |
Phellinaceae | 1/12 | S, T | |
Argophyllaceae | 2/21 | S, T | |
Bruniales | Bruniaceae | 6/81 | S, t |
Paracryphiales | Paracryphiaceae | 3/36 | S, T |
Apiales | Pennantiaceae | 1/4 | S, T, l |
Torricelliaceae | 3/10 | T, S | |
Griselinaceae | 1/7 | S, L, T | |
Pittosporaceae | 7/245 | T, S, L | |
Myodocarpaceae | 2/15 | T, S |
Appendix B
Plant Group | Family | No Genera/No Species | Life Forms |
---|---|---|---|
MONOCOTS | |||
Pandanales | Pandanaceae | 5/982 | T, S, L |
Liliales | Philesiaceae | 2/2 | S, L |
Ripogonaceae | 1/6 | S, L | |
Arecales | Dasypogogonaceae | 4/16 | S, t |
Arecaceae | 181/2600 | T, s |
References
- Brodribb, T.J.; Powers, J.; Cochard, H.; Choat, B. Hanging by a thread? Forests and drought. Science 2020, 368, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Crowther, T.W.; Glick, H.B.; Covey, K.R.; Bettigole, C.; Maynard, D.S.; Thomas, S.M.; Smith, J.R.; Hintler, G.; Duguid, M.C.; Amatulli, G.; et al. Mapping tree density at global scale. Nature 2015, 525, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Rogers, P.C.; McAvoy, D.J. Mule deer impede Pando’s recovery: Implications for aspen resilience from a single-genotype forest. PLoS ONE 2018, 13, e0203619. [Google Scholar] [CrossRef] [PubMed]
- Beech, E.; Rivers, M.; Oldfield, S.; Smith, P.P. GlobalTreeSearch: The first complete global database of tree species and country distributions. J. Sustain. For. 2017, 36, 454–489. [Google Scholar] [CrossRef]
- Watson, J.E.M.; Evans, T.; Venter, O.; Williams, B.; Tulloch, A.; Stewart, C.; Thompson, I.; Ray, J.C.; Murray, K.; Salazar, A.; et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2018, 2, 599–610. [Google Scholar] [CrossRef] [PubMed]
- Cronk, Q.C.B.; Forest, F. The evolution of angiosperm trees: From palaeobotany to genomics. In Comparative and Evolutionary Genomics of Angiosperm Trees; Grooves, A.T., Cronk, Q.C.B., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–17. [Google Scholar]
- Philippe, M.; Gomez, B.; Girard, V.; Coiffard, C.; Daviero-Gomez, V.; Thevenard, F.; Billon-Bruyat, J.P.; Guiomar, M.; Latil, J.L.; Le Loeuff, J.; et al. Woody or not woody? Evidence for early angiosperm habit from the Early Cretaceous fossil wood record of Europe. Palaeoworld 2008, 17, 142–152. [Google Scholar] [CrossRef]
- Morris, J.L.; Puttick, M.N.; Clark, J.W.; Edwards, D.; Kenrick, P.; Pressel, S.; Wellman, C.H.; Yang, Z.; Schneider, H.; Donoghue, P.C.J. The timescale of early land plant evolution. Proc. Natl. Acad. Sci. USA 2018, 115, 2274–2283. [Google Scholar] [CrossRef] [Green Version]
- Gerrienne, P.; Gensel, P.G.; Strullu-Derrien, C.; Lardeux, H.; Steemans, P.; Prestianni, C. A simple type of wood in two early Devonian plants. Science 2011, 333, 837. [Google Scholar] [CrossRef] [Green Version]
- Meyer-Berthaud, B.; Scheckler, S.E.; Wendt, J. Archaeopteris is the earliest known modern tree. Nature 1999, 398, 700–701. [Google Scholar] [CrossRef]
- Stein, W.E.; Mannolini, F.; VanAller Hernick, L.; Landing, E.; Berry, C.M. Giant cladoxylopsid trees resolve the enigma of the Earth’s earliest forest stumps at Gilboa. Nature 2007, 446, 904–907. [Google Scholar] [CrossRef]
- Povilus, R.A.; DaCosta, J.M.; Grassa, C.; Satyaki, P.R.V.; Moeglein, M.; Jaenisch, J.; Xi, Z.; Mathews, S.; Gehring, M.; Davis, C.C.; et al. Water lily (Nymphaea thermarum) genome reveals variable genomic signatures of ancient vascular cambium losses. Proc. Natl. Acad. Sci. USA 2020, 117, 8649–8656. [Google Scholar] [CrossRef] [PubMed]
- Carlquist, S. More woodiness/less woodiness: Evolutionary avenues, ontogenetic mechanisms. Int. J. Plant Sci. 2013, 174, 964–991. [Google Scholar] [CrossRef] [Green Version]
- Crane, P.R.; Friis, E.M. Water lilies, loss of woodiness, and model systems. Proc. Natl. Acad. Sci. USA 2020, 117, 9674–9676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fragnière, Y.; Bétrisey, S.; Cardinaux, L.; Kozlowski, G. Fighting their last stand? A global analysis of the distribution and conservation status of gymnosperms. J. Biogeogr. 2015, 42, 809–820. [Google Scholar] [CrossRef]
- Kozlowski, G.; Stoffel, M.; Bétrisey, S.; Cardinaux, L.; Mota, M. Hydrophobia of gymnosperms: Myth or reality? Ecohydrology 2015, 8, 105–112. [Google Scholar] [CrossRef] [Green Version]
- SOTWP—State of the World’s Plants; Royal Botanic Gardens, Kew: London, UK, 2017; Available online: https://stateoftheworldsplants.org (accessed on 14 October 2020).
- Christenhusz, M.J.M.; Byng, J.W. The number of known plants species in the world and its annual increase. Phytotaxa 2016, 261, 201–217. [Google Scholar] [CrossRef] [Green Version]
- FitzJohn, R.G.; Pennell, M.E.; Zanne, A.M.; Stevens, P.F.; Tank, D.C.; Cornwell, W.K. How much of the world is woody? J. Ecol. 2014, 102, 1266–1272. [Google Scholar] [CrossRef]
- Meyer, L.; Kissling, W.D.; Lohmann, L.G.; Hortal, J.; Diniz-Filho, J.A.F. Deconstructing species richness-environment relationships in Neotropical lianas. J. Biogeogr. 2020. [Google Scholar] [CrossRef]
- Christenhusz, M.J.M.; Fay, M.F.; Chase, M.W. Plants of the world. In An Illustrated Encyclopedia of Vascular Plants; University of Chicago Press: Chicago, IL, USA, 2017. [Google Scholar]
- Kozlowski, G.; Gratzfeld, J. Zelkova—An ancient tree. Global Status and Conservation Action; Natural History Museum Fribourg: Fribourg, Switzerland, 2013; p. 60. [Google Scholar]
- Song, Y.G.; Fragnière, Y.; Meng, H.H.; Li, Y.; Bétrisey, S.; Corrales, A.; Manchester, S.; Deng, M.; Jasinska, A.K.; Van Sam, H.; et al. Global biogeographic synthesis and priority conservation regions of the relict tree family Juglandaceae. J. Biogeogr. 2020, 47, 643–657. [Google Scholar] [CrossRef]
- Kozlowski, G.; Bétrisey, S.; Song, Y.G. Wingnuts (Pterocarya) and Walnut Family. Relict Trees: Linking the Past, Present and Future; Natural History Museum Fribourg: Fribourg, Switzerland, 2018; p. 128. [Google Scholar]
- Givnish, T.J.; Zuluaga, A.; Spalink, D.; Soto Gomez, M.; Lam, V.K.Y.; Saarela, J.M.; Saas, C.; Iles, W.J.D.; Lima da Sousa, D.J.; Leebens-Mack, J.; et al. Monocot plastid phylogenomics, timeline, net rates of species diversification, the power of multi-gene analyses, and a functional model for the origin of monocots. Am. J. Bot. 2018, 105, 1888–1910. [Google Scholar] [CrossRef]
- Bar-On, Y.M.; Phillips, R.; Milo, R. The biomass distribution on Earth. Proc. Natl. Acad. Sci. USA 2018, 115, 6506–6511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reichstein, M.; Carvalhais, N. Aspects of forest biomass in the Earth system: Its role and major unknowns. Surv. Geophys. 2019, 40, 693–707. [Google Scholar] [CrossRef] [Green Version]
- Wielgolaski, F.E. Vegetation types and plant biomass in tundra. Arct. Alp. Res. 1972, 4, 291–305. [Google Scholar] [CrossRef]
- Zomer, R.J.; Neufeldt, H.; Xu, J.; Ahrends, A.; Bossio, D.; Trabucco, A.; Van Noordwijk, M.; Wang, M. Global tree cover and biomass carbon on agricultural land: The contribution of agroforestry to global and national carbon budgets. Sci. Rep. 2016, 6, 29987. [Google Scholar] [CrossRef] [PubMed]
- Braje, T.J.; Erlandson, J.M. Human acceleration of animal and plant extinctions: A Late Pleistocene, Holocene and Anthropocene continuum. Anthropocene 2013, 4, 14–23. [Google Scholar] [CrossRef]
- Steffen, W.; Crutzen, P.J.; McNeill, J.R. The Anthropocene: Are humans now overwhelming the great forces of Nature. AMBIO J. Hum. Environ. 2007, 36, 614–621. [Google Scholar] [CrossRef]
- Reid, W.V.; Mooney, H.A.; Cropper, A.; Capistrano, D.; Carpenter, S.R.; Chopra, K.; Dasgupta, P.; Dietz, T.; Duraiappah, A.K.; Hassan, R.; et al. Ecosystems and Human Well-Being—Synthesis: A Report of the Millennium Ecosystem Assessment; Island Press: Washington, DC, USA, 2005; p. 137. [Google Scholar]
- Kozlowski, G.; Frey, D.; Fazan, L.; Egli, B.; Pirintsos, S. Zelkova abelicea. IUCN Red List of Threatened Species. 2012. Available online: www.iucnredlist.org (accessed on 19 July 2020).
- Fazan, L.; Stoffel, M.; Frey, D.J.; Pirintsos, S.; Kozlowski, G. Small does not mean young: Age estimation of severely browsed trees in anthropogenic Mediterranean landscapes. Biol. Conserv. 2012, 153, 97–100. [Google Scholar] [CrossRef] [Green Version]
- Kozlowski, G.; Frey, D.; Fazan, L.; Egli, B.; Bétrisey, S.; Gratzfeld, J.; Garfì, G.; Pirintsos, S. Tertiary relict tree Zelkova abelicea Ulmaceae): Distribution, population structure and conservation status. Oryx 2014, 48, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Kozlowski, G.; Bétrisey, S.; Song, Y.G.; Fazan, L.; Garfì, G. The Red List of Zelkova; Natural History Museum Fribourg: Fribourg, Switzerland, 2018; p. 32. [Google Scholar]
- Höhl, M.; Ahimbisibwe, V.; Stanturf, J.A.; Elsasser, P.; Kleine, M.; Bolte, A. Forest Landscape Restoration—What generates failure and success? Forests 2020, 11, 938. [Google Scholar] [CrossRef]
- Keren, S.; Medarević, M.; Obradović, S.; Zlokapa, B. Five decades of structural and compositional changes in managed and unmanaged montane stands: A case study from South-East Europe. Forests 2018, 9, 479. [Google Scholar] [CrossRef] [Green Version]
- Sabatini, M.F.; Keeton, W.S.; Lindner, M.; Svoboda, M.; Verkerk, P.J.; Bauhus, J.; Bruelheide, H.; Burrascano, S.; Debaive, N.; Duarte, I.; et al. Protection gaps and restoration opportunities for primary forests in Europe. Divers. Distrib. 2020. [Google Scholar] [CrossRef]
- Swanepoel, W.; Chase, M.W.; Christenhusz, M.J.M.; Maurin, O.; Forest, F.; Van Wyk, A.E. From the frying pan: An unusual dwarf shrub from Namibia turns out to be a new brassicalean family. Phytotaxa 2020, 439, 173–182. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fazan, L.; Song, Y.-G.; Kozlowski, G. The Woody Planet: From Past Triumph to Manmade Decline. Plants 2020, 9, 1593. https://doi.org/10.3390/plants9111593
Fazan L, Song Y-G, Kozlowski G. The Woody Planet: From Past Triumph to Manmade Decline. Plants. 2020; 9(11):1593. https://doi.org/10.3390/plants9111593
Chicago/Turabian StyleFazan, Laurence, Yi-Gang Song, and Gregor Kozlowski. 2020. "The Woody Planet: From Past Triumph to Manmade Decline" Plants 9, no. 11: 1593. https://doi.org/10.3390/plants9111593
APA StyleFazan, L., Song, Y. -G., & Kozlowski, G. (2020). The Woody Planet: From Past Triumph to Manmade Decline. Plants, 9(11), 1593. https://doi.org/10.3390/plants9111593