Nematicidal Amendments and Soil Remediation
Abstract
:1. Introduction
2. Botanical Amendments as Substitutes for Synthetic Nematicides
3. Botanical Amendments as Substitutes for Synthetic Fertilizers
4. Botanical Amendment Type 1: Biofumigation Using Cover Crop Rotation and Incorporation
4.1. Plant Protection Properties Based on Chemical Factors
4.2. Plant Protection Properties Based on Other Factors
4.3. Secondary Beneficial Properties on Soil Microbes and Saprophytic Nematodes
5. Botanical Amendment Type 2: Recycling Wastes for Use as Chars and Composts
5.1. Plant Protection Properties
5.2. Soil Enhancement Properties
6. Botanical Amendment Type 3: Other Products
6.1. Plant Protection Properties
6.2. Bio-Fertilizer Properties
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- He, H.M.; Liu, L.N.; Munir, S.; Bashir, N.H.; Wang, Y.; Yang, J.; Li, C.Y. Crop diversity and pest management in sustainable agriculture. J. Integr. Agric. 2019, 18, 1945–1952. [Google Scholar] [CrossRef]
- Liu, X.; Herbert, S.J.; Hashemi, A.M.; Zhang, X.; Ding, G. Effects of agricultural management on soil organic matter and carbon transformation—A review. Plant Soil Environ. 2006, 52, 531–543. [Google Scholar] [CrossRef] [Green Version]
- de Cárcer, P.S.; Sinaj, S.; Santonja, M.; Fossati, D.; Jeangros, B. Long-term effects of crop succession, soil tillage and climate on wheat yield and soil properties. Soil Tillage Res. 2019, 190, 209–219. [Google Scholar] [CrossRef]
- Soheili, A.; Saeedizadeh, A. Suppression of brassicaceous tissue on Meloidogyne javanica in a rhizosphere. Int. J. Agric. Biol. 2017, 19, 1012–1018. [Google Scholar] [CrossRef]
- Cole, R.A. Isothiocyanates, nitriles and thiocyanates as products of autolysis of glucosinolates in Cruciferae. Phytochemistry 1976, 15, 759–762. [Google Scholar] [CrossRef]
- Fourie, H.; Ahuja, P.; Lammers, J.; Daneel, M. Brassicacea-based management strategies as an alternative to combat nematode pests: A synopsis. Crop Prot. 2016, 80, 21–41. [Google Scholar] [CrossRef]
- Perez, M.P.; Navas-Cortes, J.A.; Pascual-Villalobos, M.J.; Castillo, P. Nematicidal activity of essential oils and organic amendments from Asteraceae against root-knot nematodes. Plant Pathol. 2003, 52, 395–401. [Google Scholar] [CrossRef] [Green Version]
- Das, R.K.; Chattoo, M.A.; Mallikarjunarao, K.; Mohanty, P. Effect of Biofertilizers and Different Levels of Nitrogen on Growth and Yield of Kale (Brassica oleracea var. acephala L.). Trends Biosci. 2015, 8, 1540–1546. [Google Scholar]
- Melakeberhan, H. Fertiliser use efficiency of soybean cultivars infected with Meloidogyne incognita and Pratylenchus penetrans. Nematology 2006, 8, 129–137. [Google Scholar] [CrossRef]
- Ploeg, A.T. Biofumigation to manage plant-parasitic nematodes. In Integrated Management and Biocontrol of Vegetable and Grain Crops Nematodes; Ciancio, A., Mukerji, K.G., Eds.; Springer: Berlin, Germany, 2007; pp. 239–248. [Google Scholar]
- Lopez-Perez, J.A.; Roubtsova, T.; Garcia, M.D.; Ploeg, A. The potential of five winter-grown crops to reduce root-knot nematode damage and increase yield of tomato. J. Nematol. 2010, 42, 120–127. [Google Scholar]
- Edwards, S.; Ploeg, A. Evaluation of 31 potential biofumigant Brassicaceous plants as hosts for three Meloidogyne species. J. Nematol. 2014, 46, 287–295. [Google Scholar] [PubMed]
- Wang, K.H.; Sipes, B.S.; Schmitt, D.P. Suppression of Rotylenchulus reniformis by Crotalaria juncea, Brassica napus, and Tagetes erecta. Nematropica 2001, 31, 237–251. [Google Scholar]
- Valdes, Y.; Viaene, N.; Moens, M. Effects of yellow mustard amendments on the soil nematode community in a potato field with focus on Globodera rostochiensis. Appl. Soil Ecol. 2012, 59, 39–47. [Google Scholar]
- Bilgrami, A.L.; Brey, C. Potential of predatory nematodes to control plant–parasitic nematodes. In Nematodes as Biocontrol Agents; Grewal, P.S., Ehlers, R.-U., Shapiro-Ilan, D.I., Eds.; CABI Publishing: Walligfors, UK, 2005; pp. 447–464. [Google Scholar]
- Wang, K.-H.; Sipes, B.S. Suppression of reniform nematodes with tropical cover crops in Hawaii pineapple. Acta Hortic. 2000, 529, 247–260. [Google Scholar]
- Akhtar, M.; Malik, A. Roles of organic soil amendments and soil organisms in the biological control of plant-parasitic nematodes: A review. Bioresour. Technol. 2000, 74, 35–47. [Google Scholar] [CrossRef]
- Sturz, A.V.; Kimpinski, J. Endoroot bacteria derived from marigolds (Tagetes spp.) can decrease soil population densities of root-lesion nematodes in the potato root zone. Plant Soil 2004, 262, 241–249. [Google Scholar] [CrossRef]
- Oduor-Owino, P.; Waudo, S.W.; Makhatsa, W.L. Effect of organic amendments on fungal parasitism of Meloidogyne incognita eggs and growth of tomato (Lycopersicon esculentum Mill) cv. Moneymaker. Int. J. Pest Manag. 1993, 39, 459–461. [Google Scholar] [CrossRef]
- Marra, R.; Vinale, F.; Cesarano, G.; Lombardi, N.; d’Errico, G.; Crasto, A.; Mazzei, P.; Piccolo, A.; Incerti, G.; Woo, S.L.; et al. Biochars from olive mill waste have contrasting effects on plants, fungi and phytoparasitic nematodes. PLoS ONE 2018, 13, e0198728. [Google Scholar] [CrossRef]
- Huang, W.; Ji, H.; Gheysen, G.; Debode, J.; Kyndt, T. Biochar-amended potting medium reduces the susceptibility of rice to root-knot nematode infections. BMC Plant Biol. 2015, 15, 267. [Google Scholar]
- Ikwunagu, E.A.; Ononuju, C.C.; Orikara, C.C. Nematicidal effects of different biochar sources on root-knot nematode (Meloidogyne spp.) egg hatchability and control on mungbean (Vigna radiata (L.) Wilczek). Int. J. Entomol. Nematol. Res. 2019, 4, 1–14. [Google Scholar]
- Martens, D.A. Management and crop residue influence soil aggregate stability. J. Environ. Qual. 2000, 29, 723–727. [Google Scholar] [CrossRef] [Green Version]
- De Corato, U.; Salimbenib, R.; De Pretis, A.; Patruno, L.; Avella, N.; Lacolla, G.; Cucci, G. Microbiota from ‘next-generation green compost’ improves suppressiveness of composted Municipal-Solid-Waste to soil-borne plant pathogens. Biol. Control 2018, 124, 1–17. [Google Scholar] [CrossRef]
- Olabiyi, T.I.; Oladeji, O.O. Assessment of four compost types on the nematode population dynamics in the soil sown with okra. Int. J. Org. Agric. Res. Dev. 2014, 9, 146–155. [Google Scholar]
- Forge, T.; Kenney, E.; Hashimoto, N.; Neilsen, D.; Zebarth, B. Compost and poultry manure as preplant soil amendments for red raspberry: Comparative effects on root lesion nematodes, soil quality and risk of nitrate leaching. Agric. Ecosyst. Environ. 2016, 223, 48–58. [Google Scholar] [CrossRef]
- Renčo, M.; Kováčik, P. Assessment of the nematicidal potential of vermicompost, vermicompost tea, and urea application on the potato-cyst nematodes Globodera rostochiensis and Globodera pallida. J. Plant Prot. Res. 2015, 55, 187–192. [Google Scholar] [CrossRef]
- Osman, G.Y. Studies on the potential use of the predator, Diplogaster sp. (Nematoda: Diplogasteroidea) on certain root parasitic nematodes. Anz. Schädlingskd. Pfl. 1988, 61, 70–73. [Google Scholar] [CrossRef]
- Labud, V.A. Mites associated with flies in biosolid compost piles. Rev. Soc. Entomol. Argent. 2001, 60, 162–164. [Google Scholar]
- Hartini, S. Taxonomic and Biogeographic Study of the Family Macrochelidae (Acari: Gamasina) Associated with Dung Beetles (Insecta: Coleoptera: Scarabaeidae) in Indonesia. Ph.D. Thesis, Hokkaido University, Sapporo, Japan, 2005; p. 129. [Google Scholar]
- Dwibadra, D. Taxonomy and Biogeography of the Family Macrochelidae (Acari: Mesostigmata) Associated with Dung Beetles (Coleoptera: Scarabaeidae) in Kalimantan, Indonesia. Ph.D. Thesis, Hokkaido University Collection of Scholarly and Academic Papers. Hokkaido University, Sapporo, Japan, 2015. [Google Scholar]
- Arjomandi, E.; Kazemi, S.; Afsha, A. Fauna and diversity of the manure-inhabiting Mesostigmata (Acari) in Kerman County, South Eastern Iran. Persian J. Acarol. 2013, 2, 253–263. [Google Scholar]
- Gryziak, G. Scheloribates distinctus Mihelčič, 1964—A species of mite (Acari: Oribatida) new to fauna of Poland and new records of three rare species. Fragm. Faun. 2009, 52, 21–23. [Google Scholar] [CrossRef] [Green Version]
- Ramakrishnan, N.; Neravathu, R. Oribatid mites as potential predators of the root knot nematode, Meloidogyne incognita. Acarol. Stud. 2019, 1, 123–128. [Google Scholar]
- McSorley, R.; Wang, K.H. Possibilities for biological control of root-knot nematodes by natural predators in Florida soils. Proc. Fla. State Hortic. Soc. 2009, 122, 421–425. [Google Scholar]
- Begum, F.; Bajracharya, R.M.; Sitaula, B.K.; Sharma, S.; Ali, S.; Ali, H. Seasonal dynamics and land use effect on soil microarthropod communities in the Mid-hills of Nepal. Int. J. Agron. Agric. Res. 2014, 5, 114–123. [Google Scholar]
- Menta, C.; Leoni, A.; Tarasconi, K.; Affanni, P. Does compost use affect microarthropod soil communities? Fresenius Environ. Bull. 2010, 19, 2303–2311. [Google Scholar]
- Klimek, A.; Rolbiecki, S.; Rolbiecki, R. Effects of mulching with forest litter and compost made of sewage sludge on the presence of Oribatida as bioindicators of soil revitalization in larch and pine in-ground forest nurseries. Rocz. Ochr. Śr. 2018, 20, 681–696. [Google Scholar]
- Kinn, D.N.; Witcoskjy, J.J. The life cycle and behaviour of Macrocheles boudreauxi Krantz. Z. Angew. Entomol. 1977, 84, 136–144. [Google Scholar] [CrossRef]
- Manning, M.J.; Halliday, R.B. Biology and reproduction of some Australian species of Macrochelidae (Acarina). Austral Entomol. 1994, 21, 89–94. [Google Scholar]
- de Azevedo, L.H.; Emberson, R.M.; Esteca, F.C.N.; de Moraes, G.J. Macrochelid mites (Mesostigmata: Macrochelidae) as biological control agents. In Prospects for Biological Control of Plant Feeding Mites and Other Harmful Organisms; Carrillo, D., de Moraes, G., Peña, J., Eds.; Springer International Publishing: Berlin, Germany, 2015; pp. 103–132. [Google Scholar]
- El-Sharabasy, H.; Hanafy, A. Ectoparasitic and predaceous mites inhabiting litters of the Japanese quail, Coturnix japonica in Ismailia Governorate, Egypt. Egypt. J. Biol. Pest Control 2014, 24, 359–362. [Google Scholar]
- Bilgrami, A.L. Predatory behaviour of a nematode feeding mite Tyrophagus putrescentiae (Sarcoptiformes: Acaridae). Fundam. Appl. Nematol. 1994, 17, 293–297. [Google Scholar]
- Baiamonte, G.; De Pasquale, C.; Marsala, V.; Cimò, G.; Alonzo, G.; Crescimanno, G.; Conte, P. Structure alteration of a sandy clay soil by biochar amendments. J. Soils Sediments 2015, 15, 816–824. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, Y.; Dong, W.; Zhang, Y.; Zhang, G.; Sun, Z.; Yang, L. Vermicompost can suppress Fusarium oxysporum f. sp. lycopersici via generation of beneficial bacteria in a long-term tomato monoculture soil. Plant Soil 2019, 440, 491–505. [Google Scholar] [CrossRef]
- Neher, D.A. Nematode communities in organically and conventionally managed agricultural soils. J. Nematol. 1999, 31, 142–154. [Google Scholar] [PubMed]
- Kayani, M.Z.; Mukhtar, T.; Hussain, M.A. Evaluation of nematicidal effects of Cannabis sativa L. and Zanthoxylum alatum Roxb. against root-knot nematodes, Meloidogyne incognita. Crop Prot. 2012, 39, 52–56. [Google Scholar] [CrossRef]
- Ntalli, N.; Nasiou, E.; Menkissoglu Spiroudi, U. Evaluation of essential oils from rosemary, orange, lavandula and false yellowhead on hatching and motility of root-knot nematode. J Agric. Sci. Technol. A 2013, 3, 603–616. [Google Scholar]
- Grabau, Z.J.; Chen, S. Efficacy of organic soil amendments for management of Heterodera glycines in greenhouse experiments. J. Nematol. 2014, 46, 267–274. [Google Scholar]
- Trivedi, P.; Rochester, I.J.; Trivedi, C.; Van Nostrand, J.D.; Zhou, J.; Karunaratne, S.; Anderson, I.C.; Singh, B.K. Soil aggregate size mediates the impacts of cropping regimes on soil carbon and microbial communities. Soil Biol. Biochem. 2015, 91, 169–181. [Google Scholar] [CrossRef]
- Jones, J.T.; Haegeman, A.; Danchin, E.G.J.; Gaur, H.S.; Helder, J.; Jones, M.G.K.; Kikuchi, T.; Manzanilla-López, R.; Palomares-Rius, J.E.; Wesemael, W.M.L.; et al. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol. 2013, 14, 946–961. [Google Scholar] [CrossRef]
- Perry, R.N.; Moens, M. (Eds.) Plant Nematology, 2nd ed.; CABI Publishing: Oxford Shire, UK, 2013. [Google Scholar]
- Bongers, T.; Bongers, M. Functional diversity of nematodes. Appl. Soil Ecol. 1998, 10, 239–251. [Google Scholar] [CrossRef]
- Linden, D.R.; Hendrix, P.F.; Coleman, D.C.; van Vliet, P. Faunal indicators of soil quality. In Defining Soil Quality for a Sustainable Environment; Doran, J.W., Coleman, D.C., Bezdicek, D.F., Stewart, B.A., Eds.; Soil Science Society of America: Madison, WI, USA, 1994; pp. 91–106. [Google Scholar]
- Fusaro, S.; Squartini, A.; Paoletti, M.G. Functional biodiversity, environmental sustainability and crop nutritional properties: A case study of horticultural crops in north-eastern Italy. Appl. Soil Ecol. 2018, 123, 699–708. [Google Scholar] [CrossRef]
- Suciu, N.; Vasileiadis, S.; Puglisi, E.; Pertile, G.; Tourna, M.; Karas, P.A.; Papolla, A.; Ferrarini, A.; Sulowic, S.; Fornasier, F.; et al. Azadirachtin and trifloxystrobin had no inhibitory effects on key soil microbial functions even at high dose rates. Appl. Soil Ecol. 2019, 137, 29–38. [Google Scholar] [CrossRef]
- Ntalli, N.; Monokrousos, N.; Rumbos, C.; Kontea, D.; Zioga, D.; Argyropoulou, M.D.; Menkissoglu-Spiroudi, U.; Tsiropoulos, N.G. Greenhouse biofumigation with Melia azedarach controls Meloidogyne spp. and enhances soil biological activity. J. Pest Sci. 2018, 91, 29–40. [Google Scholar] [CrossRef]
- Ntalli, N.; Zioga, D.; Argyropoulou, M.D.; Papatheodorou, E.M.; Menkissoglu-Spiroudi, U.; Monokrousos, N. Anise, parsley and rocket as nematicidal soil amendments and their impact on non-target soil organisms. Appl. Soil Ecol. 2019, 143, 17–25. [Google Scholar] [CrossRef]
- European Commission. Council directive 91/414/EEC of 15 July 1991 concerning the placing of plant protection products on the market. Off. J. Eur. Commun. 1991, L 230, 1–32. [Google Scholar]
- E.P.A. (US Environmental Protection Agency). Ozone Layer Depletion—Regulatory Programs, Methyl Bromide Alternatives. 2008. Available online: https://www.epa.gov/ozone-layer-protection (accessed on 25 January 2020).
- Atandi, G.J.; Haukeland, S.; Kariuki, G.M.; Coyne, D.L.; Karanja, E.N.; Musyoka, M.W.K.; Fiaboe, K.M.; Bautze, D.; Adamtey, N. Organic farming provides improved management of plant parasitic nematodes in maize and bean cropping systems. Agric. Ecosyst. Environ. 2017, 247, 265–272. [Google Scholar] [CrossRef]
- Gunther, F.A.; Gunther, J.D. Residue Reviews: Residues of Pesticides and Other Contaminants in the Total Environment; Springer: New York, NY, USA, 1983; p. 213. [Google Scholar]
- Fouly, A.H. Influence of different nourishment on the biology of Lasioseius dentatus (Fox), a new record from Egypt (Acari: Gamasida: Ascidae). Egypt J. Biol. Pest Control. 1997, 7, 1–6. [Google Scholar]
- Al Rehiayani, S.M.; Fouly, A.F. Cosmolaelaps simplex (Berlese), a polyphagous predatory mite feeding on root-knot nematode Meloidogyne javanica and citrus nematode Tylenchulus semipenetrans. Pak. J. Biol. Sci. 2005, 8, 168–174. [Google Scholar]
- García-Ortiz, N.; Aguilar-Marcelino, L.; Mendoza-de-Gives, P.; López-Arellano, M.E.; Bautista-Garfias, C.R.; González-Garduño, R. In vitro activity of Lasioseius penicilliger (Arachnida: Mesostigmata) against three nematode species: Teladorsagia circumcincta, Meloidogyne sp. and Caenorhabditis elegans. Vet. Méx. 2015, 2, 1–9. [Google Scholar] [CrossRef]
- Stirling, G.R.; Stirling, A.M.; Walter, D.E. The Mesostigmatid mite Protogamasellus mica, an effective predator of free-living and plant-parasitic nematodes. J. Nematol. 2017, 49, 327–333. [Google Scholar] [CrossRef] [Green Version]
- Manwaring, M.; Nahrung, F.H.; Wallace, H. Attack rate and prey preference of Lasioseius subterraneous [sic] and Protogamasellus mica on four nematode species. Exp. Appl. Acarol. 2020, 80, 29–41. [Google Scholar] [CrossRef]
- Salehi, A.; Ostovan, H.; Moderresi, M. Evaluation of the efficiency of Gaeolaelaps aculeifer in control of plant parasitic nematode Tylenchulus semipenetrans under greenhouse conditions. J. Entomol. Nematol. 2014, 6, 150–153. [Google Scholar]
- Elbanhawy, E.M.; Osman, H.A.; El-Sawaf, B.M.; Afia, S.I. Interactions of soil predacious mites and citrus nematodes (parasitic and saprophytic), in citrus orchard under different regime of fertilizers. Effect on the population densities and citrus yield. Anz. Schädlingskd. Pfl. 1997, 70, 20–23. [Google Scholar]
- Isman, M.B. Bridging the gap: Moving botanical insecticides from the laboratory to the farm. Ind. Crops Prod. 2017, 110, 10–14. [Google Scholar] [CrossRef]
- Chitwood, D.J. Phytochemical based strategies for nematode control. Annu. Rev. Phytopathol. 2002, 40, 221–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caboni, P.; Ntalli, N.G. Botanical nematicides, recent findings. ACS Symp. Ser. 2014, 1172, 145–157. [Google Scholar]
- Ntalli, N.G.; Caboni, P. Botanical nematicides in the Mediterranean basin. Phytochem. Rev. 2012, 11, 351–359. [Google Scholar] [CrossRef]
- Ntalli, N.; Caboni, P.A. A review of isothiocyanates biofumigation activity on plant parasitic nematodes. Phytochem. Rev. 2017, 16, 827–834. [Google Scholar] [CrossRef]
- D’Addabbo, T.; Laquale, S.; Lovelli, S.; Candido, V.; Avato, P. Biocide plants as a sustainable tool for the control of pests and pathogens in vegetable cropping systems. Ital. J. Agron. 2014, 9, 137–145. [Google Scholar] [CrossRef]
- Isman, M.B. Plant essential oils for pest and disease management. Crop Prot. 2000, 19, 603–608. [Google Scholar] [CrossRef]
- Isman, M.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef] [Green Version]
- Sobkowiak, R.; Bojarska, N.; Krzyżaniak, E.; Wągiel, K.; Ntalli, N. Chemoreception of botanical nematicides by Meloidogyne incognita and Caenorhabditis elegans. J. Environ. Sci. Health Part B 2018, 53, 493–502. [Google Scholar] [CrossRef]
- Van Poecke, R.M.P.; Posthumus, M.A.; Dicke, M. Herbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula: Chemical, behavioral, and gene-expression analysis. J. Chem. Ecol. 2001, 27, 1911–1928. [Google Scholar] [CrossRef]
- Ahuja, I.; Rohloff, J.; Bones, A.M. Defence mechanisms of Brassicaceae: Implications for plant-insect interactions and potential for integrated pest management. A review. Agron. Sustain. Dev. 2010, 30, 311–348. [Google Scholar] [CrossRef] [Green Version]
- Walters, S.A.; Wehner, T.C.; Barker, K.R. Effects of root decay on the relationship between Meloidogyne spp. gall index and egg mass number in cucumber and horned cucumber. J. Nematol. 1992, 24, 707–711. [Google Scholar] [PubMed]
- Al-Hamdany, M.A.; Al-Noaimi, H.N.; Aboud, H.M.; Salih, H.M. Use of furfural for control of the root-knot nematode Meloidogyne javanica on cucumber and eggplant under greenhouse conditions. Arab J. Plant Prot. 1999, 17, 84–87. [Google Scholar]
- Rajendran, G.; Shanthi, A.; Senthamizh, K. Effect of potensized nematode induced cell extract against root-knot nematode, Meloidogyne incognita in tomato and reniform nematode, Rotylenchulus reniformis in turmeric. Ind. J. Nematol. 2003, 33, 67–69. [Google Scholar]
- Mazzola, M. Assessment and management of soil microbial community structure for disease suppression. Annu. Rev. Phytopathol. 2004, 42, 35–59. [Google Scholar] [CrossRef]
- Robertson, G.P.; Vitousek, P. Nitrogen in agriculture: Balancing the cost of an essential resource. Annu. Rev. Environ. Res. 2009, 34, 97–125. [Google Scholar] [CrossRef] [Green Version]
- Barak, P.; Jobe, B.O.; Krueger, A.R.; Peterson, L.A.; Laird, D.A. Effects of long-terms soil acidification due to nitrogen fertilizer inputs in Wisconsin. Plant Soil 1997, 197, 61–69. [Google Scholar] [CrossRef]
- Adu-Gyamfi, R.; Agyin-Birikorang, S.; Tindjina, I.; Manu, Y.; Singh, U. Minimizing nutrient leaching from maize production systems in northern Ghana with one-time application of multi-nutrient fertilizer briquettes. Sci. Total Environ. 2019, 13, 694. [Google Scholar] [CrossRef]
- Nobile, C.M.; Bravin, M.N.; Becquerd, T.; Paillat, J.M. Phosphorus sorption and availability in an andosol after a decade of organic or mineral fertilizer applications: Importance of pH and organic carbon modifications in soil as compared to phosphorus accumulation. Chemosphere 2020, 239, 124709. [Google Scholar] [CrossRef]
- Ronga, D.; Biazzi, E.; Parati, K.; Carminati, D.; Carminati, E.; Tava, A. Microalgal biostimulants and biofertilisers in crop productions. Agronomy 2019, 9, 192. [Google Scholar] [CrossRef] [Green Version]
- Isitekhale, H.H.E.; Aboh, S.I.; Edion, R.I.; Abhanzioya, M.I. Remediation of crude oil contaminated soil with inorganic and organic fertilizer using sweet potato as a test crop. J. Environ. Earth Sci. 2013, 3, 116–121. [Google Scholar]
- Ghani, M.I.; Ali, A.; Atif, M.J.; Ali, M.; Amin, B.; Anees, M.; Khurshid, H.; Cheng, Z. Changes in the soil microbiome in eggplant monoculture revealed by high-throughput Illumina MiSeq sequencing as influenced by raw garlic stalk amendment. Int. J. Mol. Sci. 2019, 20, 2125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oka, Y. Mechanisms of nematode suppression by organic soil amendments—A review. Appl. Soil Ecol. 2010, 44, 101–115. [Google Scholar] [CrossRef]
- Mocali, S.; Landi, S.; Curto, G.; Dallavalle, E.; Infantino, A.; Colzi, C.; d’Errico, G.; Roversi, P.F.; D’Avino, L.; Lazzeri, L. Resilience of soil microbial and nematode communities after biofumigant treatment with defatted seed meals. Ind. Crops Prod. 2015, 75, 79–90. [Google Scholar] [CrossRef]
- Matthiessen, J.; Kirkegaard, J. Biofumigation and enhanced biodegradation: Opportunity and challenge in soilborne pest and disease management. Crit. Rev. Plant Sci. 2006, 25, 235–265. [Google Scholar] [CrossRef]
- Kirkegaard, J.A.; Gardner, P.A.; Desmarchelier, J.M.; Angus, J.F. Biofumigation using Brassica species to control pests and diseases in horticulture and agriculture. In Proceedings of the 9th Australian Research Assembly on Brassicas, Wagga Wagga, NSW, Australia, 5–7 October 1993; Wratten, N., Mailer, R.J., Eds.; Agricultural Research Institute: New South Wales, Australia, 1993; pp. 77–82. [Google Scholar]
- Sarwar, M.; Kirkegaard, J.A.; Wong, P.T.W.; Desmarchelier, J.M. Biofumigation potential of Brassicas. Plant Soil 1998, 201, 103–112. [Google Scholar] [CrossRef]
- Fourie, J.C.; Kruger, D.H.M.; Malan, A.P. Effect of management practices applied to cover crops with bio-fumigation properties on cover crop performance and weed control in a vineyard. S. Afr. J. Enol. Vitic. 2015, 36, 146–153. [Google Scholar]
- Brown, P.; Morra, M. Control of soil-borne plant pests using glucosinolate containing plants. Adv. Agron. 1997, 61, 167–231. [Google Scholar]
- Manici, L.; Lazzeri, L.; Palmieri, S. In vitro fungitoxic activity of some glucosinolates and their enzyme-derived products toward plant pathogenic fungi. J. Agric. Food Chem. 1997, 45, 2768–2773. [Google Scholar] [CrossRef]
- Zasada, I.; Ferris, H. Nematode suppression with brassicaceous amendments: Application based upon glucosinolate profiles. Soil Biol. Biochem. 2004, 36, 1017–1024. [Google Scholar] [CrossRef]
- Avato, P.; D’Addabbo, T.; Leonetti, P.; Argentieri, M.P. Nematicidal potential of Brassicaceae. Phytochem. Rev. 2013, 12, 791–802. [Google Scholar] [CrossRef]
- Prasad, P.; Kumar, J. Management of Fusarium wilt of chickpea using brassicas as biofumigants. Legume Res. 2017, 40, 178–182. [Google Scholar] [CrossRef] [Green Version]
- McLeod, R.W.; Steele, C.C. Effects of Brassica leaf green manures and crops on activity and reproduction of Meloidogyne javanica. Nematology 1999, 1, 613–624. [Google Scholar]
- McLeod, R.W.; Kirkegaard, J.A.; Steele, C.C. Invasion, development, growth and egg-laying by Meloidogyne javanica in Brassicaceae crops. Nematology 2001, 3, 463–472. [Google Scholar]
- Rahman, L.; Somers, T. Suppression of root-knot nematode (Meloidogyne javanica) after incorporation of Indian mustard cv. Nemfix as green manure and seed meal in vineyards. Australas. Plant Pathol. 2005, 34, 77–83. [Google Scholar] [CrossRef]
- Lazzeri, L.; Leoni, O.; Manici, L.M. Biocidal plant dried pellets for biofumigation. Ind. Crops Prod. 2004, 20, 59–65. [Google Scholar] [CrossRef]
- Henderson, D.R.; Riga, E.; Ramirez, R.A.; Wilson, J.; Snyder, W.E. Mustard biofumigation disrupts biological control by Steinernema spp. nematodes in the soil. Biol. Control 2009, 48, 316–322. [Google Scholar] [CrossRef]
- Mazzola, M.; Zhao, X. Brassica juncea seed meal particle size influences chemistry but not soil biology-based suppression of individual agents inciting apple replant disease. Plant Soil 2010, 337, 313–324. [Google Scholar] [CrossRef]
- Bending, G.D.; Lincoln, S.D. Inhibition of soil nitrifying bacteria communities and their activities by glucosinolate hydrolysis products. Soil Biol. Biochem. 2000, 32, 1261–1269. [Google Scholar] [CrossRef]
- Viaene, N.M.; Abawi, G.S. Management of Meloidogyne hapla on lettuce in organic soil. Plant Dis. 1998, 82, 945–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halbrendt, J.M. Allelopathy in the management of plant–parasitic nematodes. J. Nematol. 1996, 28, 8–14. [Google Scholar] [PubMed]
- Stirling, G.R. Mode of action of organic amendments against nematode. In Biological Control of Plant Parasitic Nematodes. Progress, Problems and Prospects; CAB International: Wallingford, UK, 1991; pp. 170–185. [Google Scholar]
- Zhang, M.; Malhi, S.S.; Panasuik, R.; Henriquez, B. Response of turfgrass growth in a black chernozemic soil amended with municipal solid/biosolid waste compost. J. Plant Nutr. 2011, 34, 183–205. [Google Scholar] [CrossRef]
- Friberg, H.; Edel-Herman, V.; Faivre, C.; Gautheron, N.; Fayolle, L.; Faloya, V.; Montfort, F.; Christian, S. Cause and duration of mustard incorporation effects on soil-borne plant pathogenic fungi. Soil Biol. Biochem. 2009, 41, 2075–2084. [Google Scholar] [CrossRef]
- Larkin, P.R.; Honeycutt, W.C. Effects of different 3-year cropping systems on soil microbial communities and Rhizoctonia diseases of potato. Phytopathology 2006, 96, 68–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthiessen, J.N.; Warton, B.; Shackleton, M.A. The importance of plant maceration and water addition in achieving high Brassica-derived isothiocyanate levels in soil. Agroindustria 2004, 3, 277–280. [Google Scholar]
- Ploeg, A.T.; Stapleton, J.J. Glasshouse studies on the effect of time, temperature and amendment of soil with broccoli plant residues on the infestation of melon plants by Meloidogyne incognita and M. javanica. Nematology 2001, 3, 855–861. [Google Scholar] [CrossRef]
- Blok, W.J.; Lamers, J.G.; Termorshuizen, A.J.; Bollen, G.J. Control of soilborne plant pathogens by incorporating fresh organic amendments followed by tarping. Phytopathology 2000, 90, 253–259. [Google Scholar] [CrossRef] [Green Version]
- Browning, M.; Dawson, C.; Alm, S.R.; McElderry, C.F.; Amador, J.A. Effect of carbon amendment and soil moisture on Tylenchorhynchus spp. and Hoplolaimus galeatus. J. Nematol. 1999, 31, 445–454. [Google Scholar]
- Momma, N.; Yamamoto, K.; Simandi, P.; Shishido, M. Role of organic acids in the mechanisms of biological soil disinfestations (BSD). J. Gen. Plant Pathol. 2006, 72, 247–252. [Google Scholar] [CrossRef]
- Ntalli, N.G.; Vargiu, S.; Menkissoglu-Spiroudi, U.; Caboni, P. Nematicidal carboxylic acids and aldehydes from Melia azedarach fruits. J. Agric. Food Chem. 2010, 58, 11390–11394. [Google Scholar] [CrossRef]
- Ntalli, N.; Ratajczak, M.; Oplos, C.; Menkissoglu-Spiroudi, U.; Adamski, Z. Acetic acid, 2-undecanone, and (E)-2-decenal ultrastructural malformations on Meloidogyne incognita. J. Nematol. 2016, 48, 248–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Husson, O. Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: A transdisciplinary overview pointing to integrative opportunities for agronomy. Plant Soil 2013, 362, 389–417. [Google Scholar] [CrossRef] [Green Version]
- McElderry, C.F.; Browning, M.; Amador, J.A. Effect of short-chain fatty acids and soil atmosphere on Tylenchorhynchus. J. Nematol. 2005, 37, 71–77. [Google Scholar] [PubMed]
- Rodrıguez-Kabana, R.; Morgan-Jones, G.; Chet, I. Biological control of nematodes: Soil amendments and microbial antagonists. Plant Soil 1987, 100, 237–247. [Google Scholar] [CrossRef]
- Oka, Y.; Chet, I.; Spiegel, I. Control of the root-knot nematode Meloidogyne javanica by Bacillus cereus. Biocontrol Sci. Technol. 1993, 3, 115–126. [Google Scholar] [CrossRef]
- Duplessis, M.C.F.; Kroontje, W. The relationship between pH and ammonia equilibria in soil. Proc. Soil Sci. Soc. Am. 1964, 28, 751–754. [Google Scholar] [CrossRef]
- Majumdar, D. Unexploited botanical nitrification inhibitors prepared from Karanja plant. Indian J. Nat. Prod. Resour. 2008, 7, 58–67. [Google Scholar]
- Oka, Y.; Pivonia, S. Effect of a nitrification inhibitor on nematicidal activity of organic and inorganic ammonia-releasing compounds against the root-knot nematode Meloidogyne javanica. Nematology 2003, 5, 505–513. [Google Scholar] [CrossRef]
- Kiran, U.; Patra, D.D. Influence of natural essential oils and their by-products as nitrification retarders in regulating nitrogen utilization for Japanese mint in sandy loam soils of subtropical central India. Agric. Ecosyst. Environ. 2003, 94, 237–245. [Google Scholar] [CrossRef]
- Mohanty, S.; Patra, A.K.; Chhonkar, P.K. Neem (Azadirachta indica) seed kernel powder retards urease and nitrification activities in different soils at contrasting moisture and temperature regimes. Bioresour. Technol. 2008, 99, 894–899. [Google Scholar] [CrossRef]
- McSorley, R. Overview of organic amendments for management of plant-parasitic nematodes, with case studies from Florida. J. Nematol. 2011, 43, 69–81. [Google Scholar] [PubMed]
- Lazzeri, L.; Leoni, O.; Manici, L.M.; Palmieri, S.; Patalano, G. Use of Seed Flour As Soil Pesticide. U.S. Patent 7749549, 6 July 2010. [Google Scholar]
- Gruver, L.S.; Weil, R.R.; Zasada, I.A.; Sardanelli, S.; Momen, B. Brassicaceae and rye cover crops altered free-living soil nematode community composition. Appl. Soil Ecol. 2010, 45, 1–12. [Google Scholar] [CrossRef]
- Nyczepir, A.P.; Thomas, S.H. Current and Future Management Strategies in Intensive Crop Production Systems. In Root-Knot Nematodes; Perry, R.N., Moens, M., Starr, J., Eds.; CAB International: Wallingford, UK, 2009; pp. 412–433. [Google Scholar]
- Nannipieri, P.; Ascher, J.; Ceccherini, M.; Landi, L.; Pietramellara, G.; Renella, G. Microbial diversity and soil functions. Eur. J. Soil Sci. 2003, 54, 655–670. [Google Scholar] [CrossRef]
- Van der Heijden, M.G.; Bardgett, R.D.; van Straalen, N.M. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 2008, 11, 296–310. [Google Scholar] [CrossRef] [PubMed]
- Yeates, G.W.; Coleman, D.C. Role of nematodes in decomposition. In Nematodes in Soil Ecosystems; Freckman, D.W., Ed.; University of Texas Press: Austin, TX, USA, 1982; pp. 55–80. [Google Scholar]
- Seastedt, T.R.; James, S.W.; Todd, T.C. Interactions among soil invertebrates: Microbes and plant growth in the tallgrass prairie. Agric. Ecosyst. Environ. 1998, 24, 219–228. [Google Scholar] [CrossRef]
- Sohlenius, B.; Boström, S.; Sandor, A. Carbon and nitrogen budgets of nematodes in arable soil. Biol. Fertil. Soils 1988, 6, 1–8. [Google Scholar] [CrossRef]
- Tripolskaja, L.; Baksiene, E.; Razukas, A.; Sidlauskas, G. How organic fertilizers change chemical element leaching: A summary of the lysimeter studies in Lithuania, 1987–2014. Pol. J Environ. Stud. 2016, 25, 2589–2600. [Google Scholar] [CrossRef]
- Hooks, C.R.R.; Wang, K.-H.; Meyer, S.L.F.; Lekveishvili, M.; Hinds, J.; Zobel, E.; Rosario-Lebron, A.; Lee-Bullock, M. Impact of no-till cover cropping of Italian ryegrass on above and below ground faunal communities inhabiting a soybean field with emphasis on soybean cyst nematodes. J. Nematol. 2011, 43, 172–181. [Google Scholar]
- Yeates, G.W.; Bongers, T.; De Goede, R.G.M.; Freckman, D.W.; Georgieva, S.S. Feeding habits in soil nematode families and genera—An outline for soil ecologists. J. Nematol. 1993, 25, 315–331. [Google Scholar]
- Neher, D.A. Ecology of plant and free-living nematodes in natural and agricultural soil. Annu. Rev. Phytopathol. 2010, 48, 371–394. [Google Scholar] [CrossRef] [Green Version]
- Kuo, S.; Sainju, U.M. Nitrogen mineralization and availability of mixed leguminous and non-leguminous cover crop residues in soil. Biol. Fertil. Soils 1998, 26, 346–353. [Google Scholar] [CrossRef]
- McSorley, R.; Frederick, J.J. Nematode population fluctuations during decomposition of specific organic amendments. J. Nematol. 1999, 31, 37–44. [Google Scholar] [PubMed]
- Wang, K.H.; McSorley, R.; Gallaher, R.N. Effect of Crotalaria juncea amendment on nematode communities in soil with different agricultural histories. J. Nematol. 2003, 35, 294–301. [Google Scholar] [PubMed]
- Quiroga-Madrigal, R.; Rodríguez-Kábana, D.G.; Robertson, C.; Weaver, F.; King, P.S. Nematode populations and enzymatic activity in rhizospheres of tropical legumes in Auburn, Alabama. Nematropica 1999, 29, 129. [Google Scholar]
- Rodríguez-Kábana, R.; Kloepper, J.W. Cropping systems and the enhancement of microbial activities antagonistic to nematodes. Nematropica 1998, 28, 144. [Google Scholar]
- Xiang, N.; Lawrence, K.S.; Donald, P.A. Biological control potential of plant growth-promoting rhizobacteria suppression of Meloidogyne incognita on cotton and Heterodera glycines on soybean: A review. J. Phytopathol. 2018, 166, 449–458. [Google Scholar] [CrossRef] [Green Version]
- Viljoen, J.J.F.; Labuschagne, N.; Fourie, H.; Sikora, R.A. Biological control of the root-knot nematode Meloidogyne incognita on tomatoes and carrots by plant growth-promoting rhizobacteria. Trop. Plant Pathol. 2019, 44, 284–291. [Google Scholar] [CrossRef]
- Khanna, K.; Jamwal, V.L.; Kohli, S.K.; Gandhi, S.G.; Ohri, P.; Bhardwaj, R.; Wijaya, L.; Alyemeni, M.N.; Ahmad, P. Role of plant growth promoting bacteria (PGPRs) as biocontrol agents of Meloidogyne incognita through improved plant defense of Lycopersicon esculentum. Plant Soil 2019, 436, 325–345. [Google Scholar] [CrossRef]
- Gatsios, A.; Ntatsi, G.; Celi, L.; Said-Pullicino, D.; Tampakaki, A.; Giannakou, I.; Savvas, D. Nitrogen nutrition optimization in organic greenhouse tomato through the use of legume plants as green manure or intercrops. Agronomy 2019, 9, 766. [Google Scholar] [CrossRef] [Green Version]
- Tsukanova, K.A.; Chebotara, V.K.; Meyer, J.J.M.; Bibikova, T.N. Effect of plant growth-promoting Rhizobacteria on plant hormone homeostasis. S. Afr. J. Bot. 2017, 113, 91–102. [Google Scholar] [CrossRef]
- Abdel-Monaim, M.F.; Khalil, M.S.M.; Abdel-Baset, S.H. Application of date palm leaves compost (DPLC) and plant growth promoting rhizobacteria (PGPR) for controlling faba bean root rot disease in New Valley, Egypt. Agric. Eng. Int. CIGR J. 2017, 19, 138–146. [Google Scholar]
- Reyes-Castillo, A.; Gerding, M.; Oyarzúa, P.; Zagal, E.; Gerding, J.; Fischer, S. Plant growth-promoting rhizobacteria able to improve NPK availability: Selection, identification and effects on tomato growth. Chil. J. Agric. Res. 2019, 79, 473–485. [Google Scholar] [CrossRef] [Green Version]
- Matse, D.T.; Huang, C.-H.; Huang, Y.-M.; Yen, M.-Y. Effects of coinoculation of Rhizobium with plant growth promoting rhizobacteria on the nitrogen fixation and nutrient uptake of Trifolium repens in low phosphorus soil. J. Plant Nutr. 2020, 43, 739–752. [Google Scholar] [CrossRef]
- Abd El-Rahman, A.F.; Shaheen, H.A.; Abd El-Aziz, R.M.; Ibrahim, D.S.S. Influence of hydrogen cyanide-producing rhizobacteria in controlling the crown gall and root-knot nematode, Meloidogyne incognita. Egypt. J. Biol. Pest Control 2019, 29, 41. [Google Scholar] [CrossRef]
- Kloepper, J.W.; Rodríguez-Kábana, R.; McInroy, J.A.; Young, R.W. Rhizosphere bacteria antagonistic to soybean cyst (Heterodera glycines) and root-knot (Meloidogyne incognita) nematodes: Identification by fatty acid analysis and frequency of biological control activity. Plant Soil 1992, 139, 75–84. [Google Scholar] [CrossRef]
- Reardon, C.L.; Strauss, S.L.; Mazzola, M. Changes in available nitrogen and nematode abundance in response to Brassica seed meal amendment of orchard soil. Soil Biol. Biochem. 2013, 57, 22–29. [Google Scholar] [CrossRef]
- Bressan, M.; Roncato, M.A.; Bellvert, F.; Comte, G.; Haichar, F.Z.; Achouak, W.; Berge, O. Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. ISME J. 2009, 11, 1243–1257. [Google Scholar] [CrossRef]
- Omirou, M.; Rousidou, C.; Bekris, F.; Papadopoulou, K.K.; Menkissoglou-Spiroudi, U.; Ehaliotis, C.; Karpouzas, D.G. The impact of biofumigation and chemical fumigation methods on the structure and function of the soil microbial community. Microb. Ecol. 2011, 61, 201–213. [Google Scholar] [CrossRef]
- Cohen, M.F.; Yamasaki, H.; Mazzola, M. Brassica napus seed meal soil amendment modifies microbial community structure, nitric oxide production and incidence of Rhizoctonia root rot. Soil Biol. Biochem. 2005, 37, 1215–1227. [Google Scholar] [CrossRef]
- Linford, M.B.; Yap, F.; Oliveira, J.M. Reduction of soil populations of root-knot nematode during decomposition of organic matter. Soil Sci. 1938, 45, 127–141. [Google Scholar] [CrossRef]
- Edwards, C.; Arancon, N.Q.; Sherman, R. Vermiculture Technology; CRC Press: Boca Raton, FL, USA, 2011; p. 623. [Google Scholar]
- Barley, K.L.; Lazarovits, G. Suppressing soil-borne diseases with residue management and organic amendments. Soil Tillage Res. 2003, 72, 169–180. [Google Scholar]
- Kimenju, J.W.; Muiru, D.M.; Karanja, N.K.; Nyongesa, W.M.; Miano, D.W.; Mutua, G.K. Assessing the role of organic soil amendments in management of root knot nematodes on common bean, Phaseolus vulgaris L. J. Trop. Microbiol. Biotechnol. 2004, 3, 14–23. [Google Scholar]
- Kimenju, J.W.; Kagundu, A.M.; Nderitu, J.H.; Mambala, F.; Mutua, G.K.; Kariuki, G.M. Incorporation of green manure plants into bean cropping systems contribute to root- knot nematode suppression. Asian J. Plant Sci. 2008, 7, 404–408. [Google Scholar] [CrossRef]
- Kimpinski, J.; Gallant, C.F.; Henry, R.; Macleod, J.A.; Sanderson, J.B.; Sturz, A.V. Effect of compost and manure soil amendments on nematodes and yields of potato and barley: A 7-year study. J. Nematol. 2003, 35, 289–293. [Google Scholar] [PubMed]
- Melakeberhan, H.; Xu, A.; Kravchenko, A.; Mennan, S.; Riga, E. Potential use of arugula (Eruca sativa L.) as a trap crop for Meloidogyne hapla. Nematology 2006, 8, 793–799. [Google Scholar]
- Rodriguez, J.G.; Wade, C.F.; Wells, C.N. Nematodes as natural food for Macrocheles muscaedomesticae (Acarina: Macrochelidae), a predator of the house fly egg. Ann. Entomol. Soc. Am. 1962, 55, 507–511. [Google Scholar] [CrossRef]
- Oguntunde, P.; Fosu, M.; Ajayi, A.; Giesen, N. Effects of charcoal production on maize yield, chemical properties and texture of soil. Biol. Fertil. Soils 2004, 39, 295–299. [Google Scholar] [CrossRef]
- Laird, D.A.; Fleming, P.; Davis, D.D.; Horton, R.; Wang, B.; Karlen, D.L. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 2010, 158, 443–449. [Google Scholar] [CrossRef] [Green Version]
- Grossman, J.M.; O’Neill, B.E.; Tsai, S.M.; Liang, B.; Neves, E.; Lehmann, J.; Thies, J.E. Amazonian anthrosols support similar microbial communities that differ distinctly from those extant in adjacent, unmodified soils of the same mineralogy. Microb. Ecol. 2010, 60, 192–205. [Google Scholar] [CrossRef]
- Liang, J.; Tang, S.; Gong, J.; Zeng, G.; Tang, W.; Song, B.; Zhang, P.; Yang, Z.; Luo, Y. Responses of enzymatic activity and microbial communities to biochar/compost amendment in sulfamethoxazole polluted wetland soil. J. Hazard. Mat. 2020, 385, 12153. [Google Scholar] [CrossRef]
- Hardy, B.; Sleutel, S.; Dufey, J.E.; Cornelis, J.T. The long-term effect of biochar on soil microbial abundance, activity and community structure is overwritten by land management. Front. Environ. Sci. 2019, 7, 110. [Google Scholar] [CrossRef] [Green Version]
- Irfan, M.; Hussain, Q.; Khan, K.S.; Akmal, M.; Ijaz, S.S.; Hayat, R.; Khalid, A.; Azeem, M.; Rashid, M. Response of soil microbial biomass and enzymatic activity to biochar amendment in the organic carbon deficient arid soil: A 2-year field study. Arab. J. Geosci. 2019, 12, 95. [Google Scholar] [CrossRef]
- Diacono, M.; Montemurro, F. Long-term effects of organic amendments on soil fertility. A review. Agron. Sustain. Dev. 2012, 30, 401–422. [Google Scholar] [CrossRef] [Green Version]
- Tully, K.L.; McAskill, C. Promoting soil health in organically managed systems: A review. Org. Agric. 2019. [Google Scholar] [CrossRef]
- Meena, M.D.; Joshi, P.K.; Jat, H.S.; Chinchmalatpure, A.R.; Narjary, B.; Sheoran, P.; Sharma, D.K. Changes in biological and chemical properties of saline soil amended with municipal solid waste compost and chemical fertilizers in a mustard-pearl millet cropping system. Catena 2016, 140, 1–8. [Google Scholar] [CrossRef]
- Insam, H.; de Bertoldi, M. Microbiology of the composting process. Compost Sci. Technol. 2007, 8, 25–48. [Google Scholar]
- Vida, C.; Bonilla, N.; de Vicente, A.; Cazorla, F.M. Microbial profiling of a suppressiveness-induced agricultural soil amended with composted almond shells. Front. Microbiol. 2016. [Google Scholar] [CrossRef]
- Itävaara, M.; Salavirta, H.; Marjamaa, K.; Ruskeeniemi, T. Geomicrobiology and metagenomics of terrestrial deep subsurface microbiomes. Adv. Appl. Microb. 2016, 94, 1–77. [Google Scholar]
- Yadav, S.L.; Ahir, R.R.; Rathore, B.S.; Yadav, S.M. Efficacy of different fungicides and organic amendments against basal rot of onion caused by Fusarium oxysporum in vitro. Plant Pathol. J. 2014, 13, 56–58. [Google Scholar] [CrossRef] [Green Version]
- Rillig, M.C.; Muller, L.A.; Lehmann, A. Soil aggregates as massively concurrent evolutionary incubators. ISME J. 2017, 11, 1943–1948. [Google Scholar] [CrossRef]
- Zheng, W.; Zhao, Z.; Gong, Q.; Zhai, B.; Li, Z. Responses of fungal–bacterial community and network to organic inputs vary among different spatial habitats in soil. Soil Biol. Biochem. 2018, 125, 54–63. [Google Scholar] [CrossRef]
- Francioli, D.; Schulz, E.; Lentendu, G.; Wubet, T.; Buscot, F.; Reitz, T. Mineral vs. organic amendments: Microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol. 2016, 7, 1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onkendi, E.M.; Kariuki, G.M.; Marais, M.; Moleleki, L.N. The threat of root-knot nematodes (Meloidogyne spp.) in Africa: A review. Plant Pathol. 2014, 63, 727–737. [Google Scholar] [CrossRef] [Green Version]
- Shepherd, M.A.; Harrison, R.; Webb, J. Managing soil organic matter–implications for soil structure on organic farms. Soil Use Manag. 2002, 18, 284–292. [Google Scholar] [CrossRef]
Botanical Amendment Type | Categories | Plant Species/Type of Waste | Effect | References |
---|---|---|---|---|
Biofumigation, cover-crop rotation, and incorporation | Brassicaceae species | Brassica oleracea, Brassica napus, Brassica rapa, Brassica juncea, Eruca sativa, Raphanus sativus, Sinapis alba | Release of isothiocyanates, ionic isothiocyanate, organic cyanides, and nitriles increase the nematode-trapping fungi or parasitic fungi, or other nematode antagonists (e.g., mites) | [4,5,6,7,8,9,10,11,12,13,14,15,16] |
Asteraceae species | Tagetes erecta, Tagetes minuta, Tagetes sp. | Increase of nematode-trapping fungi or parasitic fungi, activity via endophytes and parasitism | [13,17,18,19,20] | |
Recycling wastes | Biochars | Biochar extracts, wood biochar, bitter leaves biochar | Inhibition of survival of root knot nematodes, reduced plant susceptibility, and egg hatchability | [21,22,23] |
Composts | Municipal-solid waste with extracts obtained from green composts | Increase of predatory mites and fungi or bacteria that control the nematodes | [24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44] | |
Vermicomposts | Municipal wastes | Decreased number of cysts, eggs, and juveniles of cyst nematodes | [45,46] | |
Self-made products | Dried leaves of Canabis sativa | Chemical compounds reduce RKN infection and reproduction | [47,48,49] | |
Orange peel meals | Chemical compounds decrease RKN numbers | |||
Cuphea plant, marigold, pennycress seed powder, and canola meal | Release of nematotoxic compounds that reduce cyst nematode numbers | [50] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ntalli, N.; Adamski, Z.; Doula, M.; Monokrousos, N. Nematicidal Amendments and Soil Remediation. Plants 2020, 9, 429. https://doi.org/10.3390/plants9040429
Ntalli N, Adamski Z, Doula M, Monokrousos N. Nematicidal Amendments and Soil Remediation. Plants. 2020; 9(4):429. https://doi.org/10.3390/plants9040429
Chicago/Turabian StyleNtalli, Nikoletta, Zbigniew Adamski, Maria Doula, and Nikolaos Monokrousos. 2020. "Nematicidal Amendments and Soil Remediation" Plants 9, no. 4: 429. https://doi.org/10.3390/plants9040429