Next Article in Journal
Activation of Early Defense Signals in Seedlings of Nicotiana benthamiana Treated with Chitin Nanoparticles
Next Article in Special Issue
Bioactive Compounds and Aroma Profile of Some Lamiaceae Edible Flowers
Previous Article in Journal
Selenium Uptake by Lettuce (Lactuca sativa L.) and Berseem (Trifolium alexandrinum L.) as Affected by the Application of Sodium Selenate, Soil Acidity and Organic Matter Content
Previous Article in Special Issue
Phenolic Profile, Toxicity, Enzyme Inhibition, In Silico Studies, and Antioxidant Properties of Cakile maritima Scop. (Brassicaceae) from Southern Portugal
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Chemical Compositions, Mosquito Larvicidal and Antimicrobial Activities of Leaf Essential Oils of Eleven Species of Lauraceae from Vietnam

1
Institute of Biochemical Technology and Environment, Vinh University, 182 Le Duan, Vinh City 4300, Nghệ An Province, Vietnam
2
Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay 10072, Hanoi, Vietnam
3
School of Natural Science Education, Vinh University, 182 Le Duan, Vinh City 4300, Nghệ An Province, Vietnam
4
Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 5000, Vietnam
5
Foresight Institute of Research and Translation, University Road, Aleku Area, Osogbo 230271, Nigeria
6
Faculty of Agriculture, Forestry and Fishery, Nghe An College of Economics, 51-Ly Tu Trong, Vinh City 4300, Nghe An Province, Vietnam
7
Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
8
Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA
*
Authors to whom correspondence should be addressed.
Plants 2020, 9(5), 606; https://doi.org/10.3390/plants9050606
Submission received: 23 April 2020 / Revised: 5 May 2020 / Accepted: 7 May 2020 / Published: 10 May 2020
(This article belongs to the Special Issue Bioactive Compounds in Plants)

Abstract

:
The Lauraceae is a family rich in aromatic and medicinal plants. Likewise, essential oils derived from members of this family have demonstrated a myriad of biological activities. It is hypothesized that members of the Lauraceae from Vietnam will yield essential oils that may be useful in controlling mosquito populations and treating microbial infections. In this work, the leaf essential oils of eleven species of Lauraceae (Beilschmiedia erythrophloia, B. robusta, B. yunnanensis, Cryptocarya concinna, C. impressa, C. infectoria, Litsea viridis, Machilus balansa, M. grandifolia, Neolitsea ellipsoidea, and Phoebe angustifolia) have been obtained by hydrodistillation and the chemical compositions analyzed by gas chromatography – mass spectrometry (GC-MS) and gas chromatography with flame ionization detection (GC-FID). The essential oils were screened for larvicidal activity against Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus, and for antimicrobial activity against Enterococcus faecalis, Staphylococcus aureus, Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica, and Candida albicans. The leaf essential oil of N. ellipsoidea, rich in (E)-β-ocimene (87.6%), showed excellent larvicidal activity against Ae. aegypti with a 24 h LC50 of 6.59 μg/mL. The leaf essential oil of C. infectoria, dominated by germacrene D (55.5%) and bicyclogermacrene (11.4%), exhibited remarkable larvicidal activity against Cx. quinquefasciatus (48 h LC50 = 0.40 μg/mL). N. ellipsoidea leaf essential oil also demonstrated notable antibacterial activity against E. faecalis and B. cereus with minimum inhibitory concentration (MIC) values of 16 μg/mL, while the leaf essential oil of C. impressa showed excellent anticandidal with an MIC of 16 μg/mL. Leaf essential oils from the Lauraceae should be considered for utilization as alternative agents for controlling mosquito populations and as antimicrobial agents.

Graphical Abstract

1. Introduction

The Lauraceae is made up of around 55 genera and 3000 species of tropical and warm temperate trees and shrubs, with Southeast Asia and Brazil serving as species-rich hot spots [1]. Several members of the family are commercially important, including the avocado (Persea americana Mill.) for its fruit, bay leaf (Laurus nobilis L.) used in cooking, and the spice cinnamon (Cinnamomum verum J. Presl) [2]. Several Lauraceae species have been used medicinally, including sassafras (Sassafras albidum (Nutt.) Nees) [3] and spicebush (Lindera benzoin (L.) Blume) [4]. Many species of Lauraceae contain essential oils that have found use in the flavor and fragrance industry [5], e.g., Brazilian rosewood (Aniba rosaeodora Ducke) [6], camphor tree, ravintsara, ho leaf (Cinnamomum camphora (L.) J. Presl.) [7], and aromatic litsea (Litsea cubeba (Lour.) Pers.) [8].
Based on the utility and properties of Lauraceae essential oils, it is hypothesized that members of the Lauraceae found in Vietnam have biologically active essential oils that may be useful in controlling mosquito populations or as antimicrobial agents. Eleven species of Lauraceae from north-central Vietnam have been collected, the essential oils obtained by hydrodistillation, chemical compositions analyzed, and the oils screened for mosquito larvicidal activity and for antimicrobial activity.
The genus Beilschmiedia Nees is comprised of around 250 species of trees and shrubs [9] and are widespread in tropical Africa, Madagascar, Asia, Southeast Asia, Melanesia, Australia, New Zealand, North America, Central America, South America, and the Caribbean [10]. The phytochemistry and bioactivity of Beilschmiedia has been reviewed [11].
Beilschmiedia erythrophloia Hayata is a tree found in Taiwan, southern China, Hainan Island, and Ryukyu Islands (Japan) [12,13]. In Vietnam, the tree is found in Nghệ An, Hà Tĩnh, and Đồng Nai provinces [14]. Previous phytochemical studies of B. erythrophloia have revealed endiandric acid derivatives from the roots [15,16], the cytotoxic alkaloid beischamide from the stems [13], and a leaf essential oil rich in (E)-caryophyllene and α-humulene [17].
Beilschmiedia robusta C.K. Allen is a tree, 10–15 m tall that is recorded from Guangzi, southwestern Guizhou, Xizang, and Yunnan provinces in China [12,18]. In Vietnam, the tree is found in Lào Cai, Ninh Bình, and Nghệ An provinces [14]. A perusal of the literature has revealed that there have been no previous phytochemical investigations of B. robusta.
Beilschmiedia yunnanensis H.H. Hu is a tree, up to 18 m tall and is found in Guangdong, southern Guangxi, and southern Yunnan provinces in China [12]. In Vietnam, the tree is found in Lào Cai, Nghệ An, and Hà Tĩnh provinces [14]. A literature search has revealed that there have been no previous phytochemical investigations of B. yunnanensis.
Cryptocarya R. Br. is a pantropical genus of around 300 species [19]. Cryptocarya concinna Hance (syn. Cryptocarya konishii Hayata, Cryptocarya lenticellata Lecomte, Cryptocarya microcarpa F.N. Wei) is a tree up to 18 m tall, and ranges from southern China (Guangdong, Guangxi, southeastern Guizhou, Hainan, Jiangxi, and Taiwan) to northern Vietnam [9,12]. In Vietnam, it has been recorded in Hà Giang, Tuyên Quang, Cao Bằng, Vĩnh Phúc, Hải Phòng, Thanh Hóa, Nghệ An, Hà Tĩnh, Thừa Thiên Huế provinces [14]. Previous investigations of the phytochemistry of C. concinna have shown the roots to contain cytotoxic cryptocaryone [20], the leaves to contain cytotoxic cryptoconcatones K and L [21], and the wood to contain cytotoxic cryptocaryone and kurzichalcolactone A and antifungal cryptocaryanone A and kurzichalcolactone B [22]. There have been no previous reports on essential oils from C. concinna.
Cryptocarya impressa Miq. is native to Vietnam, Laos, the Malay Peninsula, Borneo and Sumatra [23]. In Vietnam, the plant has been recorded in Hòa Bình, Hà Nội, Hải Dương, Ninh Bình, Nghệ An, and Gia Lai provinces [14]. To our knowledge, there have been no reports on the phytochemistry of C. impressa.
Cryptocarya infectoria (Blume) Miq. (syn. Cylicodaphne infectoria Blume) is a tree up to 33 m tall that is native to Indo-China and Malesia [24,25,26]. In Vietnam, this tree is found in Lào Cai, Phú Thọ, Vĩnh Phúc, Thanh Hoá, Nghệ An, Hà Tĩnh, and Thừa Thiên Huế provinces [14]. The cytotoxic dihydrochalcones, cryptocaryone and infectocaryone, and the flavonoids cryptocaryanones A and B have been isolated from the methanol bark extract of C. infectoria [27,28]. The isoquinoline alkaloids atherosperminine, N-methylisococlaurine, and N-methyllaurotetanine have also been isolated from the bark of C. infectoria [29]. There have been apparently no essential oil analyses on this plant, however.
The genus Litsea Lam. consists of around 300 species distributed in tropical and warm subtropical regions of Asia, Australia, and the Americas [19]. Litsea viridis H. Liu is a small tree, 3-6 m tall, found in south-eastern Yunnan province (China) and Cao Bằng, Nghệ An, Đà Nẵng, and Đắk Lắk provinces (Vietnam) [12,14]. There do not seem to be any previous studies on the phytochemistry of this plant.
The genus Machilus Rumph. ex Nees is comprised of around 100 species distributed in southern and south-eastern Asia [12,14]. Machilus balansae (Airy Shaw) F.N. Wei & S.C. Tang (syn. Persea balansae Airy Shaw) is endemic to Vietnam and is generally found at low elevations in north Vietnam [30]. Machilus grandifolia S.K. Lee & F.N. Wei is now regarded as a new synonym of M. balansae [30]. To our knowledge, there have been no phytochemical studies reported on M. balansae or M. grandifolia.
The genus Neolitsea (Benth.) Merr. Contains around 85 species distributed from Indo-Malaysia to East Asia [12,14]. Neolitsea ellipsoidea K.C. Allen is a tree up to 30 m in height [31]. The species has been recorded in Hainan (China) and Vietnam (Hoà Bình, Quảng Ninh, Hà Tĩnh, and Gia Lai provinces). To our knowledge there have been no reports on the phytochemistry of this species.
There are around 100 species in the genus Phoebe Nees [19], which range from the Neotropics (Mexico, south to Brazil, Bolivia, and Argentina) and Southeast Asia (southern China, Vietnam, Thailand, Myanmar, Cambodia, and Singapore), as well as Indonesia, New Guinea, and India [9].
Phoebe angustifolia Meisn. is a small shrub found in southeastern Yunnan (China), Myanmar, India, and Vietnam [12]. In Vietnam, the species has been recorded in Thanh Hóa, Nghệ An, Thừa Thiên Huế, and Quảng Nam provinces [14]. The leaf essential oil of P. angustifolia from Vietnam has been reported, which showed the major components to be spathulenol (17.0%), palmitic acid (13.0%), sabinene (6.4%), bicyclogermacrene (5.9%), and artemisia triene (5.1%) [32].

2. Results and Discussion

The essential oil collection details and yields are summarized in Table 1.

2.1. Essential Oil Compositions

The essential oil compositions of B. erythrophloia, B. robusta, and B. yunnanensis are compiled in Table 2. All three of the Beilschmiedia leaf essential oils were dominated by sesquiterpene hydrocarbons. A preponderance of sesquiterpene hydrocarbons has been previously seen in Beilschmiedia leaf essential oils from Malaysia [33] and from Costa Rica [34].
The major components in B. erythrophloia essential oil were bicyclogermacrene (30.5%), (Z)-β-ocimene (26.1%), and (E)-caryophyllene (18.3%). While qualitatively similar, there are notable differences between the essential oil from Vietnam in this work and that reported by Su and Ho from Taiwan [17]; the sample from Taiwan was rich in α-humulene (21.9%) compared to that from Vietnam (only 2.6%), but poor in bicyclogermacrene (1.2%) compared to that from Vietnam.
Both B. robusta and B. yunnanensis leaf oils were rich in (E)-caryophyllene (22.5% and 16.2%, respectively), α-humulene (13.4% and 9.9%), and bicyclogermacrene (8.6% and 8.4%). The leaf oil of B. robusta had a high concentration of germacrene D (20.3%), while B. yunnanensis oil was rich in 9-epi-(E)-caryophyllene (21.2%).
The leaf essential compositions of C. concinna (from two locations), C. impressa, and C. infectoria are listed in Table 3. Sesquiterpene hydrocarbons were abundant in both C. impressa and C. infectoria leaf essential oils, while oxygenated sesquiterpenoids were abundant in C. concinna essential oil from Nam Dong and monoterpene hydrocarbons dominated the leaf oil of C. concinna from Pu Hoat.
The leaf essential oils of C. concinna from two different collection sites were qualitatively similar, but quantitatively different. That is, the abundant components in the Nam Dong sample were also observed in the Pu Hoat sample, and vice versa. Thus, for example, α-pinene, β-pinene, and myrcene were abundant in the Pu Hoat sample (26.7%, 31.3%, and 11.1%, respectively) but were found in lower concentrations in the sample from Nam Dong (8.2%, 9.0%, and 3.9%). Conversely, the sesquiterpenoids, (E)-caryophyllene, spathulenol, and caryophyllene oxide were abundant in the sample from Nam Dong (12.2%, 12.3%, and 21.2%, respectively), but less concentrated in the Pu Hoat sample (5.3%, 1.1%, and 0.4%).
The major components of the leaf essential oil of C. impressa were bicyclogermacrene (18.7%), (E)-caryophyllene (10.8%), dodecanal (10.8%), (E,E)-α-farnesene (7.9%), and α-humulene (6.3%). Germacrene D (55.5%) dominated the essential oil composition of C. infectoria, which was also composed of bicyclogermacrene (11.4%) and δ-elemene (5.1%) as major components.
The chemical compositions of the leaf essential oils of L. viridis, M. balansae, M. grandifolia, N. ellisoidea, and P. angustifolia are compiled in Table 4.
The major components in L. viridis leaf essential oil were bicyclogermacrene (25.5%), decanal (14.4%), α-pinene (11.1%), and β-pinene (8.3%). This is the first report on the essential oil from this plant.
Although M. balansae and M. grandifolia are considered conspecific, the essential oil compositions showed pronounced differences. The leaf oil of M. balansae was dominated by bicyclogermacrene (41.5%), which was not detected in the essential oil of M. grandifolia. Likewise, the sesquiterpene alcohols (E)-nerolidol and globulol were abundant constituents in M. grandifolia (22.7% and 10.2%, respectively), but (E)-nerolidol was much lower in M. balansae (8.7%) and globulol was not detected. The taxonomy of these two plants deserves closer scrutiny.
The leaf essential oil of N. ellipsoidea was dominated by (E)-β-ocimene (87.6%). (E)-β-Ocimene was also found to be the dominant compound (85.6%) in the leaf essential oil of N. polycarpa from Vietnam [32], and one of the major components in the leaf essential oils of N. sericea from Korea (13.3%) [38], N. variabillima from Taiwan (13.4%) [39], and N. aciculata from Korea (9.7%) [40]. In contrast, (E)-β-ocimene was only a minor component in the leaf oils of N. australiensis, N. brassii, or N. dealbata from Australia [41], and N. pallens from India [42], and was not observed in N. foliosa leaf essential oil from India [43].
The leaf essential oil of P. angustifolia from Pù Hoạt Nature Reserve (northern Vietnam) in this study was rich in α-pinene (26.9%), β-pinene (20.8%), spathulenol (5.4%), (E)-caryophyllene (5.3%), and p-cymene (5.0%), which differs markedly from a previous study on the leaf essential oil from Sao La Nature Reserve (central Vietnam). The previous work reported spathulenol (17.0%), palmitic acid (13.0%), sabinene (6.4%), bicyclogermacrene (5.9%), and artemisia triene (5.1%) to be the major components [32]. There is apparently much variation in the volatile components of this plant.

2.2. Larvicidal Activity

The 24-h and 48-h larvicidal activities of Lauraceae leaf essential oils from Vietnam are summarized in Table 5 and Table 6. Note that several essential oils were not tested due to lack of sufficient essential oil.
Of the Lauraceae essential oils screened for larvicidal activity, N. ellipsoidea showed the greatest activity against Ae. aegypti with 24-h and 48-h LC50 values of 6.59 and 4.04 μg/mL, respectively. Similar larvicidal activities were observed against Cx. quinquefasciatus (24-h and 48-h LC50 = 7.47 and 4.65 μg/mL) for this essential oil. Interestingly, although the larvicidal activities of C. infectoria leaf essential oil were not as impressive against Ae. aegypti or Ae. albopictus, the essential oil did show much better activity against Cx. quinquefasciatus (24-h LC50 = 10.8 μg/mL), particularly after 48 h of exposure (48-h LC50 = 0.402 μg/mL). Unfortunately, the limited quantities available for several of the essential oils precluded larvicidal screening. However, the larvicidal activity of the untested essential oils will be investigated in future studies.
The major component of N. ellipsoidea leaf essential oil, (E)-β-ocimene (87.6%), is not likely responsible for the observed larvicidal activity. The (E)-β-ocimene-rich (94.8%) essential oil of Porophyllum ruderale showed an LC50 of 173.7 μg/mL against Ae. aegypti [44]. Likewise, the essential oil of Syzygium jambolana, with (Z)-β-ocimene (27.2%) and (E)-β-ocimene (12.2%), was inactive against Ae. aegypti (LC50 = 433 μg/mL) [45]. The excellent larvicidal activity of N. ellipsoidea essential oil can likely be attributed to synergistic effects involving minor components.
The leaf essential oil of C. infectoria was rich in the germacrene sesquiterpenes germacrene D (55.5%) and bicyclogermacrene (11.4%), and these compounds may be responsible for the larvicidal activity. Germacrene D has demonstrated notable larvicidal activity against Ae. aegypti and Cx. quinquefasciatus (LC50 = 18.8 and 21.3 μg/mL, respectively) [46], and bicyclogermacrene was larvicidal against Ae. albopictus and Cx. tritaeniorhynchus (LC50 = 11.1 and 12.5 μg/mL, respectively) [47].
The marginal larvicidal activity of C. concinna from Nam Dong is consistent with the marginal activities observed for the major components. (E)-Caryophyllene, caryophyllene oxide, and α-pinene have shown modest mosquito larvicidal activities [48]. β-Pinene, however, has been shown to be more active than α-pinene: (–)-β-pinene (LC50 = 65 μg/mL against Cx. quinquefasciatus) [49], (LC50 = 15.4 μg/mL against Ae. aegypti) [50]; (+)-β-pinene (LC50 = 22.4 μg/mL against Ae. aegypti) [49]. Spathulenol-rich essential oils have also shown only marginal larvicidal activities. The stem essential oil of Tephrosia toxicaria (42.3% spathulenol) had an LC50 of 63.1 μg/mL against Ae. aegypti [51], while Guarea sylvatica essential oil from branches (14.3% spathulenol) showed LC50 against Ae. aegypti of 274 μg/mL [52].

2.3. Antimicrobial Activity

Several of the leaf essential oils of the Lauraceae were screened for antimicrobial activity (Table 7). All of the essential oils tested showed good antibacterial activities against the Gram-positive organisms. Both L. viridis and N. ellipsoidea leaf essential oils demonstrated particularly notable activities against E. faecalis and B. cereus with minimum inhibitory concentration (MIC) values of 16 μg/mL. The leaf essential oil of C. impressa also showed excellent anticandidal activity against C. albicans with an MIC of 16 μg/mL.
The major component of L. viridis leaf oil, bicyclogermacrene, has shown antibacterial activity against B. cereus [53]. Likewise, β-pinene was shown to be active against E. faecalis [54] as well as several other Gram-positive organisms [55]. Similarly, α-pinene has activity against several Gram-positive bacteria [55,56]. Decanal has also exhibited antibacterial activity [57,58]. Thus, the major components of L. viridis leaf essential oil, bicyclogermacrene, decanal, α-pinene, and β-pinene, can account for the observed antibacterial activity.
(E)-β-Ocimene dominated the leaf essential oil of N. ellipsoidea, but this compound has demonstrated relatively marginal antibacterial activity [55]. Synergistic interactions of (E)-β-ocimene with minor essential oil components may play a role in the antibacterial activity of N. ellipsoidea leaf oil.
The components responsible for the anticandidal activity of C. impressa leaf essential oil are not obvious. Neither (E)-caryophyllene nor α-humulene have shown strong anti-Candida albicans activity [54,56]. The anticandidal activity of bicyclogermacrene itself has apparently not been determined. However, essential oils rich in both bicyclogermacrene and (E)-caryophyllene do not exhibit notable activity against Candida spp. [59,60]. Dodecanal, however, has shown activity against C. albicans with an MIC of 125 μg/mL [61].

3. Materials and Methods

3.1. Plant Collection

Leaves were collected from wild-growing trees in north-central Vietnam. Plants were identified by Do Ngoc Dai and voucher specimens (Table 1) have been deposited in the plant specimen room, Faculty Agriculture, Forestry and Fishery, Nghe An, College of Economics. In each case, the fresh leaves were chopped and 2.0 kg was subjected to hydrodistillation using a Clevenger-type apparatus.

3.2. Analysis of the Oils

Gas chromatographic (GC) analysis was performed on an Agilent Technologies HP 7890A Plus Gas chromatograph equipped with a FID and fitted with HP-5ms column (30 m × 0.25 mm, film thickness 0.25 μm, Agilent Technologies, Santa Clara, CA, USA). The analytical conditions were: carrier gas H2 (1 mL/min), injector temperature (PTV: programmable temperature vaporization) 250 °C, detector temperature 260 °C, column temperature programmed from 60 °C (2 min hold) to 220 °C (10 min hold) at 4 °C/min. Samples were injected using a split mode with a split ratio of 10:1. The volume injected was 1.0 μL. Inlet pressure was 6.1 kPa.
An Agilent Technologies (Santa Clara, CA, USA) HP 7890A Plus Chromatograph fitted with a fused silica capillary HP-5ms column (30 m × 0.25 mm, film thickness 0.25 μm) and interfaced with a mass spectrometer HP 5973 MSD was used for the GC/MS analysis, under the same conditions as those used for GC analysis. The conditions were the same as described above with He (1 mL/min) as carrier gas. The MS conditions were as follows: ionization voltage 70 eV; emission current 40 mA; acquisitions scan mass range of 35–350 amu at a sampling rate of 1.0 scan/s. Compound identification was carried out by comparison of the MS fragmentation patterns and calculated retention indices with those available in the databases [35,36,37] and, when available, with standard substances.

3.3. Mosquito Larvicidal Assays

Larvicidal activities against Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus were carried out as previously described [62]; LC50 values, LC90 values, and 95% confidence limits were determined by log-probit analysis using Minitab® 19 (Minitab, LLC, State College, PA, USA).

3.4. Antimicrobial Assays

The bacterial growth inhibition of the essential oils was evaluated using three strains of Gram-positive test bacteria, Enterococcus faecalis (ATCC299212), Staphylococcus aureus (ATCC25923), Bacillus cereus (ATCC14579), three strains of Gram-negative test bacteria, Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC27853), Salmonella enterica (ATCC13076) and one strain of yeast, Candida albicans (ATCC 10231). Minimum inhibitory concentration (MIC) and median inhibitory concentration (IC50) values were measured by the microdilution broth susceptibility assay as previously described [62].

4. Conclusions

Of the eleven species of Lauraceae examined in this work, the leaf essential oil of Neolitsea ellipsoidea, dominated by (E)-β-ocimene, showed excellent larvicidal activity against Aedes aegypti and antibacterial activity against Enterococcus faecalis and Bacillus cereus; Cryptocarya infectoria leaf essential oil, rich in germacrene D and bicyclogermacrene, showed excellent larvicidal activity on Culex quinquefasciatus and anticandidal activity against Candida albicans. The leaf essential oil of Litsea viridis, which was rich in bicyclogermacrene, also showed good antibacterial properties. The biological properties of these Lauraceae essential oils suggest that they may serve as potential “green” alternatives, as also described for Lamiaceae family plants [63], for use as insect control or antimicrobial agents.

Author Contributions

Conceptualization, D.N.D. and W.N.S.; methodology, D.N.D., L.T.H., D.T.M.C., N.H.H., I.A.O., W.N.S.; validation, D.N.D. and W.N.S.; formal analysis, L.T.H., W.N.S.; investigation, N.T.C., L.T.H., N.T.Y., D.T.M.C., I.A.O.; resources, D.N.D.; data curation, W.N.S.; writing—original draft preparation, W.N.S., D.N.D.; writing—review and editing, D.N.D., L.T.H., W.N.S.; supervision, D.N.D.; project administration, D.N.D.; funding acquisition, D.N.D. All authors have read and agreed to the published version of the manuscript.

Funding

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number: 106.03-2018.02.

Acknowledgments

W.N.S. participated in this work as part of the activities of the Aromatic Plant Research Center (APRC, https://aromaticplant.org/).

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Van der Werff, H. A synopsis of the genus Beilschmiedia (Lauraceae) in Madagascar. Adansonia 2003, 25, 77–92. [Google Scholar]
  2. Schroeder, C.A. Some useful plants of the botanical family Lauraceae. Calif. Avocado Soc. Yearb. 1976, 59, 30–34. [Google Scholar]
  3. Krochmal, A. Medicinal plants and Appalachia. Econ. Bot. 1968, 22, 332–337. [Google Scholar] [CrossRef]
  4. Tucker, A.O.; Maciarello, M.J.; Burbage, P.W.; Sturtz, G. Spicebush [Lindera benzoin (L.) Blume var. benzoin, Lauraceae]: A tea, spice, and medicine. Econ. Bot. 1994, 48, 333–336. [Google Scholar] [CrossRef]
  5. Rhind, J.P. Essential Oils: A Comprehensive Handbook for Aromatic Therapy; Singing Dragon: London, UK, 2020; ISBN 978-1787752290. [Google Scholar]
  6. May, P.H.; Barata, L.E.S. Rosewood exploitation in the Brazilian Amazon: Options for sustainable production. Econ. Bot. 2004, 58, 257–265. [Google Scholar] [CrossRef]
  7. Chen, W.; Vermaak, I.; Viljoen, A. Camphor—A fumigant during the black death and a coveted fragrant wood in ancient Egypt and Babylon: A review. Molecules 2013, 18, 5434–5454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  8. Kong, D.-G.; Zhao, Y.; Li, G.-H.; Chen, B.-J.; Wang, X.-N.; Zhou, H.-L.; Lou, H.-X.; Ren, D.-M.; Shen, T. The genus Litsea in traditional Chinese medicine: An ethnomedical, phytochemical and pharmacological review. J. Ethnopharmacol. 2015, 164, 256–264. [Google Scholar] [CrossRef] [PubMed]
  9. Missouri Botanical Garden Tropicos. Available online: www.tropicos.org (accessed on 14 March 2020).
  10. Beilschmiedia Nees. Available online: https://www.discoverlife.org/mp/20q?search=Beilschmiedia (accessed on 16 March 2020).
  11. Salleh, W.M.N.H.W.; Ahmad, F.; Yen, K.H.; Zulkifli, R.M. A review on chemical constituents and biological activities of the genus Beilschmiedia (Lauraceae). Trop. J. Pharm. Res. 2015, 14, 2139–2150. [Google Scholar] [CrossRef]
  12. Wu, C.Y.; Raven, P.H.; Hong, D.Y. Flora of China. Available online: http://www.efloras.org/volume_page.aspx?volume_id=2007&flora_id=2 (accessed on 14 March 2020).
  13. Chen, J.-J.; Kuo, W.-L.; Sung, P.-J.; Chen, I.-S.; Cheng, M.-J.; Lim, Y.-P.; Liao, H.-R.; Chang, T.-H.; Wei, D.-C.; Chen, J.-Y. Beilschamide: A new amide, and cytotoxic constituents of Beilschmiedia erythrophloia. Chem. Nat. Compd. 2015, 51, 302–305. [Google Scholar] [CrossRef]
  14. Dao, N.K. Flora of Vietnam, Lauraceae Juss; Publishing House for Science & Technology: Hanoi, Vietnam, 2017; Volume 17. [Google Scholar]
  15. Yang, P.-S.; Cheng, M.-J.; Chen, J.-J.; Chen, I.-S. Two new endiandric acid analogs, a new benzopyran, and a new benzenoid from the root of Beilschmiedia erythrophloia. Helv. Chim. Acta 2008, 91, 2130–2138. [Google Scholar] [CrossRef]
  16. Yang, P.-S.; Cheng, M.-J.; Peng, C.-F.; Chen, J.-J.; Chen, I.-S. Endiandric acid analogues from the roots of Beilschmiedia erythrophloia. J. Nat. Prod. 2009, 72, 53–58. [Google Scholar] [CrossRef] [PubMed]
  17. Su, Y.-C.; Ho, C.-L. Composition and in-vitro cytotoxic activities of the leaf essential oil of Beilschmiedia erythrophloia from Taiwan. Nat. Prod. Commun. 2013, 8, 143–144. [Google Scholar] [PubMed] [Green Version]
  18. Allen, C.K. Studies in the Lauraceae, V: Some eastern Asiatic species of Beilschmiedia and related genera. J. Arnold Arbor. 1942, 23, 444–463. [Google Scholar] [CrossRef]
  19. Mabberley, D.J. Mabberley’s Plant-Book, 3rd ed.; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
  20. Chang, H.-S.; Tang, J.-Y.; Yen, C.-Y.; Huang, H.-W.; Wu, C.-Y.; Chung, Y.-A.; Wang, H.-R.; Chen, I.-S.; Huang, M.-Y.; Chang, H.-W. Antiproliferation of Cryptocarya concinna-derived cryptocaryone against oral cancer cells involving apoptosis, oxidative stress, and DNA damage. BMC Complement. Altern. Med. 2016, 16, 94. [Google Scholar] [CrossRef] [Green Version]
  21. Yang, B.-Y.; Shi, Y.-M.; Luo, J.-G.; Kong, L.-Y. Two new arylalkenyl α,β-unsaturated δ-lactones with cytotoxic activity from the leaves and twigs of Cryptocarya concinna. Nat. Prod. Res. 2017, 31, 1409–1413. [Google Scholar] [CrossRef]
  22. Huang, W.; Zhang, W.-J.; Cheng, Y.-Q.; Jiang, R.; Wei, W.; Chen, C.-J.; Wang, G.; Jiao, R.-H.; Tan, R.-X.; Ge, H.-M. Cytotoxic and antimicrobial flavonoids from Cryptocarya concinna. Planta Med. 2014, 80, 925–930. [Google Scholar] [CrossRef]
  23. Kew Science Cryptocarya impressa Miq. Available online: http://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:463940-1#source-KBD (accessed on 16 March 2020).
  24. De Kok, R.P.J. A revision of Cryptocarya (Lauraceae) from Thailand and Indochina. Gard. Bull. Singapore 2015, 67, 309–350. [Google Scholar] [CrossRef]
  25. De Kok, R.P.J. A revision of Cryptocarya R. Br. (Lauraceae) of Peninsular Malaysia. Kew Bull. 2016, 71, 7. [Google Scholar] [CrossRef]
  26. De Kok, R.P.J. Two new records of Litsea (Lauraceae) from Singapore and the lectotypification of twenty-two names from several Lauraceae genera. Gard. Bull. Singapore 2017, 69, 167–177. [Google Scholar] [CrossRef]
  27. Chen, Y.-C.; Chen, I.-S.; Guh, J.-H. Cryptocaryone, isolated from Cryptocarya infectoria, induces apoptosis through extrinsic pathways: The involvement of death receptor clustering and FADD/caspase-8 activation cascades. Clin. Cancer Res. 2007, 13, C42. [Google Scholar]
  28. Dumontet, V.; Gaspard, C.; Van Hung, N.; Fahy, J.; Tchertanov, L.; Sévenet, T.; Guéritte, F. New cytotoxic flavonoids from Cryptocarya infectoria. Tetrahedron 2001, 57, 6189–6196. [Google Scholar] [CrossRef]
  29. Othman, W.N.N.W.; Liew, S.Y.; Khaw, K.Y.; Murugaiyah, V.; Litaudon, M.; Awang, K. Cholinesterase inhibitory activity of isoquinoline alkaloids from three Cryptocarya species (Lauraceae). Bioorganic Med. Chem. 2016, 24, 4464–4469. [Google Scholar] [CrossRef] [PubMed]
  30. Tang, S.-C.; Xu, W.-B.; Wei, F.-N. Machilus parapauhoi sp. nov. and a new synonym of Machilus (Lauraceae) from east Asia. Nord. J. Bot. 2010, 28, 503–505. [Google Scholar] [CrossRef]
  31. Allen, C.K. Studies in the Lauraceae. I. Chinese and Indo-Chinese species of Litsea, Neolitsea, and Actinodaphne. Ann. Missouri Bot. Gard. 1938, 25, 361–434. [Google Scholar] [CrossRef]
  32. Thang, T.D.; Dai, D.N.; Thai, T.H.; Ogunwande, I.A. Essential oils of Phoebe angustifolia Meisn., Machilus velutina Champ. ex Benth. and Neolitsea polycarpa Liou (Lauraceae) from Vietnam. Rec. Nat. Prod. 2013, 7, 192–200. [Google Scholar]
  33. Salleh, W.M.N.H.W.; Ahmad, F.; Khong, H.Y.; Zulkifli, R.M. Comparative study of the essential oils of three Beilschmiedia species and their biological activities. Int. J. Food Sci. Technol. 2016, 51, 240–249. [Google Scholar] [CrossRef]
  34. Setzer, W.N.; Haber, W.A. Leaf essential oil composition of five species of Beilschmiedia from Monteverde, Costa Rica. Nat. Prod. Commun. 2007, 2, 79–83. [Google Scholar] [CrossRef]
  35. Mondello, L. FFNSC 3; Shimadzu Scientific Instruments: Columbia, MD, USA, 2016. [Google Scholar]
  36. NIST17; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2017.
  37. Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing: Carol Stream, IL, USA, 2007. [Google Scholar]
  38. Yoon, W.-J.; Moon, J.-Y.; Kang, J.-Y.; Kim, G.-O.; Lee, N.H.; Hyun, C.-G. Neolitsea sericea essential oil attenuates LPS-induced inflammation in RAW 264.7 macrophages by suppressing NF-κB and MAPK activation. Nat. Prod. Commun. 2010, 5, 1311–1316. [Google Scholar] [CrossRef] [Green Version]
  39. Su, Y.-C.; Hsu, K.-P.; Wang, E.I.-C.; Ho, C.-L. Composition and in vitro anticancer activities of the leaf essential oil of Neolitsea variabillima from Taiwan. Nat. Prod. Commun. 2013, 8, 531–532. [Google Scholar] [CrossRef] [Green Version]
  40. Jeong, M.-J.; Yang, J.; Choi, W.-S.; Kim, J.-W.; Kim, S.J.; Park, M.-J. Chemical compositions and antioxidant activities of essential oil extracted from Neolitsea aciculata (Blume) Koidz leaves. J. Korean Wood Sci. Technol. 2017, 45, 96–106. [Google Scholar] [CrossRef] [Green Version]
  41. Brophy, J.J.; Goldsack, R.J.; Fookes, C.J.R.; Forster, P.I. The leaf oils of the Australian species of Neolitsea (Lauraceae). J. Essent. Oil Res. 2002, 14, 191–195. [Google Scholar] [CrossRef]
  42. Padalia, R.C.; Chanotiya, C.S.; Thakuri, B.C.; Mathela, C.S. Germacranolide rich essential oil from Neolitsea pallens. Nat. Prod. Commun. 2007, 2, 591–593. [Google Scholar] [CrossRef]
  43. John, A.J.; Karunakaran, V.P.; George, V.; Pradeep, N.S.; Sethuraman, M.G. Chemical composition and antibacterial activity of leaf oil of Neolitsea foliosa (Nees) Gamble var. caesia (Meisner) Gamble. J. Essent. Oil Res. 2007, 19, 498–500. [Google Scholar] [CrossRef]
  44. Fontes, U.R., Jr.; Ramos, C.S.; Serafini, M.R.; Cavalcanti, S.C.H.; Alves, P.B.; Lima, G.M.; Andrade, P.H.S.; Bonjardim, L.R.; Quintans, L.J., Jr.; Araújo, A.S. Evaluation of the lethality of Porophyllum ruderale essential oil against Biomphalaria glabrata, Aedes aegypti and Artemia salina. African J. Biotechnol. 2012, 11, 3169–3172. [Google Scholar]
  45. Cavalcanti, E.S.B.; de Morais, S.M.; Lima, M.A.A.; Santana, E.W.P. Larvicidal activity of essential oils from Brazilian plants against Aedes aegypti L. Mem. Inst. Oswaldo Cruz 2004, 99, 541–544. [Google Scholar] [CrossRef] [PubMed]
  46. Govindarajan, M. Chemical composition and larvicidal activity of leaf essential oil from Clausena anisata (Willd.) Hook. f. ex Benth (Rutaceae) against three mosquito species. Asian Pac. J. Trop. Med. 2010, 3, 874–877. [Google Scholar] [CrossRef] [Green Version]
  47. Govindarajan, M.; Benelli, G. Ecotoxicology and environmental safety eco-friendly larvicides from Indian plants: Effectiveness of lavandulyl acetate and bicyclogermacrene on malaria, dengue and Japanese encephalitis mosquito vectors. Ecotoxicol. Environ. Saf. 2016, 133, 395–402. [Google Scholar] [CrossRef]
  48. Hung, N.H.; Satyal, P.; Hieu, H.V.; Chuong, N.T.H.; Dai, D.N.; Huong, L.T.; Tai, T.A.; Setzer, W.N. Mosquito larvicidal activity of the essential oils of Erechtites species growing wild in Vietnam. Insects 2019, 10, 47. [Google Scholar] [CrossRef] [Green Version]
  49. Pavela, R. Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some essential oils against Culex quinquefasciatus Say larvae. Parasitol. Res. 2015, 114, 3835–3853. [Google Scholar] [CrossRef]
  50. Perumalsamy, H.; Kim, N.-J.; Ahn, Y.-J. Larvicidal activity of compounds isolated from Asarum heterotropoides against Culex pipiens pallens, Aedes aegypti, and Ochlerotatus togoi (Diptera: Culicidae). J. Med. Entomol. 2009, 46, 1420–1423. [Google Scholar] [CrossRef]
  51. Ribeiro, W.H.F.; Vasconcelos, J.N.; Arriaga, A.M.C.; de Oliveira, M.C.F.; Andrade-Neto, M.; Lemos, T.L.G.; Santiago, G.M.P.; Nascimento, R.F.; Mafezoli, J. Tephrosia toxicaria Pers essential oil: Chemical composition and larvicidal activity. Nat. Prod. Commun. 2006, 1, 391–393. [Google Scholar] [CrossRef] [Green Version]
  52. Magalhães, L.A.M.I.; Lima Mda, P.; Marques, M.O.; Facanali, R.; Pinto, A.C.; Tadei, W.P. Chemical composition and larvicidal activity against Aedes aegypti larvae of essential oils from four Guarea species. Molecules 2010, 15, 5734–5741. [Google Scholar]
  53. Santos, T.G.; Dognini, J.; Begnini, I.M.; Rebelo, R.A.; Verdi, M.; Dalmarco, E.M. Chemical characterization of essential oils from Drimys angustifolia Miers (Winteraceae) and antibacterial activity of their major compounds. J. Braz. Chem. Soc. 2013, 24, 164–170. [Google Scholar] [CrossRef] [Green Version]
  54. Jirovetz, L.; Bail, S.; Buchbauer, G.; Denkova, Z.; Slavchev, A.; Stoyanova, A.; Schmidt, E.; Geissler, M. Antimicrobial testings, gas chromatographic analysis and olfactory evaluation of an essential oil of hop cones (Humulus lupulus L.) from Bavaria and some of its main compounds. Sci. Pharm. 2006, 74, 189–201. [Google Scholar] [CrossRef] [Green Version]
  55. Rather, M.A.; Dar, B.A.; Dar, M.Y.; Wani, B.A.; Shah, W.A.; Bhat, B.A.; Ganai, B.A.; Bhat, K.A.; Anand, R.; Qurishi, M.A. Chemical composition, antioxidant and antibacterial activities of the leaf essential oil of Juglans regia L. and its constituents. Phytomedicine 2012, 19, 1185–1190. [Google Scholar] [CrossRef] [PubMed]
  56. Schmidt, J.M.; Noletto, J.A.; Vogler, B.; Setzer, W.N. Abaco bush medicine: Chemical composition of the essential oils of four aromatic medicinal plants from Abaco Island, Bahamas. J. Herbs Spices Med. Plants 2006, 12, 43–65. [Google Scholar] [CrossRef]
  57. Kubo, I.; Fujita, K.; Kubo, A.; Nihei, K.; Ogura, T. Antibacterial activity of coriander volatile compounds against Salmonella choleraesuis. J. Agric. Food Chem. 2004, 52, 3329–3332. [Google Scholar] [CrossRef]
  58. Liu, K.; Chen, Q.; Liu, Y.; Zhou, X.; Wang, X. Isolation and biological activities of decanal, linalool, valencene, and octanal from sweet orange oil. J. Food Sci. 2012, 77, C1156–C1161. [Google Scholar] [CrossRef]
  59. Morandim-Giannetti, A.A.; Pin, A.R.; Pietro, N.A.S.; de Oliveira, H.C.; Mendes-Giannini, M.J.S.; Alecio, A.C.; Kato, M.J.; de Oliveira, J.E.; Furlan, M. Composition and antifungal activity against Candida albicans, Candida parapsilosis, Candida krusei and Cryptococcus neoformans of essential oils from leaves of Piper and Peperomia species. J. Med. Plants Res. 2010, 4, 1810–1814. [Google Scholar]
  60. Venturi, C.R.; Danielli, L.J.; Klein, F.; Apel, M.A.; Montanha, J.A.; Bordignon, S.A.L.; Roehe, P.M.; Fuentefria, A.M.; Henriques, A.T. Chemical analysis and in vitro antiviral and antifungal activities of essential oils from Glechon spathulata and Glechon marifolia. Pharm. Biol. 2015, 53, 682–688. [Google Scholar] [CrossRef] [Green Version]
  61. Ho, C.-L.; Hsu, K.-P.; Tseng, Y.-H.; Wang, E.I.-C.; Liao, P.-C.; Chouc, J.-C.; Linc, C.-N.; Sua, Y.-C. Composition and antimicrobial activities of the leaf essential oil of Machilus kusanoi from Taiwan. Nat. Prod. Commun. 2011, 6, 267–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  62. Dai, D.N.; Chung, N.T.; Huong, L.T.; Hung, N.H.; Chau, D.T.M.; Yen, N.T.; Setzer, W.N. Chemical compositions, mosquito larvicidal and antimicrobial activities of essential oils from five species of Cinnamomum growing wild in north central Vietnam. Molecules 2020, 25, 1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  63. Ebadollahi, A.; Ziaee, M.; Palla, F. Essential oils extracted from different species of the Lamiaceae plants family as prospective bioagents against several detrimental pests. Molecules 2020, 25, 1556. [Google Scholar] [CrossRef] [Green Version]
Table 1. Plant collection and hydrodistillation details of Lauraceae from Vietnam.
Table 1. Plant collection and hydrodistillation details of Lauraceae from Vietnam.
Plant SpeciesVietnamese NameCollection SiteVoucher NumberCollection Month/YearYield (%, v/w)
Beilschmiedia erythrophloia HayataChắp, Kết gỗ đỏPù Hoạt Nature Reserve; 19°41′40″ N, 104°49′31″ E, elev, 678 m8037/20190.12
Beilschmiedia robusta C.K. AllenChắp to khỏ, Két to khỏePù Hoạt Nature Reserve; 19°41′37″ N, 104°49′30″ E, elev. 677 m8279/20190.14
Beilschmiedia yunnanensis H.H. HuChắp vân nam, Két vân nam, Mong vân namVũ Quang National park; 18°17′15″ N, 105°21′39″ E, elev. 153 m7997/20190.15
Cryptocarya concinna HanceẨn hạch quả vàng, Mò quả vàng, KháoNam Đông District, Thừa Thiên Huế Province; 16°13′9″ N, 107°43′28″ E, elev. 124 m 7917/20190.33
Pù Hoạt Nature Reserve; 19°42′18″ N, 104°49′42″ E, elev. 648 m8017/20190.36
Cryptocarya impressa Miq.
Syn.: Cryptocarya venosa Meisn. ex Hook.f.
Mò quả to, Mò quả xanh, Ẩn hạch quả toPù Hoạt Nature Reserve; 19°42′18″ N, 104°49′42″ E, elev. 648 m8269/20190.22
Cryptocarya infectoria (Blume) Miq.
Syn.: Caryodaphne infectoria Blume
Cà đuối nhuộm, Ẩn hạch nhuộm, Cà đuối tai nghéPù Hoạt Nature Reserve; 19°42′18″ N, 104°49′42″ E, elev. 648 m7674/20190.25
Litsea viridis H. LiouBời lời xanhPù Hoạt Nature Reserve; 19°42′18″ N, 104°49′42″ E, elev. 648 m8068/20190.21
Machilus balansa (Airy Shaw) F.N. Wei & S.C. Tang
Syn.: Persea balansae Airy Shaw
Kháo balansa, Rè balansaPù Mát National Park; 18°58′14″ N, 104°48′2″ E, elev. 376 m 8289/20190.42
Machilus grandifolia S.K. Lee & F.N. WeiKháo lá toNam Đông District, Thừa Thiên Huế Province; 16°13′9″ N, 107°43′28″ E, elev. ZZ m7797/20190.18
Neolitsea ellipsoidea K.C. AllenNô bầu dục, Bài nhài lá bầu dục, Tam tầngVũ Quang National park; 18°17′15″ N, 105°21′39″ E, elev. 124 m8027/20190.31
Phoebe angustifolia Meisn.
Syn.: Phoebe angustifolia var. annamensis Liou
Re trắng lá hẹp, Sụ lá hẹp, Dù dà mò cátPù Hoạt Nature Reserve; 19°49′7″ N, 104°55′38″ E, elev. 465 m7857/20190.45
Table 2. Chemical compositions of the leaf essential oils of Beilschmiedia species collected in Vietnam.
Table 2. Chemical compositions of the leaf essential oils of Beilschmiedia species collected in Vietnam.
RIcalcRIdbCompoundsPercent Composition
B.e.B.r.B.y.
930924α-Thujene-0.10.6
939932α-Pinene3.22.96.0
955946Camphene0.20.20.2
979969Sabinene0.10.61.9
984974β-Pinene0.62.74.7
992988Myrcene0.50.40.8
10101002α-Phellandrene0.1-0.1
10221014α-Terpinene-0.51.5
10301020p-Cymene-0.30.8
10341024Limonene0.20.81.2
10351025β-Phellandrene-0.10.6
10391032(Z)-β-Ocimene26.1-0.1
10491044(E)-β-Ocimene3.60.5-
10631054γ-Terpinene-0.92.6
10941086Terpinolene-0.40.8
11171113(E)-4,8-Dimethylnona-1,3,7-triene--0.2
11311128allo-Ocimene0.6--
11881174Terpinen-4-ol-0.51.8
12001186α-Terpineol--0.2
12941287Bornyl acetate0.3--
13481335δ-Elemene1.50.30.3
13601345α-Cubebene-0.3-
13651359Neryl acetate--0.2
13841373α-Ylangene-0.1-
13861387β-Cubebene--0.1
13891374α-Copaene0.30.70.2
139713907-epi-Sesquithujene0.50.71.0
13991387β-Bourbonene-0.9-
14041389β-Elemene1.01.00.6
14251411cis-α-Bergamotene-0.40.4
14281409α-Gurjunene--0.3
14371417(E)-Caryophyllene18.322.516.2
14461432trans-α-bergamotene0.51.21.1
14521437α-Guaiene-0.40.4
14571439Aromadendrene0.71.51.8
14601440(Z)-β-Farnesene0.30.20.5
14661448cis-Muurola-3,5-diene-0.2-
14711452α-Humulene2.613.49.9
147914649-epi-(E)-Caryophyllene0.40.521.2
14881481γ-Curcumene--0.2
14901478γ-Muurolene0.11.90.3
14941483α-Amorphene-0.6-
14981484Germacrene D2.720.31.1
15041489β-Selinene--0.2
15051492δ-Selinene-0.40.2
150714909-Aromadendrene--0.9
15121505(E,E)-α-Farnesene-1.4-
15121496Viridiflorene-2.42.0
15141500Bicyclogermacrene30.58.68.4
15201514β-Curcumene--0.2
15211511δ-Amorphene0.1--
15221509α-Bulnesene--0.3
15301513γ-Cadinene0.10.80.2
15371522δ-Cadinene0.52.90.5
15401528Zonarene-0.2-
15471533trans-Cadina-1,4-diene-0.2-
15521537α-Cadinene-0.2-
15621548Elemol0.2--
15711561(E)-Nerolidol-0.21.4
15771559Germacrene B0.2--
15881567Palustrol--0.4
15991577Spathulenol0.90.61.0
16041592Viridiflorol-0.41.2
16051582Caryophyllene oxide0.60.4-
16121595Cubeban-11-ol-0.6-
16151600Guaiol0.3-1.0
16211600Rosifoliol-0.20.3
16251602Ledol--1.1
16321608Humulene epoxide II-0.20.2
164216375-Guaiene-11-ol--0.2
16581640epi-α-Muurolol-0.2-
16591638epi-α-Cadinol-0.2-
16701652α-Eudesmol0.1--
16731652α-Cadinol0.10.5-
167416627-epi-α-Eudesmol0.3--
16831670epi-β-Bisabolol--0.1
17591732Zerumbone0.1--
Monoterpene hydrocarbons35.210.421.9
Oxygenated monoterpenoids0.30.52.2
Sesquiterpene hydrocarbons60.384.268.5
Oxygenated sesquiterpenoids2.63.56.9
Others0.00.00.2
Total identified98.498.699.7
RIcalc = Retention index determined with respect to a homologous series of n-alkanes on a HP-5ms column, RIdb = Retention index from the databases [35,36,37], B.e. = Beilschmiedia erythrophloia, B.r. = Beilschmiedia robusta, B.y. = Beilschmiedia yunnanensis.
Table 3. Chemical compositions of the leaf essential oils of Cryptocarya species collected in Vietnam.
Table 3. Chemical compositions of the leaf essential oils of Cryptocarya species collected in Vietnam.
RIcalcRIdbCompoundPercent Composition
C.c. N.D.C.c. P.H.C.im.C.in.
930927α-thujenetr0.1--
931932α-Pinene 8.226.74.10.8
945948α-Fenchenetr---
955953Camphene0.20.40.30.6
967961Benzaldehyde---0.1
970971Sabinenetr---
975978β-Pinene 9.031.32.70.2
986989Myrcene3.911.13.9-
10101002α-Phellandrene--2.5-
10121009δ-3-Carene0.1-0.2-
10271025p-Cymene0.1-0.6-
10271030Limonene2.02.80.90.2
10281031β-Phellandrenetr0.3--
10331034(Z)-β-Ocimenetr0.60.3-
10431046(E)-β-Ocimene0.28.84.0-
10631054γ-Terpinene-0.1--
10941086Terpinolene-0.10.4-
10961098Perillene0.1---
10981101α-Pinene oxide0.2---
11011095Linalool-1.1-3.4
11171116(E)-4,8-Dimethylnona-1,3,7-triene--0.7-
11371139Nopinone0.1---
11391141trans-Pinocarveol 0.3---
11441145trans-Verbenol0.1---
11611164Pinocarvone0.1---
11941195Myrtenol0.3---
12061201Decanal--1.6-
12991300Tridecane--0.2-
13081305Undecanal--0.2-
13321335δ-Elemene 0.90.20.75.1
13441348α-Cubebene 0.2-0.10.3
13661371α-Ylangene0.4---
13671356Eugenol---0.1
13731375α-Copaene 0.5-0.50.8
13811382β-Bourbonene0.2--0.3
13841373α-Ylangene---0.4
13851387β-Cubebene0.1---
13871390β-Elemene 0.90.11.22.1
14121408Dodecanal--10.8-
14171417(E)-Caryophyllene 12.25.310.81.7
14191421(E)-α-Iononetr---
14241430γ-Maaliene0.2---
14271430β-Copaene 0.3---
14281426α-Gurjunene--0.4-
14301432trans-α-Bergamotene 1.6-0.9-
14361438Aromadendrene1.50.81.8-
14451437β-Gurjunene---0.8
14491455Valerena-4,7(11)-diene0.1---
14531454α-Humulene 1.50.66.31.9
14531442α-Maaliene--0.2-
14561447Guaia-6,9-diene---0.6
14571458allo-Aromadendrene0.1---
14591454Selina-5,11-diene--0.2-
14631463cis-Muurola-4(14),5-diene--0.1-
14661454cis-Muurola-3,5-diene---0.2
14721475γ-Muurolene1.60.40.71.3
14761482α-Amorphene 0.2-0.70.7
14781480Germacrene D0.21.32.555.5
147914709-epi-(E)-caryophyllene-0.20.60.3
14801477trans-Cadina-1(6),4-diene---0.3
14811478γ-Gurjunene0.1---
14861489β-Selinene 0.5-0.5-
14881491Viridiflorene0.1---
14891490γ-Amorphene 0.3---
14931497α-Selinene 0.6---
14951497α-Muurolene0.4---
15041508β-Bisabolene0.2---
15051497δ-Selinene---0.7
15091496γ-Amorphene---0.3
15121515Cubebol0.2---
15121517(E,E)-α-Farnesene--7.9-
15141511Bicyclogermacrene--18.711.4
15151518δ-Cadinene 0.70.71.1-
15181519trans-Calamenene0.3---
15201512γ-Cadinene1.30.40.3-
15211515δ-Amorphene--0.20.7
15341538α-Cadinene0.2--0.2
15381541α-Calacorene 0.4---
15381531cis-Calamene---0.2
15461549α-Elemol0.1--0.2
15471540trans-Cadina-1,4-diene---0.1
15481551Isocaryphyllene oxide0.9---
15561560Germacrene B0.1-0.70.6
15581560(E)-Nerolidol 0.2-0.70.1
15591560β-Calacorene0.3---
15601551Selina-3,7(11)-diene--0.5-
156515661,5-Epoxysalvial-4(14)-ene0.6---
15751578Spathulenol12.31.11.40.1
15801587Caryophyllene oxide21.20.40.40.2
15831590Globulol0.7---
15831579Dendrolasin--0.2-
15941593Scapanol---0.2
15971594Viridiflorol0.4-0.4-
160416125-epi-7-epi-β-Eudesmol 0.2---
16071613Humulene epoxide II1.5-0.3-
16121601Cubeban-11-ol--0.4-
16141611Tetradecanal--1.0-
16211615Rosifoliol--0.4-
16231624Muurola-4,10(14)-dien-1β-ol0.2---
16251629iso-Spathulenol1.8---
16301630Caryophylla-4(12),8(13)-dien-5α-ol0.9---
16341636Caryophylla-4(12),8(13)-dien-5β-ol0.6---
16391640τ-Cadinol0.20.4-0.3
16411644τ-Muurolol 0.2--0.2
164216375-Guaien-11-ol--0.2-
16441645δ-Cadinol0.4---
16461635Muurola-4,10(14)-dien-1β-ol---0.1
16521656β-Eudesmol0.7---
16531655α-Cadinol 0.9-0.10.4
16541661cis-Calamenen-10-ol0.4---
16561660Selin-11-en-4α-ol0.3---
166216629-Methoxycalamenene0.4---
1668166614-Hydroxy-9-epi-(E)-Caryophyllene 0.8---
19551958Palmitic acid0.2---
21162114Phytol--0.4-
Monoterpene hydrocarbons23.782.319.91.8
Oxygenated monoterpenoids1.11.10.03.4
Sesquiterpene hydrocarbons28.110.057.686.5
Oxygenated sesquiterpenoids46.11.94.51.8
Diterpenoids0.00.00.40.0
Others0.30.014.50.2
Total Identified99.295.396.993.7
RIcalc = Retention index determined with respect to a homologous series of n-alkanes on a HP-5ms column, RIdb = Retention index from the databases [35,36,37], C.c. N.D. = Cryptocarya concinna from Nam Dong, C.c. P.H. = Cryptocarya concinna from Pu Hoat, C.im. = Cryptocarya impressa, C.in. = Cryptocarya infectoria, tr = trace.
Table 4. Chemical compositions of the leaf essential oils of Litsea viridis, Machilus balansae, Machilus grandifolia, Neolitsea ellipsoidea, and Phoebe angustifolia collected in Vietnam.
Table 4. Chemical compositions of the leaf essential oils of Litsea viridis, Machilus balansae, Machilus grandifolia, Neolitsea ellipsoidea, and Phoebe angustifolia collected in Vietnam.
RIcalcRIdbCompoundPercent Composition
L.v.M.b.M.g.N.e.P.a.
921923Tricyclene----0.1
923927α-Thujene----0.1
934933α-Pinene11.14.40.30.226.9
949948α-Fenchene 0.1---0.1
950953Camphene0.70.30.3-6.1
971972Sabinene----0.1
979978β-Pinene8.31.20.40.220.8
9799781-Octen-3-ol--0.1--
9849846-Methylhept-5-en-2-one----0.1
990991Myrcene0.40.4-0.51.5
10081006α-Phellandrene0.1---0.1
10221014α-Terpinene0.2----
10261025p-Cymene0.2-1.0-5.0
10301030Limonene1.80.41.30.43.1
10301031β-Phellandrene --0.1-0.2
103110321,8-Cineole--0.1-0.4
10341034(Z)-β-Ocimene0.10.1-3.70.3
10461046(E)-β-Ocimene0.34.5-87.60.1
10631054γ-Terpinene0.5----
10691069cis-Linalool oxide (furanoid)--0.4--
10861086trans-Linalool oxide (furanoid)--0.4--
10891086Terpinolene0.4---tr
10901093p-Cymenene----0.1
10991101α-Pinene oxide----0.1
11001101Linalool--3.31.30.1
11051100Nonanal0.20.2---
11171113(E)-4,8-Dimethylnona-1,3,7-triene0.40.4---
11191119endo-Fenchol--0.1-0.1
11241124cis-p-Menth-2-en-1-ol--0.1--
11411141trans-Pinocarveol--0.1-0.3
11421142trans-p-Menth-2-en-1-ol--0.1--
11431140(E)-Myroxide---0.2-
11451145trans-Verbenol----0.1
11551156Camphene hydrate--0.1-0.1
11631164Pinocarvone----0.1
11721173Borneol--0.1-0.5
11831184Terpinen-4-ol0.2-0.1-0.1
11861184(3Z)-Hexenyl butanoate---0.3-
11881187Cryptone--0.5--
11961195α-Terpineol --0.3-0.6
12061208Decanal14.4---0.1
12201223trans-Carveol--0.1--
12451246Carvone--0.1--
12751275trans-Ascaridol glycol--0.1--
12831285Bornyl acetate----1.4
12991300Tridecane-0.3---
13301328iso-Dihydro carvyl acetate----0.2
13481335δ-Elemene-1.7---
13581361Neryl acetate----0.1
13601345α-Cubebene-0.1---
13671367Cyclosativene--0.2--
13771378Geranyl acetate--0.1--
13771372iso-Ledene0.3---0.1
13781375α-Copaene0.60.51.7-0.3
13901379Methyl (E)-cinnamate1.5----
13951390β-Elemene1.91.0-0.30.1
14041406α-Gurjunene --0.1-0.2
14121412Dodecanal2.0----
14181416cis-α-Bergamotene0.6---0.2
14241417(E)-Caryophyllene 0.38.50.10.45.3
14251430γ-Maaliene----0.1
14281422α-Gurjunene-0.5---
14341432β-Copaene-0.2---
14361434β-Gurjunene (= Calarene)-0.6--0.1
14381432trans-α-Bergamotene0.60.6--0.8
14421438α-Maaliene-0.3--0.1
14431438Aromadendrene3.04.51.00.31.8
14441445Selina-5,11-diene--0.1-0.2
14451445epi-β-Santalene----0.1
14451437γ-Elemene1.0----
14531453cis-Muurola-3,5-diene0.20.2---
14541454α-Humulene0.91.4--0.6
14551452(E)-β-Farnesene 0.3---0.3
14571459β-Santalene----0.3
14581458allo-Aromadendrene--0.2-0.1
14661467trans-Muurola-3,5-diene-0.5---
14711476γ-Gurjunene----0.1
14711476Selina-4,11-diene--0.4--
14791478γ-Muurolene0.50.80.60.10.1
147914749-epi-(E)-caryophyllene0.80.8---
14821483trans-β-Bergamotene----0.2
14851482ar-Curcumene0.4---tr
14861482α-Amorphene-0.60.1--
14881484γ-Curcumene0.4----
14891491Viridiflorene0.2---1.2
14931487β-Selinene1.20.42.70.60.1
14971497α-Muurolene --0.5-0.1
14981501(Z)-α-Bisabolene----0.1
14981496Germacrene D1.03.1-0.1-
15031497Bicyclogermacrene25.541.5--1.3
15031497α-Selinene --1.30.5-
15051500δ-Selinene0.90.5---
15061508β-Bisabolene ----0.3
15081511(Z)-γ-Bisabolene----0.1
15121511(E,E)-α-Farnesene-1.8---
15171512γ-Cadinene0.30.30.5-0.2
15201519trans-Calamenene--0.8-0.1
15201517β-Curcumene0.5----
15211516δ-Amorphene0.20.3---
15231518δ-Cadinene 0.90.70.20.20.2
15421531(E)-γ-Bisabolene1.0----
15471551Elemicin--1.2--
15501547(E)-α-Bisabolene0.4----
15551555(Z)-Dihydronerolidol --2.4--
15601545Selina-3,7(11)-diene0.4----
15641561(E)-Nerolidol1.18.722.7-3.9
15681568Maaliol----0.1
15691568Palustrol----0.1
15691570(E)-Dihydronerolidol --2.8--
15751575Caryolan-8-ol--0.8--
15771568Germacrene B1.30.8---
15781578Spathulenol0.90.6-0.65.4
15851590Globulol--10.2-1.7
15891587Caryophyllene oxide--3.70.11.5
15961594Viridiflorol0.41.60.7-0.7
16011599Cubeban-11-ol-1.00.6-0.2
16041605Ledol--0.7-0.1
16091613Humulene epoxide II--1.5-0.1
16111609Rosifoliol0.40.40.2-0.2
16151617Guaiol0.8----
162716311-epi-Cubenol--0.8--
16321629iso-Spathulenol----0.4
164216375-Guaien-11-ol-0.5---
16461645α-Muurolol (= δ-Cadinol)--1.5-0.1
16471643τ-Cadinol -0.20.7-0.3
16491645τ-Muurolol -0.11.3-0.1
16551655α-Cadinol0.50.42.9-0.2
16581660Selin-11-en-4α-ol-0.36.7--
16651670trans-Calamenen-10-ol--1.3--
16711665β-Eudesmol0.6----
16741676Mustakone--0.6--
16741670α-Eudesmol0.3----
16831672epi-β-Bisabolol0.2----
1702170110-nor-Calamenen-10-one--0.4--
Monoterpene hydrocarbons24.211.33.392.664.5
Oxygenated monoterpenoids0.20.06.21.54.3
Sesquiterpene hydrocarbons45.672.210.62.514.8
Oxygenated sesquiterpenoids5.213.862.50.715.3
Others18.50.91.30.30.1
Total Identified93.798.284.097.699.1
RIcalc = Retention index determined with respect to a homologous series of n-alkanes on a HP-5ms column, RIdb = Retention index from the databases [35,36,37], L.v. = Litsea viridis, M.b. = Machilus balansae, M.g. = Machilus grandifolia, N.e. = Neolitsea ellisoidea, P.a. = Phoebe angustifolia.
Table 5. Twenty-four-hour larvicidal activities of Lauraceae leaf essential oils from Vietnam.
Table 5. Twenty-four-hour larvicidal activities of Lauraceae leaf essential oils from Vietnam.
Lauraceae speciesLC50LC90χ2p
Aedes aegypti
Beilschmiedia erythrophloian.t.n.t.------
Beilschmiedia robusta24.29 (22.36−26.76)35.22 (31.70−41.19)0.14210.706
Beilschmiedia yunnanensisn.t.n.t.------
Cryptocarya concinna (Nam Dong)32.54 (30.21−35.36)42.94 (39.51−47.91)0.55370.758
Cryptocarya concinna (Pu Hoat)23.01 (20.29−25.83)40.92 (36.50−47.77)9.2980.010
Cryptocarya impressan.t.n.t.------
Cryptocarya infectoria21.43 (18.85−24.29)41.88 (37.16−48.79)13.580.004
Litsea viridisn.t.n.t.------
Machilus balansaen.t.n.t.------
Machilus grandifolia20.23 (18.61−21.93)29.29 (26.85−33.10)0.0010370.999
Neolitsea ellipsoidea6.587 (1.478−9.219)14.00 (10.88−17.71)0.0002241.000
Phoebe angustifolia24.29 (22.36−26.76)35.22 (31.70−41.19)0.14210.931
Aedes albopictus
Beilschmiedia erythrophloian.t.n.t.------
Beilschmiedia robustan.t.n.t.------
Beilschmiedia yunnanensisn.t.n.t.------
Cryptocarya concinna (Nam Dong)34.21 (31.81−37.04)43.97 (40.67−48.59)4.6510.098
Cryptocarya concinna (Pu Hoat)n.t.n.t.------
Cryptocarya impressan.t.n.t.------
Cryptocarya infectoria61.34 (56.76−67.52)81.29 (73.86−93.08)3.0000.223
Litsea viridisn.t.n.t.------
Machilus balansaen.t.n.t.------
Machilus grandifolia16.48 (14.82−18.02)25.00 (22.90−28.16)1.86 × 10−51.000
Neolitsea ellipsoidean.t.n.t.------
Phoebe angustifolia40.18 (36.12−44.88)69.56 (62.08−80.81)31.940.000
Culex quinquefasciatus
Beilschmiedia erythrophloian.t.n.t.------
Beilschmiedia robustan.t.n.t.------
Beilschmiedia yunnanensisn.t.n.t.------
Cryptocarya concinna (Nam Dong)56.28 (52.14−62.30)75.33 (67.95−88.18)0.55370.758
Cryptocarya concinna (Pu Hoat)n.t.n.t.------
Cryptocarya impressan.t.n.t.------
Cryptocarya infectoria10.82 (6.86−14.27)53.37 (41.49−79.45)18.660.000
Litsea viridisn.t.n.t.------
Machilus balansaen.t.n.t.------
Machilus grandifolia13.59 (11.51−15.24)22.48 (20.34−25.94)6.1 × 10−61.000
Neolitsea ellipsoidea7.465 (3.904−9.956)19.84 (16.52−25.64)0.14270.931
Phoebe angustifolia20.70 (19.36−21.96)26.60 (25.10−28.63)0.0001.000
n.t. = not tested due to insufficient essential oil.
Table 6. Forty-eight-hour larvicidal activities of Lauraceae leaf essential oils from Vietnam.
Table 6. Forty-eight-hour larvicidal activities of Lauraceae leaf essential oils from Vietnam.
Lauraceae speciesLC50LC90χ2p
Aedes aegypti
Beilschmiedia erythrophloian.t.n.t.------
Beilschmiedia robusta22.00 (19.81−24.45)35.64 (31.82−41.93)0.63160.427
Beilschmiedia yunnanensisn.t.n.t.------
Cryptocarya concinna (Nam Dong)32.03 (29.72−34.84)42.58 (39.12−47.64)0.18790.910
Cryptocarya concinna (Pu Hoat)16.22 (12.81−18.90)33.46 (29.37−40.63)1.0280.598
Cryptocarya impressan.t.n.t.------
Cryptocarya infectoria18.94 (16.39−21.65)39.12 (34.54−45.97)13.160.004
Litsea viridisn.t.n.t.------
Machilus balansaen.t.n.t.------
Machilus grandifolia16.17 (14.61−17.64)24.03 (22.07−26.93)1.4 × 10−61.000
Neolitsea ellipsoidea4.038 (0.004−7.585)11.12 (2.12−14.74)0.0047980.998
Phoebe angustifolia22.46 (20.59−24.69)33.44 (30.10−39.07)0.062580.969
Aedes albopictus
Beilschmiedia erythrophloian.t.n.t.------
Beilschmiedia robustan.t.n.t.------
Beilschmiedia yunnanensisn.t.n.t.------
Cryptocarya concinna (Nam Dong)30.19 (27.92−33.28)40.26 (36.49−46.42)1.9220.383
Cryptocarya concinna (Pu Hoat)n.t.n.t.------
Cryptocarya impressan.t.n.t.------
Cryptocarya infectoria58.80 (54.40−64.96)78.50 (71.00−90.93)1.2820.527
Litsea viridisn.t.n.t.------
Machilus balansaen.t.n.t.------
Machilus grandifolia15.45 (13.62−17.07)24.47 (22.28−27.88)3.69 × 10−51.000
Neolitsea ellipsoidean.t.n.t.------
Phoebe angustifolia35.28 (31.29−39.67)64.97 (57.71−76.08)23.970.000
Culex quinquefasciatus
Beilschmiedia erythrophloian.t.n.t.------
Beilschmiedia robustan.t.n.t.------
Beilschmiedia yunnanensisn.t.n.t.------
Cryptocarya concinna (Nam Dong)41.89 (37.88−46.65)69.84 (62.41−80.77)5.5500.062
Cryptocarya concinna (Pu Hoat)n.t.n.t.------
Cryptocarya impressan.t.n.t.------
Cryptocarya infectoria0.402 (0.000−2.947)11.39 (0.04−21.64)6.3970.041
Litsea viridisn.t.n.t.------
Machilus balansaen.t.n.t.------
Machilus grandifolia11.56 (9.13−13.14)19.24 (17.25−23.07)0.0001.000
Neolitsea ellipsoidea4.650 (0.061−7.988)11.89 (4.63−15.36)0.0024090.999
Phoebe angustifolia12.21 (8.66−14.46)24.28 (21.55−29.24)0.0024670.999
n.t. = not tested due to insufficient essential oil.
Table 7. Antimicrobial activities of leaf essential oils of Lauraceae from Vietnam.
Table 7. Antimicrobial activities of leaf essential oils of Lauraceae from Vietnam.
SampleGram (+)Gram (−)Yeast
Enterococcus faecalis
ATCC 299212
Staphylococcus aureus
ATCC 25923
Bacillus
cereus
ATCC 14579
Escherichia coli
ATCC 25922
Pseudomonas
aeruginosa ATCC 27853
Salmonella enterica
ATCC 13076
Candida albicans ATCC 10231
MIC (µg/mL)
Beilschmiedia erythrophloia326464n.a.n.a.n.a.128
Beilschmiedia robusta6464n.a.64n.a.n.a.n.a.
Beilschmiedia yunnanensis646464n.a.n.a.n.a.256
Cryptocarya concinna
(Pu Hoat)
3212864n.a.12825664
Cryptocarya impressa646412864n.a.n.a.16
Cryptocarya infectoria12864128n.a.6412864
Litsea viridis166416n.a.n.a.n.a.128
Machilus balansae64128128n.a.n.a.n.a.n.a.
Neolitsea ellipsoidea163216128n.a.n.a.128
Streptomycin25625612832256128n.t.
Nistatinn.t.n.t.n.t.n.t.n.t.n.t.8
Cyclohexamiden.t.n.t.n.t.n.t.n.t.n.t.32
IC50 (µg/mL)
Beilschmiedia erythrophloia10.3420.3434.78n.a.n.a.n.a.56.78
Beilschmiedia robusta20.7618.67n.a.17.88n.a.n.a.n.a.
Beilschmiedia yunnanensis17.9920.3424.67n.a.n.a.n.a.100.34
Cryptocarya concinna
(Pu Hoat)
8.9940.6718.99n.a.48.98145.3425.67
Cryptocarya impressa20.3428.7747.6718.78n.a.n.a.5.89
Cryptocarya infectoria65.3332.6763.56n.a.33.2265.6632.22
Litsea viridis2.4518.997.67n.a.n.a.n.a.56.78
Machilus balansae18.7850.3545.77n.a.n.a.n.a.n.a.
Neolitsea ellipsoidea3.997.985.6757.78n.a.n.a.56.67
n.a. = not active; n.t. = not tested.

Share and Cite

MDPI and ACS Style

Chau, D.T.M.; Chung, N.T.; Huong, L.T.; Hung, N.H.; Ogunwande, I.A.; Dai, D.N.; Setzer, W.N. Chemical Compositions, Mosquito Larvicidal and Antimicrobial Activities of Leaf Essential Oils of Eleven Species of Lauraceae from Vietnam. Plants 2020, 9, 606. https://doi.org/10.3390/plants9050606

AMA Style

Chau DTM, Chung NT, Huong LT, Hung NH, Ogunwande IA, Dai DN, Setzer WN. Chemical Compositions, Mosquito Larvicidal and Antimicrobial Activities of Leaf Essential Oils of Eleven Species of Lauraceae from Vietnam. Plants. 2020; 9(5):606. https://doi.org/10.3390/plants9050606

Chicago/Turabian Style

Chau, Dao Thi Minh, Nguyen Thanh Chung, Le Thi Huong, Nguyen Huy Hung, Isiaka A. Ogunwande, Do Ngoc Dai, and William N. Setzer. 2020. "Chemical Compositions, Mosquito Larvicidal and Antimicrobial Activities of Leaf Essential Oils of Eleven Species of Lauraceae from Vietnam" Plants 9, no. 5: 606. https://doi.org/10.3390/plants9050606

APA Style

Chau, D. T. M., Chung, N. T., Huong, L. T., Hung, N. H., Ogunwande, I. A., Dai, D. N., & Setzer, W. N. (2020). Chemical Compositions, Mosquito Larvicidal and Antimicrobial Activities of Leaf Essential Oils of Eleven Species of Lauraceae from Vietnam. Plants, 9(5), 606. https://doi.org/10.3390/plants9050606

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop