Essential Oil Chemical Variability in Oliveria decumbens (Apiaceae) from Different Regions of Iran and Its Relationship with Environmental Factors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Essential Oil Content
2.2. Volatile Oil Composition
2.3. Cluster and Principal Component Analysis (PCA)
2.4. Correlation between EO Phytochemical Composition and Environmental Factors
3. Materials and Methods
3.1. Collection of Plant and Soil Samples from Natural Habitats
3.2. Phytochemical Evaluation
3.3. Statistical Analyses
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mozaffarian, V. A Dictionary of Iranian Plant Names; Farhang Moaser: Tehran, Iran, 1996. [Google Scholar]
- Sereshti, H.; Izadmanesh, Y.; Samadi, S. Optimized ultrasonic assisted extraction dispersive liquid–liquid microextraction coupled with gas chromatography for determination of essential oil of Oliveria decumbens Vent. J. Chromatogr. A 2011, 1218, 4593–4598. [Google Scholar] [CrossRef] [PubMed]
- Esmaeili, H.; Karami, A.; Maggi, F. Essential oil composition, total phenolic and flavonoids contents, and antioxidant activity of Oliveria decumbens Vent. (Apiaceae) at different phenological stages. J. Clean. Prod. 2018, 198, 91–95. [Google Scholar]
- Amin, G.; Sourmaghi, M.S.; Zahedi, M.; Khanavi, M.; Samadi, N. Essential oil composition and antimicrobial activity of Oliveria decumbens. Fitoterapia 2005, 76, 704–707. [Google Scholar] [CrossRef] [PubMed]
- Saidi, M. Antioxidant activities and chemical composition of essential oils from Satureja khuzestanica, Oliveria decumbens and Thymus daenensis. J. Essen. Oil. Bear Plants. 2014, 17, 513–521. [Google Scholar] [CrossRef]
- Behbahani, B.A.; Yazdi, F.T.; Vasiee, A.; Mortazavi, S.A. Oliveria decumbens essential oil: Chemical compositions and antimicrobial activity against the growth of some clinical and standard strains causing infection. Microb. Pathog. 2018, 114, 449–452. [Google Scholar] [CrossRef]
- Eftekhari, M.; Ardekani, M.R.S.; Amin, M.; Attar, F.; Akbarzadeh, T.; Safavi, M.; Karimpour-razkenari, E.; Amini, M.; Isman, M.; Khanavi, M. Oliveria decumbens, a bioactive essential oil: Chemical composition and biological activities. Iran. J. Pharm. Res. 2019, 18, 412–421. [Google Scholar]
- Jamali, T.; Kavoosi, G.; Ardestani, S.K. In-vitro and in-vivo anti-breast cancer activity of OEO (Oliveria decumbens Vent. essential oil) through promoting the apoptosis and immunomodulatory effects. J. Ethnopharmacol. 2020, 248, 112313. [Google Scholar] [CrossRef]
- Sajjadi, S.E.; Hoseini, S.A. Essential oil constituents of Oliveria decumbens Vent. J. Essent. Oil Res. 2002, 14, 220–221. [Google Scholar] [CrossRef]
- Luna, A.; Labaque, M.C.; Zygadlo, J.A.; Marin, R.H. Effects of thymol and carvacrol feed supplementation on lipid oxidation in broiler meat. Poult. Sci. 2010, 89, 366–370. [Google Scholar] [CrossRef]
- Silveira, S.R.C.; Andrade, L.N.; Sousa, D.P. A review on anti-inflammatory activity of monoterpenes. Molecules 2013, 18, 1227–1254. [Google Scholar]
- Pilau, M.R.; Alves, S.H.; Weiblen, R.; Arenhart, S.; Cueto, A.P.; Lovato, L.T. Antiviral activity of the lippie graveolens (Mexican oregano) essential oil and its main compound carvacrol against human and animal viruses. Br. J. Microbiol. 2011, 42, 1616–1624. [Google Scholar] [CrossRef] [Green Version]
- Tabari, M.A.; Youssefi, M.R.; Maggi, F.; Benelli, G. Toxic and repellent activity of selected monoterpenoids (thymol, carvacrol and linalool) against the castor bean tick, Ixodes ricinus (Acari: Ixodidae). Veteri. Parasitol. 2017, 245, 86–91. [Google Scholar] [CrossRef]
- Youssefi, M.R.; Tabari, M.A.; Esfandiari, A.; Kazemi, S.; Moghadamnia, A.A.; Sut, S.; Maggi, F. Efficacy of two monoterpenoids, carvacrol and thymol, and their combinations against eggs and larvae of the West Nile Vector Culex pipiens. Molecules 2019, 24, 1867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youssefi, M.R.; Moghaddas, E.; Tabari, M.A.; Moghadamnia, A.A.; Hosseini, S.M.; Farash, B.R.H.; Petrelli, R. In vitro and in vivo effectiveness of carvacrol, thymol and linalool against Leishmania infantum. Molecules 2019, 24, 2072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benelli, G.; Pavela, R.; Petrelli, R.; Cappellacci, L.; Bartolucci, F.; Canale, A.; Maggi, F. Origanum syriacum subsp. syriacum: From an ingredient of Lebanese ‘manoushe’to a source of effective and eco-friendly botanical insecticides. Ind. Crop. Prod. 2019, 134, 26–32. [Google Scholar]
- Zakaria Nabti, L.; Sahli, F.; Laouar, H.; Olowo-okere, A.; Wandjou, N.; Guileine, J.; Maggi, F. Chemical composition and antibacterial activity of essential oils from the Algerian endemic Origanum glandulosum Desf. against Multidrug-Resistant Uropathogenic E. coli isolates. Antibiotics 2020, 9, 29. [Google Scholar] [CrossRef] [Green Version]
- Aghbash, B.N.; Pouresmaeil, M.; Dehghan, G.; Nojadeh, M.S.; Mobaiyen, H.; Maggi, F. Chemical composition, antibacterial and radical scavenging activity of essential oils from Satureja macrantha CA Mey. at different growth stages. Foods 2020, 9, 494. [Google Scholar] [CrossRef] [Green Version]
- Duarte, A.R.; Santos, S.C.; Seraphin, J.C.; Ferri, P.H. Influence of spatial, edaphic and genetic factors on phenols and essential oils of Myrciaria cauliflora fruits. J. Brazil Chem. Soc. 2012, 23, 737–746. [Google Scholar] [CrossRef] [Green Version]
- Karami, A.; Khosh-Khui, M.; Salehi, H.; Saharkhiz, M.; Zandi, P. Essential oil chemical diversity of forty-four Rosa damascena accessions from Iran. J. Essen. Oil. Bear. Plants. 2014, 17, 1378–1388. [Google Scholar] [CrossRef]
- Sangwan, N.S.; Farooqi, A.H.A.; Shabih, F.; Sangwan, R.S. Regulation of essential oil production in plants. Plant Growth Regul. 2001, 34, 3–21. [Google Scholar] [CrossRef]
- Esmaeili, H.; Hadian, J.; Rezadoost, H.; Kanani, M.R.; Mirjalili, M.H. Variation of growth characters and rosmarinic acid content of cultivated Satureja rechingeri clones. S. Afr. J. Bot. 2019, 124, 320–328. [Google Scholar] [CrossRef]
- Llorens, L.; Llorens-Molina, J.A.; Agnello, S.; Boira, H. Geographical and environment-related variations of essential oils in isolated populations of Thymus richardii Pers. in the Mediterranean basin. Biochem. Syst. Ecol. 2014, 56, 246–254. [Google Scholar] [CrossRef] [Green Version]
- Khosravinezhad, M.; Talebi, E.; Shivakumar, Z.N.; Nasrollahi, I. Essential oil composition and antimicrobial, antioxidant activities of Oliveria decumbens Vent. Int. J. Herbal Med. 2017, 5, 102–106. [Google Scholar]
- Mirza, M.; Najafpour, N.M. Essential oil of Oliveria decumbens Vent. Iran. J. Med. Arom. Plants. 2003, 15, 23–31. [Google Scholar]
- Mahboubi, M.; Feizabadi, M.M.; Haghi, G.; Hosseini, H. Antimicrobial activity and chemical composition of essential oil from Oliveria decumbens Vent. Iran. J. Med. Arom. Plants. 2008, 24, 55–65. [Google Scholar]
- Amiri, H.; Lari Yazdi, H.; Dosti, B.; Samsamnia, F. Essential oil composition and anatomical study of Oliveria decumbens Vent. Iran. J. Med. Arom. Plants. 2011, 26, 513–520. [Google Scholar]
- Hajimehdipoor, H.; Samadi, N.; Mozaffarian, V.; Rahimifard, N.; Shoeibi, S.; Pirali Hamedani, M. Chemical composition and antimicrobial activity of Oliveria decumbens volatile oil from West of Iran. J. Med. Plants. 2010, 1, 39–44. [Google Scholar]
- Dardioti, A.; Karousou, R.; Lanaras, T.; Kokkini, S. Diversity of Satureja pilosa subsp. origanita essential oils: A new “oregano” from East Mediterranean. Biochem. Syst. Ecol. 2012, 40, 178–183. [Google Scholar]
- Hadian, J.; Esmaeili, H.; Nadjafi, F.; Khadivi-Khub, A. Essential oil characterization of Satureja rechingeri in Iran. Ind. Crop. Prod. 2014, 61, 403–409. [Google Scholar] [CrossRef]
- Delazar, A.; Bahmani, M.; Shoar, H.H.; Tabatabaei-Raisi, A.; Asnaashari, S.; Nahar, L.; Sarker, S.D. Effect of altitude, temperature and soil on essential oil production in Thymus fedtschenkoi flowers in Osko and surrounding areas in Iran. J. Essent. Oil. Bear. Plants. 2011, 14, 23–29. [Google Scholar] [CrossRef]
- Jamshidi, A.M.; Aminzadeh, M.; Azarnivand, H.; Abedi, M. Effect of evaluation for quality and quantity of essential oil Thymus kotschyanus (Damavand–Tar). J. Med. Plants. 2006, 2, 17–22. [Google Scholar]
- Mahdavi, M.; Jouri, M.H.; Mahmoudi, J.; Rezazadeh, F.; Mahzooni-Kachapi, S.S. Investigating the altitude effect on the quantity and quality of the essential oil in Tanacetum polycephalum Sch.-Bip. polycephalum in the Baladeh region of Nour, Iran. Chin. J. Nat. Med. 2013, 11, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Awada, F.; Kobaissi, A.; Chokr, A.; Hamze, K.; Hayar, S.; Mortada, A. Factors affecting quantitative and qualitative variation of thyme (Origanum syriacum L.) essential oil in Lebanon. Adv. Environ. Biol. 2012, 6, 1509–1515. [Google Scholar]
- Dall’Acqua, S.; Peron, G.; Ferrari, S.; Gandin, V.; Bramucci, M.; Quassinti, L.; Maggi, F. Phytochemical investigations and antiproliferative secondary metabolites from Thymus alternans growing in Slovakia. Pharma. Biol. 2017, 55, 1162–1170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novak, J.; Lukas, B.; Franz, C. Temperature influences thymol and carvacrol differentially in Origanum spp. (Lamiaceae). J. Essent. Oil Res. 2010, 22, 412–415. [Google Scholar] [CrossRef]
- Morshedloo, M.R.; Craker, L.E.; Salami, A.; Nazeri, V.; Sang, H.; Maggi, F. Effect of prolonged water stress on essential oil content, compositions and gene expression patterns of mono-and sesquiterpene synthesis in two oregano (Origanum vulgare L.) subspecies. Plant Physiol. Biochem. 2017, 111, 119–128. [Google Scholar] [CrossRef]
- Karimi, A.; Ghasemi Pirbalouti, A.; Malekpoor, F.; Yousefi, M.; Golparvar, A.R. Evaluation of ecotype and chemotype diversity of Thymus daenensis Celak. on Isfahan and Chaharmahal va Bakhtiari provinces. J. Herbal Drug. 2010, 1, 1–10. [Google Scholar]
- Palá-Paúl, J.; Pérez-Alonso, M.; Velasco-Negueruela, A.; Palá-Paúl, R.; Sanz, J.; Conejero, F. Seasonal variation in chemical constituents of Santolina rosmarinifolia L. ssp. rosmarinifolia. Biochem. Syst. Ecol. 2001, 29, 663–672. [Google Scholar] [CrossRef]
- Avci, A.B. Chemical variation on the essential oil of Thymus praecox ssp. scorpilii var. Laniger. Int. J. Agric. Biol. 2011, 13, 607–610. [Google Scholar]
- Sadeghi, H.; Jamalpoor, S.; Shirzadi, M.H. Variability in essential oil of Teucrium polium L. of different latitudinal populations. Ind. Crop. Prod. 2014, 54, 130–134. [Google Scholar] [CrossRef]
- Pharmacopoeia, B. International Edition; HMSO: London, UK, 1993; Volume 483, p. 1808. [Google Scholar]
- Maggi, F.; Papa, F.; Giuliani, C.; Maleci Bini, L.; Venditti, A.; Bianco, A.; Cortese, M. Essential oil chemotypification and secretory structures of the neglected vegetable Smyrnium olusatrum L. (Apiaceae) growing in central Italy. Flav. Fragr. J. 2015, 30, 139–159. [Google Scholar] [CrossRef]
Compound | RI-a | RI-b | Class | KF | DK | AK | NoM | NeM | KL | KK | GF | FF | DF | DeK | BKh | Mean | SD | CV% |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
α-Thujene | 927 | 930 | MH | 0.1 | 0.1 | 0.1 | 0.2 | 0.2 | 0.3 | 0.4 | 0.5 | 0.2 | 0.1 | 0.2 | 0.4 | 0.24 | 0.16 | 64.7 |
α-Pinene | 934 | 939 | MH | 0.1 | 0.1 | 0.3 | 0.1 | 0.1 | 0.2 | 0.2 | 0.2 | 0.3 | 0.3 | 0 | 0.2 | 0.15 | 0.1 | 66.6 |
Camphene | 948 | 954 | MH | 0 | 0 | 0.1 | 0 | 0 | 0.2 | 0 | 0 | 0.4 | 0 | 0 | 0 | 0.03 | 0.06 | 195.4 |
Sabinene | 973 | 975 | MH | 0.1 | tr | tr | tr | 0.1 | 1.9 | 0 | 0 | 0 | 0.2 | 0 | 0 | 0.17 | 0.54 | 311.2 |
β–Pinene | 978 | 979 | MH | 0.9 | 1.1 | 1 | 0.8 | 1 | 0 | 2.5 | 2.3 | 1.3 | 0.4 | 1.5 | 2 | 1.24 | 0.8 | 65.1 |
Myrcene | 990 | 990 | MH | 0 | 0 | 0.3 | 0 | 0 | 0 | 0 | 0 | 1.1 | 0 | 0 | 0 | 0.12 | 0.18 | 248.6 |
β -Myrcene | 991 | 991 | MH | 0.5 | 0.2 | 0 | 0.2 | 0.2 | 0.5 | 0.5 | 0.5 | 0 | 0.2 | 0.2 | 0.5 | 0.27 | 0.21 | 77.7 |
n-Decane | 999 | 1000 | OT | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.2 | 0 | 0 | 0.19 | 0.66 | 346.4 |
α-Phellandrene | 1006 | 1002 | MH | 0.1 | 0 | 0.3 | tr | 0 | tr | tr | 0.1 | 0.2 | 0 | 0 | tr | 0.05 | 0.09 | 180.9 |
α-Terpinene | 1018 | 1017 | MH | 0.3 | 0.2 | 0.6 | tr | 0.2 | 0 | 0.1 | 0.5 | 0.5 | 0 | 0 | 0.5 | 0.25 | 0.24 | 97.2 |
p-Cymene | 1025 | 1024 | MH | 11 | 10.1 | 11 | 9.5 | 9.7 | 12.7 | 18.8 | 18.3 | 21.3 | 1.6 | 10.1 | 17.3 | 12.6 | 5.6 | 43.8 |
Limonene | 1028 | 1029 | MH | 1.2 | 0.6 | 1.3 | 1.2 | 1.1 | 5.5 | 3.6 | 1.8 | 3.1 | 0.1 | 1.3 | 2.5 | 1.8 | 1.4 | 79.1 |
β–Phellandrene | 1030 | 1030 | MH | 1.2 | 0.7 | 1 | 0 | 0 | 0.4 | 0 | 0 | 0.4 | 0 | 0.1 | 0 | 0.32 | 0.44 | 137 |
1,8-Cineole | 1032 | 1031 | MH | 0.1 | 0.1 | 0.1 | 0 | 0 | 0 | 0 | 0 | 0.3 | 0.2 | 0 | 0 | 0.06 | 0.04 | 147.7 |
γ–Terpinene | 1060 | 1059 | MH | 26.8 | 11.3 | 12.9 | 13 | 13.9 | 25.9 | 19.5 | 28.8 | 19.9 | 0.9 | 10.6 | 22.7 | 16.9 | 8.2 | 48.5 |
Terpinolene | 1089 | 1088 | MH | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | tr | 0.4 | 0 | Tr | 0 | 0 | 0.1 | 0.1 | 0.11 | 112.8 |
Linalool | 1099 | 1096 | MO | tr | 0.1 | tr | tr | 0.1 | 0 | 0.1 | 0 | 0.1 | 1.4 | 0 | 0 | 0.15 | 0.4 | 264.3 |
α-Terpineol | 1190 | 1188 | MO | tr | tr | 0.1 | 0 | 0.1 | tr | tr | 0 | 0.1 | 0.2 | 0 | 0.1 | 0.04 | 0.05 | 123.5 |
n-Dodecane | 1198 | 1200 | OT | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.7 | 0 | 0 | 0.05 | 0.2 | 346.4 |
Thymol | 1290 | 1290 | MO | 29.9 | 38.7 | 33.3 | 36.4 | 35.5 | 20.3 | 23.2 | 23.1 | 23.5 | 38.6 | 35.2 | 24.9 | 30.3 | 6.6 | 21.7 |
Carvacrol | 1298 | 1299 | MO | 25.4 | 27.2 | 26.7 | 33.1 | 32.5 | 18.8 | 21.1 | 21.1 | 22.2 | 51.8 | 30.6 | 22.9 | 28.03 | 8.8 | 31.5 |
Myristicin | 1522 | 1518 | PP | 0.8 | 7 | 9.7 | 3.8 | 4.8 | 9.9 | 9.1 | 2.1 | 4.3 | 0.8 | 9.3 | 5.3 | 5.6 | 3.5 | 62.5 |
Elemicin | 1577 | 1557 | PP | 0 | 0 | tr | 0.1 | 0.1 | 2.7 | 0.1 | 0 | 0 | 0 | 0.6 | tr | 0.3 | 0.78 | 258.1 |
Total identified (%) | 99.3 | 99.3 | 99.9 | 98.5 | 99.6 | 97.5 | 99.8 | 99.3 | 99.2 | 98.7 | 99.1 | 99.8 | 99.7 | 0.24 |
Collection Site | Plant Part | EO Content (%) | Thymol (%) | Carvacrol (%) | γ-Terpinene (%) | p-Cymene (%) | Myristicin (%) | Reference |
---|---|---|---|---|---|---|---|---|
Kermanshah | Flower | 0.1 | 28 | 29 | 20.15 | 15.4 | - | [25] |
South of shiraz | Flower | 6 | 47.06 | 23.31 | 18.94 | 8.71 | 0.36 | [4] |
Kazeroun | aerial parts | 3.4 | 26.09 | 0.25 | 11 | 13.3 | - | [26] |
Kuhdasht | aerial parts | 1.8 | 49.9 | - | 23.1 | 10 | 3.2 | [27] |
Lordegan | aerial parts | 2 | 20.46 | 9.54 | 23.32 | 19.40 | 21.68 | [28] |
Kazeroun | aerial parts | 6 | 36.99 | 17.35 | 18.94 | 16.87 | 0.63 | [2] |
Bandar abbas | aerial parts | - | 34.36 | 34.8 | - | 24 | 20.88 | [24] |
Kazeroun | aerial parts | 2.8 | 37.8 | 29.30 | 10.30 | 10.07 | 8.2 | [3] |
Variable | Component | ||
---|---|---|---|
1 | 2 | 3 | |
EO content % | 0.320 | 0.315 | 0.161 |
Thymol | −0.428 | 0.102 | −0.143 |
Carvacrol | −0.402 | −0.022 | 0.325 |
p-Cymene | 0.381 | 0.036 | −0.177 |
γ-Terpinene | 0.406 | −0.059 | −0.134 |
Altitude | −0.289 | −0.305 | −0.316 |
Temperature | 0.141 | 0.533 | 0.171 |
Rain | −0.170 | 0.270 | −0.645 |
Eigenvalue | 4.9566 | 2.2451 | 1.5244 |
% of variance | 49.6 | 22.5 | 15.2 |
Cumulative % | 49.6 | 72 | 87.3 |
No | Accession Name | Collection Site | Longitude (E) | Latitude (N) | Altitude (m) | Temp (°C) | Rain (mm) | pH | EC ds/m | Clay (%) | Silt (%) | Sand (%) | N (%) | K (mg/kg) | P (mg/kg) | OM (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | KF | Kazeroun, Fars | 51°47’30.6” | 29°33’59.04” | 950 | 23.88 | 27.83 | 7.26 | 0.951 | 12.96 | 43.83 | 43.21 | 0.36 | 298 | 53 | 0.94 |
2 | DK | Davan, Kazeroun, Fars | 51°40’41.1” | 29°41’51.7” | 1445 | 24.13 | 28.29 | 7.15 | 0.871 | 20.47 | 35 | 44.53 | 0.15 | 325 | 53 | 0.95 |
3 | AK | Abolhayat, Kazeroun, Fars | 51°47’3.84” | 29°42’0.16” | 1238 | 23.55 | 28.04 | 7.31 | 1.21 | 24.64 | 31 | 44.36 | 0.22 | 365 | 57 | 0.92 |
4 | NoM | Mamasani Nourabad, Fars | 51°33’16.3” | 30°08’21.6” | 1268 | 23.11 | 35.84 | 7.57 | 0.459 | 11.76 | 44.72 | 43.52 | 0.38 | 314 | 75 | 1.02 |
5 | NeM | Neza, Mamasani Nourabad, Fars | 50°53’35.01” | 30°04’28.12” | 771 | 23.81 | 32.21 | 7.11 | 0.821 | 21.76 | 30 | 48.24 | 0.38 | 354 | 50 | 3.23 |
6 | KL | Kahnoyeh, Lar, Fars | 53°24’11.8” | 27°57’59.6” | 758 | 23.75 | 18.99 | 7.59 | 0.856 | 19.76 | 34 | 46.24 | 0.14 | 420 | 52 | 0.98 |
7 | KK | Konar Takhteh, Kazeroun, Fars | 51°25’14.7” | 29°34’41.5” | 649 | 23.56 | 28.17 | 7.32 | 1.05 | 15.76 | 36 | 48.24 | 0.28 | 370 | 66 | 3.03 |
8 | GF | Jahrom, Fars | 53°28’05” | 28°33’41” | 1108 | 23.37 | 21.51 | 7.5 | 0.671 | 23.76 | 20 | 56.24 | 0.13 | 258 | 54 | 0.34 |
9 | FF | Farrashband, Fars | 52°0’51.2” | 29°01’28.3” | 784 | 23.19 | 22.17 | 7.51 | 0.956 | 20.26 | 36 | 43.74 | 0.25 | 416 | 56 | 0.94 |
10 | DF | Darab, Fars | 48°31’49.5” | 28°46’08.7” | 1168 | 23.2 | 18.55 | 7.14 | 0.879 | 22.67 | 34 | 43.33 | 0.18 | 362 | 46 | 0.86 |
11 | DeK | Dehdasht, Kohgiluyeh and Boyer-Ahmad | 50°35’14.5” | 30°51’07.3” | 971 | 24.07 | 34.89 | 7.18 | 0.679 | 23.76 | 32 | 44.24 | 0.11 | 370 | 42 | 0.68 |
12 | BKh | Behbahan, Khozestan | 50°23’36.5” | 30°32’09.2” | 394 | 25.59 | 22.20 | 7.4 | 0.706 | 7.76 | 42 | 50.24 | 0.27 | 210 | 44 | 1.08 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karami, A.; Khoshbakht, T.; Esmaeili, H.; Maggi, F. Essential Oil Chemical Variability in Oliveria decumbens (Apiaceae) from Different Regions of Iran and Its Relationship with Environmental Factors. Plants 2020, 9, 680. https://doi.org/10.3390/plants9060680
Karami A, Khoshbakht T, Esmaeili H, Maggi F. Essential Oil Chemical Variability in Oliveria decumbens (Apiaceae) from Different Regions of Iran and Its Relationship with Environmental Factors. Plants. 2020; 9(6):680. https://doi.org/10.3390/plants9060680
Chicago/Turabian StyleKarami, Akbar, Tahereh Khoshbakht, Hassan Esmaeili, and Filippo Maggi. 2020. "Essential Oil Chemical Variability in Oliveria decumbens (Apiaceae) from Different Regions of Iran and Its Relationship with Environmental Factors" Plants 9, no. 6: 680. https://doi.org/10.3390/plants9060680
APA StyleKarami, A., Khoshbakht, T., Esmaeili, H., & Maggi, F. (2020). Essential Oil Chemical Variability in Oliveria decumbens (Apiaceae) from Different Regions of Iran and Its Relationship with Environmental Factors. Plants, 9(6), 680. https://doi.org/10.3390/plants9060680