Exploitation of Heterosis in Pearl Millet: A Review
Abstract
:1. Introduction
The Evolution of Understanding of Heterosis
2. Molecular Bases of Heterosis
2.1. Transcriptomics View on Heterosis
2.2. Proteomics View on Heterosis
2.3. Epigenomics View on Heterosis
2.4. Genes Associated with Heterosis
3. Unifying Theory for Heterosis
4. Exploitation of Heterosis in Cereals
5. Pearl Millet Introduction and Importance
5.1. Climate Resilience
5.2. Nutritional Aspects
6. History of Hybrid Development in Pearl Millet
6.1. Development of Male Sterile Lines
6.2. Development of CMS System—A1, A2, A4 and A5 Systems
6.3. Work Done in India on Pearl Millet Hybrid Breeding
6.4. Development of Restorers and Maintainers
7. Heterosis and Genomics
8. Development of Heterotic Gene Pools
9. Development of Whole Genome Prediction Models
10. Future Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Coors, C.G.; Pandey, S. (Eds.) The Genetics and Exploitation of Heterosis in Crops; American Society of Agronomy: Madison, WI, USA, 1999; pp. 99–118. [Google Scholar]
- Shull, G.H. What is heterosis? Genetics 1948, 33, 439–446. [Google Scholar]
- Darwin, C.R. The Effects of Cross and Self Fertilization in the Vegetable Kingdom; John Murray: London, UK, 1876; p. 482. [Google Scholar]
- Rajendrakumar, P.; Hariprasanna, K.; Seetharama, N. Prediction of Heterosis in Crop Plants—Status and Prospects. Am. J. Exp. Agric. 2015, 9, 1–16. [Google Scholar] [CrossRef]
- Mendel, G. Experiments in Plant Hybridization; Harvard University Press: Cambridge, MA, USA, 1977. [Google Scholar]
- Zhou, G.; Chen, Y.; Yao, W.; Zhang, C.; Xie, W.; Hua, J.; Xing, Y.; Xiao, J.; Zhang, Q. Genetic composition of yield heterosis in an elite rice hybrid. Proc. Natl. Acad. Sci. USA 2012, 109, 15847–15852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groszmann, M.; Greaves, I.K.; Albertyn, Z.I.; Scofield, G.N.; Peacock, W.J.; Dennis, E.S. Changes in 24-nt siRNA levels in Arabidopsis hybrids suggest an epigenetic contribution to hybrid vigor. Proc. Natl. Acad. Sci. USA 2011, 108, 2617–2622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duvick, D.N.; Coors, J.G.; Pandey, S. Heterosis: Feeding People and Protecting Natural Resources. Soil Surv. Land Use Plan. 2015, 1, 19–29. [Google Scholar]
- Just, T.; Reed, H.S.; Verdoorn, F. A Short History of the Plant Sciences. Am. Midl. Nat. 1943, 30, 810. [Google Scholar] [CrossRef]
- Bruce, A.B. The Mendelian Theory of Heredity and the Augmentation of Vigor. Science 1910, 32, 627–628. [Google Scholar] [CrossRef]
- Jones, D.F. Dominance of Linked Factors as a Means of Accounting for Heterosis. Proc. Natl. Acad. Sci. USA 1917, 3, 310–312. [Google Scholar] [CrossRef] [Green Version]
- East, E.M. Heterosis. Genetics 1936, 21, 375–397. [Google Scholar]
- Chen, Z.J. Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant. Sci. 2010, 15, 57–71. [Google Scholar] [CrossRef] [Green Version]
- Fu, D.; Xiao, M.; Hayward, A.; Fu, Y.; Liu, G.; Jiang, G.; Zhang, H. Utilization of crop heterosis: A review. Euphytica 2014, 197, 161–173. [Google Scholar] [CrossRef]
- Charlesworth, B.; Charlesworth, D. The genetic basis of inbreeding depression. Genet. Res. 1999, 74, 329–340. [Google Scholar] [CrossRef] [PubMed]
- McClintock, B. The significance of responses of the genome to challenge. Science 1984, 226, 792–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ha, M.; Lu, J.; Tian, L.; Ramachandran, V.; Kasschau, K.D.; Chapman, E.J.; Carrington, J.C.; Chen, X.; Wang, X.-J.; Chen, Z.J. Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids. Proc. Natl. Acad. Sci. USA 2009, 106, 17835–17840. [Google Scholar] [CrossRef] [Green Version]
- Lippman, Z.B.; Cohen, O.; Alvarez, J.P.; Abu-Abied, M.; Pekker, I.; Paran, I.; Eshed, Y.; Zamir, D. The Making of a Compound Inflorescence in Tomato and Related Nightshades. PLoS Biol. 2008, 6, e288. [Google Scholar] [CrossRef]
- Velu, G.; Rai, K.N.; Muralidharan, V.; Longvah, T.; Crossa, J. Gene effects and heterosis for grain iron and zinc density in pearl millet (Pennisetum glaucum (L.) R. Br). Euphytica 2011, 180, 251–259. [Google Scholar] [CrossRef]
- Díaz, A.; Zikhali, M.; Turner, A.S.; Isaac, P.; Laurie, D.A. Copy number variation affecting the photoperiod-B1 and vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PLoS ONE 2012, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Zmienko, A.; Samelak-Czajka, A.; Kozlowski, P.; Figlerowicz, M. Copy number polymorphism in plant genomes. Theor. Appl. Genet. 2013, 127, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Saxena, R.K.; Edwards, D.; Varshney, R.K. Structural variations in plant genomes. Brief. Funct. Genom. 2014, 13, 296–307. [Google Scholar] [CrossRef] [Green Version]
- Kaeppler, S. Heterosis: Many Genes, Many Mechanisms—End the Search for an Undiscovered Unifying Theory. Isrn Bot. 2012, 2012, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Swanson-Wagner, R.A.; Jia, Y.; DeCook, R.; Borsuk, L.A.; Nettleton, D.S.; Schnable, P.S. All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbred parents. Proc. Natl. Acad. Sci. USA 2006, 103, 6805–6810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, M.; Rupe, M.A.; Yang, X.; Crasta, O.; Zinselmeier, C.; Smith, O.S.; Bowen, B. Genome-wide transcript analysis of maize hybrids: Allelic additive gene expression and yield heterosis. Theor. Appl. Genet. 2006, 113, 831–845. [Google Scholar] [CrossRef] [PubMed]
- Stupar, R.M.; Springer, N.M. Cis-transcriptional Variation in Maize Inbred Lines B73 and Mo17 Leads to Additive Expression Patterns in the F1Hybrid. Genetics 2006, 173, 2199–2210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, G.; Zhu, X.; Elling, A.A.; Chen, L.; Wang, X.; Guo, L.; Liang, M.; He, H.; Zhang, H.; Chen, F.; et al. Global Epigenetic and Transcriptional Trends among Two Rice Subspecies and Their Reciprocal Hybrids. Plant. Cell 2010, 22, 17–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Ni, Z.; Wu, H.; Nie, X.; Sun, Q. Heterosis in root development and differential gene expression between hybrids and their parental inbreds in wheat (Triticum aestivum L.). Theor. Appl. Genet. 2006, 113, 1283–1294. [Google Scholar] [CrossRef]
- Flagel, L.; Udall, J.A.; Nettleton, D.S.; Wendel, J.F. Duplicate gene expression in allopolyploid Gossypium reveals two temporally distinct phases of expression evolution. BMC Biol. 2008, 6, 16. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.; He, H.; Li, J.; Chen, W.; Wang, X.; Guo, L.; Peng, Z.; He, G.; Zhong, S.; Qi, Y.; et al. Genome-Wide Analysis of DNA Methylation and Gene Expression Changes in Two Arabidopsis Ecotypes and Their Reciprocal Hybrids. Plant. Cell 2012, 24, 875–892. [Google Scholar] [CrossRef] [Green Version]
- Fujimoto, R.; Taylor, J.; Shirasawa, S.; Peacock, W.J.; Dennis, E.S. Heterosis of Arabidopsis hybrids between C24 and Col is associated with increased photosynthesis capacity. Proc. Natl. Acad. Sci. USA 2012, 109, 7109–7114. [Google Scholar] [CrossRef] [Green Version]
- 32. Fujimoto, R; Taylor, J.M; Sasaki, T; Kawanabe, T; Dennis, E.S. Genome wide gene expression in artificially synthesized amphidiploids of Arabidopsis. Plant Mol. Biol. 2011, 77, 419–431. [CrossRef]
- Schnable, P.S.; Springer, N.M. Progress Toward Understanding Heterosis in Crop Plants. Annu. Rev. Plant. Biol. 2013, 64, 71–88. [Google Scholar] [CrossRef]
- Comings, D.E.; MacMurray, J.P. Molecular Heterosis: A Review. Mol. Genet. Metab. 2000, 71, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Baranwal, V.K.; Mikkilineni, V.; Zehr, U.B.; Tyagi, A.K.; Kapoor, S. Heterosis: Emerging ideas about hybrid vigour. J. Exp. Bot. 2012, 63, 6309–6314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stupar, R.M.; Gardiner, J.; Oldre, A.; Haun, W.J.; Chandler, V.L.; Springer, N.M. Gene expression analyses in maize inbreds and hybrids with varying levels of heterosis. BMC Plant. Biol. 2008, 8, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujimoto, R.; Uezono, K.; Ishikura, S.; Osabe, K.; Peacock, W.J.; Dennis, E.S. Recent research on the mechanism of heterosis is important for crop and vegetable breeding systems. Breed. Sci. 2018, 68, 145–158. [Google Scholar] [CrossRef] [Green Version]
- Xing, J.; Sun, Q.; Ni, Z. Proteomic patterns associated with heterosis. Biochim. Biophys. Acta (Bba)—Proteins Proteom. 2016, 1864, 908–915. [Google Scholar] [CrossRef]
- Goff, S.A. A unifying theory for general multigenic heterosis: Energy efficiency, protein metabolism, and implications for molecular breeding. New Phytol. 2010, 189, 923–937. [Google Scholar] [CrossRef]
- Wang, J.; Yu, Q.; Xiong, H.; Wang, J.; Chen, S.; Yang, Z.; Dai, S. Proteomic Insight into the Response of Arabidopsis Chloroplasts to Darkness. PLoS ONE 2016, 11, e0154235. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Chen, Y.; Zhang, G.; Xing, J.; Hu, Z.; Feng, W.; Yao, Y.; Peng, H.; Du, J.; Zhang, Y.; et al. Comparative Proteomic Analysis of Embryos between a Maize Hybrid and Its Parental Lines during Early Stages of Seed Germination. PLoS ONE 2013, 8, e65867. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Ni, Z.; Yao, Y.; Xie, C.; Li, Z.; Wu, H.; Zhang, Y.; Sun, Q. Wheat (Triticum aestivum L.) root proteome and differentially expressed root proteins between hybrid and parents. Proteomics 2007, 7, 3538–3557. [Google Scholar] [CrossRef]
- Zhang, C.; Yin, Y.; Zhang, A.; Lu, Q.; Wen, X.; Zhu, Z.; Zhang, L.; Lu, C. Comparative proteomic study reveals dynamic proteome changes between super hybrid rice LYP9 and its parents at different developmental stages. J. Plant. Physiol. 2012, 169, 387–398. [Google Scholar] [CrossRef]
- Marcon, C.; Schutzenmeister, A.; Schutz, W.; Madlung, J.; Piepho, H.P.; Hochholdinger, F. Non-additive protein accumulation patterns in maize (Zea mays L) hybrids during embryo development. J. Prot. Res. 2010, 9, 6511–6522. [Google Scholar] [CrossRef] [PubMed]
- Parisod, C.; Salmon, A.; Zerjal, T.; Tenaillon, M.; Grandbastien, M.-A.; Ainouche, M. Rapid structural and epigenetic reorganization near transposable elements in hybrid and allopolyploid genomes in Spartina. New Phytol. 2009, 184, 1003–1015. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam, A.M.B.; Colot, V.; Mette, F.; Houben, A. Heterosis and chromatin structure: Does intraspecific hybridization trigger epigenetic changes? Chrom. Res. 2007, 15, 23. [Google Scholar]
- Tanabata, T.; Taguchi-Shiobara, F.; Kishimoto, N.; Chechetka, S.; Shinomura, T.; Habu, Y. A phenomics approach detected differential epigenetic growth regulation between inbreds and their hybrid in Oryza sativa. Mol. Breed. 2010, 26, 729–734. [Google Scholar] [CrossRef]
- Groszmann, M.; Greaves, I.K.; Albert, N.; Fujimoto, R.; Helliwell, C.A.; Dennis, E.S.; Peacock, W.J. Epigenetics in plants—Vernalization and hybrid vigour. Biochim. Biophys. Acta 2011, 1809, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Law, J.A.; Jacobsen, S.E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 2010, 11, 204–220. [Google Scholar] [CrossRef] [PubMed]
- Fernie, A.R.; Chen, B.; Wang, X.; Li, X.; Li, J.; He, H.; Yang, M.; Lu, L.; Qi, Y.; Wang, X.; et al. Conservation and divergence of transcriptomic and epigenomic variation in maize hybrids. Genome Biol. 2013, 14, R57. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.J. Genomic and epigenetic insights into themolecular bases of heterosis. Nat. Rev. Genet. 2013, 14, 471–482. [Google Scholar] [CrossRef]
- Chodavarapu, R.K.; Feng, S.; Ding, B.; Simon, S.A.; Lopez, D.; Jia, Y.; Wang, G.-L.; Meyers, B.C.; Jacobsen, S.E.; Pellegrini, M. Transcriptome and methylome interactions in rice hybrids. Proc. Natl. Acad. Sci. USA 2012, 109, 12040–12045. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Ng, D.W.-K.; Zhang, C.; Comai, L.; Ye, W.; Chen, Z.J. Cis- and trans-regulatory divergence between progenitor species determines gene-expression novelty in Arabidopsis allopolyploids. Nat. Commun. 2012, 3, 950. [Google Scholar] [CrossRef]
- Nakamura, S.; Hosaka, K. DNA methylation in diploid inbred lines of potatoes and its possible role in the regulation of heterosis. Theor. Appl. Genet. 2009, 120, 205–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greaves, I.K.; Groszmann, M.; Ying, H.; Taylor, J.; Peacock, W.J.; Dennis, E.S. Trans chromosomal methylation in Arabidopsis hybrids. Proc. Natl. Acad. Sci. USA 2012, 109, 3570–3575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greaves, I.K.; Eichten, S.R.; Groszmann, M.; Wang, A.; Ying, H.; Peacock, W.J.; Dennis, E.S. Twenty-four–nucleotide siRNAs produce heritable trans-chromosomal methylation in F1 Arabidopsis hybrids. Proc. Natl. Acad. Sci. USA 2016, 113, E6895–E6902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berger, S.L. The complex language of chromatin regulation during transcription. Nature 2007, 447, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Roudier, F.; Teixeira, F.K.; Colot, V. Chromatin indexing in Arabidopsis: An epigenomic tale of tails and more. Trends Genet. 2009, 25, 511–517. [Google Scholar] [CrossRef]
- Jahnke, S.; Sarholz, B.; Thiemann, A.; Kühr, V.; Gutierrez-Marcos, J.F.; Geiger, H.H.; Piepho, H.-P.; Scholten, S. Heterosis in early seed development: A comparative study of F1 embryo and endosperm tissues 6 days after fertilization. Theor. Appl. Genet. 2009, 120, 389–400. [Google Scholar] [CrossRef]
- Chen, X. Small RNAs and their roles in plant development. Annu. Rev. Cell Dev. Biol. 2009, 25, 21–44. [Google Scholar] [CrossRef] [Green Version]
- Xie, F.; He, Z.; Esguerra, M.Q.; Qiu, F.; Ramanathan, V. Determination of heterotic groups for tropical Indica hybrid rice germplasm. Theor. Appl. Genet. 2013, 127, 407–417. [Google Scholar] [CrossRef]
- Ng, D.W.-K.; Lu, J.; Chen, Z.J. Big roles for small RNAs in polyploidy, hybrid vigor, and hybrid incompatibility. Curr. Opin. Plant. Biol. 2012, 15, 154–161. [Google Scholar] [CrossRef]
- Greaves, I.K.; Gonzalez-Bayon, R.; Wang, L.; Zhu, A.; Liu, P.-C.; Groszmann, M.; Peacock, W.J.; Dennis, E.S. Epigenetic Changes in Hybrids. Plant. Physiol. 2015, 168, 1197–1205. [Google Scholar] [CrossRef] [Green Version]
- Groszmann, M.; Greaves, I.K.; Fujimoto, R.; Peacock, W.J.; Dennis, E.S. The role of epigenetics in hybrid vigour. Trends Genet. 2013, 29, 684–690. [Google Scholar] [CrossRef] [PubMed]
- Barber, W.T.; Zhang, W.; Win, H.; Varala, K.; Dorweiler, J.E.; Hudson, M.E.; Moose, S.P. Repeat associated small RNAs vary among parents and following hybridization in maize. Proc. Natl. Acad. Sci. USA 2012, 109, 10444–10449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Busov, V.; Brunner, A.M.; Strauss, S.H. Genes for control of plant stature and form. New Phytol. 2008, 177, 589–607. [Google Scholar] [CrossRef] [PubMed]
- Krizek, B.A. Making bigger plants: Key regulators of final organ size. Curr. Opin. Plant. Biol. 2009, 12, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Xie, Q.; Chua, N.-H. The Arabidopsis Auxin-Inducible Gene ARGOS Controls Lateral Organ Size. Plant. Cell 2003, 15, 1951–1961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, M.; Rupe, M.A.; Dieter, J.A.; Zou, J.; Spielbauer, D.; Duncan, K.E.; Howard, R.J.; Hou, Z.; Simmons, C.R. Cell Number Regulator1 Affects Plant and Organ Size in Maize: Implications for Crop Yield Enhancement and Heterosis. Plant. Cell 2010, 22, 1057–1073. [Google Scholar] [CrossRef] [Green Version]
- Krieger, U.; Lippman, Z.B.; Zamir, D. The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat. Genet. 2010, 42, 459–463. [Google Scholar] [CrossRef]
- Li, A.; Zhou, Y.; Jin, C.; Song, W.; Chen, C.; Wang, C. LaAP2L1, a Heterosis-Associated AP2/EREBP Transcription Factor of Larix, Increases Organ Size and Final Biomass by Affecting Cell Proliferation in Arabidopsis. Plant. Cell Physiol. 2013, 54, 1822–1836. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Huang, Z.; Song, S.; Xin, Y.; Mao, D.; Lv, Q.; Zhou, M.; Tian, D.; Tang, M.; Wu, Q.; et al. Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase. Proc. Natl. Acad. Sci. USA 2016, 113, E6026–E6035. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Zhang, L.; Zhang, J.; Yuan, D.; Xu, C.; Li, X.; Zhou, D.-X.; Wang, S.; Zhang, Q. Heterosis and polymorphisms of gene expression in an elite rice hybrid as revealed by a microarray analysis of 9198 unique ESTs. Plant. Mol. Biol. 2006, 62, 579–591. [Google Scholar] [CrossRef]
- Shapira, R.; Levy, T.; Shaked, S.; Fridman, E.; David, L. Extensive heterosis in growth of yeast hybrids is explained by a combination of genetic models. Heredity 2014, 113, 316–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinmetz, L.M.; Sinha, H.; Richards, D.R.; Spiegelman, J.I.; Oefner, P.J.; McCusker, J.H.; Davis, R.W. Dissecting the architecture of a quantitative trait locus in yeast. Nature 2002, 416, 326–330. [Google Scholar] [CrossRef] [PubMed]
- Fiévet, J.B.; Nidelet, T.; Dillmann, C.; De Vienne, D. Heterosis Is a Systemic Property Emerging From Non-linear Genotype-Phenotype Relationships: Evidence From in Vitro Genetics and Computer Simulations. Front. Genet. 2018, 9, 1–26. [Google Scholar] [CrossRef]
- Cornish-Bowden, A.; Cárdenas, M.L. Contrasting theories of life: Historical context, current theories. In search of an ideal theory. Biosystems 2020, 188, 104063. [Google Scholar] [CrossRef] [PubMed]
- Hauben, M.; Haesendonckx, B.; Standaert, E.; Van Der Kelen, K.; Azmi, A.; Akpo, H.; Van Breusegem, F.; Guisez, Y.; Bots, M.; Lambert, B.; et al. Energy use efficiency is characterized by an epigenetic component that can be directed through artificial selection to increase yield. Proc. Natl. Acad. Sci. USA 2009, 106, 20109–20114. [Google Scholar] [CrossRef] [Green Version]
- Ni, Z.; Kim, E.-D.; Ha, M.; Lackey, E.; Liu, J.; Zhang, Y.; Sun, Q.; Chen, Z.J. Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature 2008, 457, 327–331. [Google Scholar] [CrossRef] [Green Version]
- Meyer, R.C.; Witucka-Wall, H.; Becher, M.; Blacha, A.; Boudichevskaia, A.; Dörmann, P.; Fiehn, O.; Friedel, S.; Von Korff, M.; Lisec, J.; et al. Heterosis manifestation during early Arabidopsis seedling development is characterized by intermediate gene expression and enhanced metabolic activity in the hybrids. Plant J. 2012, 71, 669–683. [Google Scholar] [CrossRef]
- Mulualem, T.; Abate, M. Heterotic Response in Major Cereals and Vegetable Crops. Int. J. Plant. Breed. Genet. 2016, 10, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Shull, G.H. The Composition of a Field of Maize. J. Hered. 1908, 4, 296–301. [Google Scholar] [CrossRef]
- Ramya, A.R.; Ahamed, M.L.; Satyavathi, C.T.; Rathore, A.; Katiyar, P.; Raj, A.G.B.; Kumar, S.; Gupta, R.; Mahendrakar, M.; Yadav, R.; et al. Towards Defining Heterotic Gene Pools in Pearl Millet [Pennisetum glaucum (L.) R. Br.]. Front. Plant Sci. 2018, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- Bollam, S.; Pujarula, V.; Srivastava, R.K.; Gupta, R.K. Genomic Approaches to Enhance Stress Tolerance for Productivity Improvements in Pearl Millet. In Biotechnologies of Crop Improvement, Volume 3; Springer: Berlin/Heidelberg, Germany, 2018; Volume 3, pp. 239–264. [Google Scholar]
- Manning, K.; Pelling, R.; Higham, T.; Schwenniger, J.-L.; Fuller, D. 4500-Year old domesticated pearl millet (Pennisetum glaucum) from the Tilemsi Valley, Mali: New insights into an alternative cereal domestication pathway. J. Archaeol. Sci. 2011, 38, 312–322. [Google Scholar] [CrossRef]
- Hash, T.; Raj, A.B.; Lindup, S.; Sharma, A.; Beniwal, C.; Folkertsma, R.; Mahalakshmi, V.; Zerbini, E.; Blümmel, M. Opportunities for marker-assisted selection (MAS) to improve the feed quality of crop residues in pearl millet and sorghum. Field Crop. Res. 2003, 84, 79–88. [Google Scholar] [CrossRef]
- Basavaraj, S.H.; Singh, V.K.; Singh, A.; Singh, A.; Singh, A.; Anand, D.; Yadav, S.; Ellur, R.K.; Singh, D.; Krisnan, S.G.; et al. Marker-assisted improvement of bacterial blight resistance in parental lines of Pusa RH10, a superfine grain aromatic rice hybrid. Mol. Breed. 2010, 26, 293–305. [Google Scholar] [CrossRef]
- Nambiar, V.S.; Dhaduk, J.J.; Sareen, N.; Shahu, T. and Desai, R. Potential functional implications of pearl millet (Pennisetum glaucum) in health and disease. J. Appl. Pharm. Sci. 2011, 1, 62–67. [Google Scholar]
- Vadez, V.; Hash, T.; Bidinger, F.R.; Kholova, J. Phenotyping pearl millet for adaptation to drought. In Drought Phenotyping in Crops: From Theory to Practice; Monneveux, P., Ribaut, J.M., Eds.; Frontiers E-books; 2014; p. 158. Available online: https://books.google.com.ph/books?hl=zh-TW&lr=&id=zRApAwAAQBAJ&oi=fnd&pg=PP1&dq=Drought+phenotyping+in+crops:+From+theory+to+practice&ots=bCvnXEKxEL&sig=e8dxZUCtlfbRzGX_vXhOOT2T25A&redir_esc=y#v=onepage&q=Drought%20phenotyping%20in%20crops%3A%20From%20theory%20to%20practice&f=false (accessed on 15 June 2020).
- Varshney, R.K.; Shi, C.; Thudi, M.; Mariac, C.; Wallace, J.G.; Qi, P.; Zhang, H.; Zhao, Y.; Wang, X.; Rathore, A.; et al. Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat. Biotechnol. 2017, 35, 969–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.K.; Nepolean, T.; Sankar, S.M.; Rathore, A.; Das, R.R.; Rai, K.N.; Hash, C.T. Patterns of Molecular Diversity in Current and Previously Developed Hybrid Parents of Pearl Millet [Pennisetum glaucum (L.) R. Br.]. Am. J. Plant Sci. 2015, 6, 1697–1712. [Google Scholar] [CrossRef] [Green Version]
- Souci, S.W.; Fachmann, W.; Kraut, H. Food Composition and Nutrition Tables (No. Ed. 6); Medpharm GmbH Scientific Publishers: Stuttgart, Germany, 2000. [Google Scholar]
- Tako, E.; Reed, S.M.; Budiman, J.; Hart, J.; Glahn, R. Higher iron pearl millet (Pennisetum glaucum L.) provides more absorbable iron that is limited by increased polyphenolic content. Nutr. J. 2015, 14, 11. [Google Scholar] [CrossRef] [Green Version]
- Finkelstein, J.L.; Mehta, S.; Udipi, S.A.; Ghugre, P.S.; Luna, S.V.; Murray-Kolb, L.E.; Przybyszewski, E.M.; Haas, J.D. A randomized trial of iron-biofortified pearl millet in school children in India. J. Nutr. 2015, 145, 1576–1581. [Google Scholar] [CrossRef] [Green Version]
- Lardy, G.P.; Adams, D.C.; Klopfenstein, T.J.; Patterson, H.H. Building beef cow nutritional programs with the 1996 NRC beef cattle requirements model. J. Anim. Sci. 2004, 82, 83–92. [Google Scholar]
- Vadez, V.; Hash, T.; Bidinger, F.R.; Kholova, J. II.1.5 Phenotyping pearl millet for adaptation to drought. Front. Physiol. 2012, 3, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.L.; Jensen, L.S.; Hoveland, C.S.; Hanna, W.W. Use of Pearl Millet, Sorghum, and Triticale Grain in Broiler Diets. J. Prod. Agric. 1989, 2, 78–82. [Google Scholar] [CrossRef]
- Burton, G.W. Cytoplasmic Male-Sterility in Pearl Millet (Pennisetum glaucum) (L.) R. Br.1. Agron. J. 1907, 50, 230. [Google Scholar] [CrossRef]
- Serba, D.D.; Perumal, R.; Tesso, T.; Min, D. Status of Global Pearl Millet Breeding Programs and the Way Forward. Crop. Sci. 2017, 57, 2891–2905. [Google Scholar] [CrossRef]
- Yadav, O.P.; Rai, K.N. Genetic Improvement of Pearl Millet in India. Agric. Res. 2013, 2, 275–292. [Google Scholar] [CrossRef] [Green Version]
- Burton, G.W. Pearl millet Tift 23A released. Crops Soils 1965, 19, 17–19. [Google Scholar]
- Burton, G.W.; Athwal, D.S. Two Additional Sources of Cytoplasmic Male-Sterility in Pearl Millet and Their Relationship to Tift 23A 1. Crop. Sci. 1967, 7, 209–211. [Google Scholar] [CrossRef]
- Singh, S.P.; Satyavathi, C.T.; Sankar, S.M. Diversification of male sterility sources with special reference to biotic stresses. In Proceedings of the New paradigms in heterosis breeding: Conventional and molecular approaches, G.B Path university of agriculture and technology, Pantnagar, Uttarakhand, India, 10 September 2014. [Google Scholar]
- Andrews, D.J.; Kumar, K.A. Use of the West African pearl millet landrace Iniadi in cultivar development. Plant Gen. Res. News. 1996, 105, 15–22. [Google Scholar]
- Chen, L.; Liu, Y.-G. Male Sterility and Fertility Restoration in Crops. Annu. Rev. Plant. Biol. 2014, 65, 579–606. [Google Scholar] [CrossRef]
- Chang, Z.; Chen, Z.; Wang, N.; Xie, G.; Lu, J.; Yan, W.; Zhou, J.; Tang, X.; Deng, X.W. Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene. Proc. Natl. Acad. Sci. USA 2016, 113, 14145–14150. [Google Scholar] [CrossRef] [Green Version]
- Rao, M.K.; Devi, K.U. Variation in expression of genic male sterility in pearl millet. J. Hered. 1983, 74, 34–38. [Google Scholar] [CrossRef]
- Yadav, D.; Gupta, S.K.; Kulkarni, V.N.; Rai, K.N.; Behl, R.K. Inheritance of A1system of cytoplasmic-nuclear male sterility in pearl millet [Pennisetum glaucum(L). R. Br.]. Cereal. Res. Commun. 2010, 38, 285–293. [Google Scholar] [CrossRef]
- Gupta, S.; Rai, K.N.; Govindaraj, M.; Rao, A. Genetics of fertility restoration of the A4 cytoplasmic-nuclear male sterility system in pearl millet. Czech. J. Genet. Plant. Breed. 2012, 48, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Li, X.Q.; Jean, M.; Landry, B.S.; Brown, G.G. Restorer genes for different forms of Brassicacytoplasmic Male Sterility Map to a Single Nuclear Locus that Modifies Transcripts of Several Mitochondrial Genes. Proc. Natl. Acad. Sci. USA 1998, 95, 10032–10037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, A.; Mian, M.A.; Rasul, G.; Bashar, K.; Johora, F.-T. Development of Component Lines (CMS, Maintainer and Restorer lines) and their Maintenance Using Diversed Cytosources of Rice. Rice Res. Open Access 2015, 3, 1–5. [Google Scholar] [CrossRef]
- Delorme, V.; Keen, C.L.; Rai, K.N.; Leaver, C.J. Cytoplasmic-Nuclear Male Sterility in Pearl Millet: Comparative RFLP and Transcript Analyses of Isonuclear Male-Sterile Lines. Theor. Appl. Genet. 1997, 95, 961–968. [Google Scholar] [CrossRef] [Green Version]
- Pucher, A.; Hash, C.T.; Wallace, J.G.; Han, S.; Leiser, W.L.; Haussmann, B.I.G. Mapping a male-fertility restoration locus for the A4 cytoplasmic-genic male-sterility system in pearl millet using a genotyping-by-sequencing-based linkage map. BMC Plant. Biol. 2018, 18, 65. [Google Scholar] [CrossRef] [Green Version]
- Burton, G.W. Fertile Sterility Maintainer Mutants in Cytoplasmic Male Sterile Pearl Millet 1. Crop. Sci. 1977, 17, 635–637. [Google Scholar] [CrossRef]
- Burton, G.W. Pearl Millet. In Hybridization of Crop Plants; Wiley: Tifton, GA, USA, 1980; Volume 1, pp. 457–469. [Google Scholar]
- Hanna, W.W.; Wells, H.D.; Burton, G.W.; Monson, W.G. Registration of ÔTifleaf 2Õ pearl millet. Crop Sci. 1988, 28, 1023. [Google Scholar] [CrossRef]
- Hanna, W.W.; Hill, G.M.; Gates, R.N.; Wilson, J.; Burton, G.W. Registration of ‘Tifleaf 3’ Pearl Millet. Crop. Sci. 1997, 37, 1388. [Google Scholar] [CrossRef]
- Gulia, S.K.; Wilson, J.P.; Carter, J.; Singh, B.P. Progress in grain pearl millet research and market development. Issues New Crops New Uses 2007, 1, 196–203. [Google Scholar]
- Hanna, W.; Wilson, J.; Timper, P. Registration of Pearl Millet Parental Lines Tift 99D2A1/B1. Crop sci. 2005, 45, 2671. [Google Scholar] [CrossRef]
- Hanna, W.; Wilson, J.; Timper, P. Registration of Pearl Millet Parental Line Tift 454. Crop. Sci. 2005, 45, 2670–2671. [Google Scholar] [CrossRef]
- Burton, G.W.; Athwal, D.S. Registration of Pearl Millet Inbreds Tift 239DB2 and Tift 239DA2 1 (Reg. No. PL 5, PL 6). Corp Sci. 1969, 9, 398. [Google Scholar]
- Athwal, D.S. Hybrid bajra-1 marks a new era. Ind. Farm. 1965, 15, 6–7. [Google Scholar]
- Aken’Ova, M.E.; Chheda, H.R. A New Source of Cytoplasmic—Genic Male Sterility in Pearl Millet 1. Crop. Sci. 1981, 21, 984–985. [Google Scholar] [CrossRef]
- Appadurai, R.; Raveendran, T.S.; Nagarajan, C. A new male-sterility system in pearl millet. Indian J. Genet. Plant Breed. 1982, 52, 832–834. [Google Scholar]
- Rai, K.N. A new cytoplasmic-nuclear male sterility system in pearl millet. Plant Breed. 1995, 114, 445–447. [Google Scholar] [CrossRef]
- Marchais, L.; Pernes, J. Genetic divergence between wild and cultivated pearl millets (Pennisetum typhoides): 1. Male sterility. Zeitschrift fur Pflanzenzüchtung 1985, 95, 103–111. [Google Scholar]
- Hanna, W.W. Characteristics and Stability of a New Cytoplasmic-Nuclear Male-Sterile Source in Pearl Millet. Crop. Sci. 1989, 29, 1457–1459. [Google Scholar] [CrossRef]
- Govindaraj, M.; Rai, K.N.; Cherian, B.; Pfeiffer, W.H.; Kanatti, A.; Shivade, H. Breeding Biofortified Pearl Millet Varieties and Hybrids to Enhance Millet Markets for Human Nutrition. Agriculture 2019, 9, 106. [Google Scholar] [CrossRef] [Green Version]
- Khairwal, I.S.; Yadav, O.P. Pearl millet (Pennisetum glatlcum) improvement in India-retrospect and prospects. Indian Agric. Sci. 2005, 75, 183–191. [Google Scholar]
- Yadav, O.P.; Khairwal, I.S. Progress towards developing dual-purpose cultivars of pearl millet (Pennisetum glaucum) in India. Indian J. Agric. Sci. 2007, 77, 645–648. [Google Scholar]
- Gill, K.S.; Phul, P.S.; Jindla, L.N. New bajra hybrids resistant to the downy mildew green ear disease. Seed Forms 1975, 1, 3–4. [Google Scholar]
- Pokhriyal, S.C.; Unnikrishnan, K.V.; Singh, B.; Dass, R.; Patil, R.R. Combining ability of downy mildew resistant lines in pearl millet. Indian J. Genet. Plant Breed 1976, 36, 403–419. [Google Scholar]
- Kumar, P.; Sharma, V.K.; Prasad, B.D. Characterization of maintainer and restorer lines for wild abortive cytoplasmic male sterility in indica rice (’Oryza sativa’L.) using pollen fertility and microsatellite (SSR) markers. Aust. J. Crop. Sci. 2015, 9, 384. [Google Scholar]
- Amiribehzadi, A.; Satyavathi, C.T. Fertility restoration studies in different cytoplasms of pearl millet [Pennisetum glaucum (L.) R. BR.]. Ann. Agric. Sci. 2012, 3, 1–12. [Google Scholar]
- Shivhare, R.; Lata, C. Exploration of Genetic and Genomic Resources for Abiotic and Biotic Stress Tolerance in Pearl Millet. Front. Plant Sci. 2017, 7, 1125. [Google Scholar] [CrossRef] [Green Version]
- Lachagari, V.B.R.; Gupta, R.; Lekkala, S.P.; Mahadevan, L.; Kuriakose, B.; Chakravartty, N.; Katta, A.V.S.K.M.; Santhosh, S.; Reddy, A.R.; Thomas, G. Whole Genome Sequencing and Comparative Genomic Analysis Reveal Allelic Variations Unique to a Purple Colored Rice Landrace (Oryza sativa ssp. indica cv. Purpleputtu). Front. Plant Sci. 2019, 10, 513. [Google Scholar] [CrossRef] [Green Version]
- Alaux, M.; International Wheat Genome Sequencing Consortium; Rogers, J.; Letellier, T.; Flores, R.; Alfama, F.; Pommier, C.; Mohellibi, N.; Durand, S.; Kimmel, E.; et al. Linking the International Wheat Genome Sequencing Consortium bread wheat reference genome sequence to wheat genetic and phenomic data. Genome Biol. 2018, 19, 111. [Google Scholar] [CrossRef]
- Varshney, R.K.; Song, C.; Saxena, R.K.; Azam, S.; Yu, S.; Sharpe, A.G.; Cannon, S.; Baek, J.; Rosen, B.D.; Tar’An, B.; et al. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat. Biotechnol. 2013, 31, 240–246. [Google Scholar] [CrossRef] [Green Version]
- Kreplak, J.; Madoui, M.-A.; Cápal, P.; Novak, P.; Labadie, K.; Aubert, G.; Bayer, P.E.; Gali, K.K.; Syme, R.; Main, R.; et al. A reference genome for pea provides insight into legume genome evolution. Nat. Genet. 2019, 51, 1411–1422. [Google Scholar] [CrossRef] [PubMed]
- Varshney, R.K.; Chen, W.; Li, Y.; Bharti, A.K.; Saxena, R.K.; Schlueter, J.; A Donoghue, M.T.; Azam, S.; Fan, G.; Whaley, A.M.; et al. Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat. Biotechnol. 2011, 30, 83–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, E.A.; Brenton, Z.W.; Flinn, B.S.; Grimwood, J.; Shu, S.; Flowers, D.; Luo, F.; Wang, Y.; Xia, P.; Barry, K.; et al. A new reference genome for Sorghum bicolor reveals high levels of sequence similarity between sweet and grain genotypes: Implications for the genetics of sugar metabolism. BMC Genom. 2019, 20, 420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, S.; Pospisil, H.; Scholten, S. Heterosis associated gene expression in maize embryos 6 days after fertilization exhibits additive, dominant and overdominant pattern. Plant. Mol. Biol. 2006, 63, 381–391. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Yan, Y.; Peng, H.; Long, Y.; Zhang, Y.; Jiang, Z.; Liu, P.; Zou, C.; Peng, H.; et al. Transcriptome sequencing analysis of maize embryonic callus during early redifferentiation. BMC Genom. 2019, 20, 159. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Tariq, R.; Ji, Z.; Wei, Z.; Zheng, K.; Mishra, R.; Zhao, K. Transcriptome analysis of a rice cultivar reveals the differentially expressed genes in response to wild and mutant strains of Xanthomonas oryzae pv. oryzae. Sci. Rep. 2019, 9, 3757. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Liu, Z.; Xu, H.; Zhang, X.; Zhao, A.; Liang, F.; Xin, M.; Peng, H.; Yao, Y.; Sun, Q.; et al. Transcriptome analysis reveals potential mechanisms for different grain size between natural and resynthesized allohexaploid wheats with near-identical AABB genomes. BMC Plant. Biol. 2018, 18, 28. [Google Scholar] [CrossRef] [Green Version]
- Jaikishan, I.; Rajendrakumar, P.; Hariprasanna, K.; Bhat, B.V. Gene Expression Analysis in Sorghum Hybrids and Their Parental Lines at Critical Developmental Stages in Relation to Grain Yield Heterosis by Exploiting Heterosis-Related Genes from Major Cereals. Plant Mol. Biol. Rep. 2018, 36, 418–428. [Google Scholar] [CrossRef]
- Zhang, H.; Hall, N.; Goertzen, L.R.; Chen, C.Y.; Peatman, E.; Patel, J.; McElroy, J.S. Transcriptome Analysis Reveals Unique Relationships Among Eleusine Species and Heritage of Eleusine coracana. G3 Genes|Genomes|Genet. 2019, 9, 2029–2036. [Google Scholar] [CrossRef] [Green Version]
- Hiremath, P.J.; Farmer, A.; Cannon, S.B.; Woodward, J.; Kudapa, H.; Tuteja, R.; Kumar, A.; Bhanuprakash, A.; Mulaosmanovic, B.; Gujaria, N.; et al. Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa. Plant Biotechnol. J. 2011, 9, 922–931. [Google Scholar] [CrossRef] [Green Version]
- Dudhate, A.; Shinde, H.; Tsugama, D.; Liu, S.; Takano, T. Transcriptomic analysis reveals the differentially expressed genes and pathways involved in drought tolerance in pearl millet [Pennisetum glaucum (L.) R. Br]. PLoS ONE 2018, 13, e0195908. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.B.; Singh, B.; Singh, R.K. Development of potential dbEST-derived microsatellite markers for genetic evaluation of sugarcane and related cereal grasses. Ind. Crop. Prod. 2019, 128, 38–47. [Google Scholar] [CrossRef]
- Diack, O.; Kane, N.A.; Berthouly-Salazar, C.; Gueye, M.C.; Diop, B.M.; Fofana, A.; Sy, O.; Tall, H.; Zekraoui, L.; Piquet, M.; et al. New Genetic Insights into Pearl Millet Diversity As Revealed by Characterization of Early- and Late-Flowering Landraces from Senegal. Front. Plant. Sci. 2017, 8, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anuradha, N.; Satyavathi, C.T.; Bharadwaj, C.; Nepolean, T.; Sankar, S.M.; Singh, S.P.; Meena, M.C.; Singhal, T.; Srivastava, R.K. Deciphering Genomic Regions for High Grain Iron and Zinc Content Using Association Mapping in Pearl Millet. Front. Plant Sci. 2017, 8, 170. [Google Scholar] [CrossRef] [Green Version]
- Taunk, J.; Rani, A.; Yadav, N.R.; Yadav, D.V.; Yadav, R.C.; Raj, K.; Kumar, R.; Yadav, H.P. Molecular breeding of ameliorating commercial pearl millet hybrid for downy mildew resistance. J. Genet. 2018, 97, 1241–1251. [Google Scholar] [CrossRef]
- Serba, D.D.; Muleta, K.T.; Amand, P.S.; Bernardo, A.; Bai, G.; Perumal, R.; Bashir, E. Genetic Diversity, Population Structure, and Linkage Disequilibrium of Pearl Millet. Plant Genome 2019, 12, 180091. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, R.K.; Singh, R.B.; Pujarula, V.L.; Bollam, S.; Pusuluri, M.; Chellapilla, T.S.; Yadav, R.S.; Gupta, R.K. Genome-Wide Association Studies and Genomic Selection in Pearl Millet: Advances and Prospects. Front. Genet. 2020, 10, 1389. [Google Scholar] [CrossRef]
- Liang, Z.; Gupta, S.K.; Yeh, C.-T.; Zhang, Y.; Ngu, D.W.; Kumar, R.; Patil, H.T.; Mungra, K.; Yadav, D.V.; Rathore, A.; et al. Phenotypic Data from Inbred Parents Can Improve Genomic Prediction in Pearl Millet Hybrids. G3 Genes|Genomes|Genet. 2018, 8, 2513–2522. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.J.; Witcombe, J.R.; Pittaway, T.S.; Nash, M.; Hash, C.T.; Busso, C.S.; Gale, M.D. An RFLP-based genetic map of pearl millet (Pennisetum glaucum). Theor. Appl. Genet. 1994, 89, 481–487. [Google Scholar] [CrossRef]
- Devos, K.M.; Pittaway, T.S.; Busso, C.S.; Gale, M.D.; Witcombe, J.R.; Hash, C.T. Molecular tools for the pearl millet nuclear genome. Int. Sorghum Millets Newslett. 1995, 36, 64–66. [Google Scholar]
- Rajaram, V.; Thirunavukkarasu, N.; Senthilvel, S.; Varshney, R.K.; Vadez, V.; Srivastava, R.K.; Shah, T.; Supriya, A.; Kumar, S.; Kumari, B.R.; et al. Pearl millet [Pennisetum glaucum (L.) R. Br.] consensus linkage map constructed using four RIL mapping populations and newly developed EST-SSRs. BMC Genom. 2013, 14, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allouis, S.; Qi, X.; Lindup, S.; Gale, M.D.; Devos, K.M. Construction of a BAC library of pearl millet, Pennisetum glaucum. Theor. Appl. Genet. 2001, 102, 1200–1205. [Google Scholar] [CrossRef]
- Kumar, S.; Hash, C.T.; Singh, G.; Basava, R.K.; Srivastava, R.K. Identification of polymorphic SSR markers in elite genotypes of pearl millet and diversity analysis. Ecol. Genet. Genom. 2020, 14, 100051. [Google Scholar] [CrossRef]
- Supriya, A.; Senthilvel, S.; Nepolean, T.; Eshwar, K.; Rajaram, V.; Shaw, R.; Hash, C.T.; Kilian, A.; Yadav, R.C.; Narasu, M.L. Development of a molecular linkage map of pearl millet integrating DArT and SSR markers. Theor. Appl. Genet. 2011, 123, 239–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sehgal, D.; Rajaram, V.; Armstead, I.; Vadez, V.; Yadav, Y.P.; Hash, C.T.; Yadav, R. Integration of gene-based markers in a pearl millet genetic map for identification of candidate genes underlying drought tolerance quantitative trait loci. BMC Plant. Biol. 2012, 12, 9. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.B.; Singh, B.; Singh, R.K. Cross-taxon transferability of sugarcane expressed sequence tags derived microsatellite (EST-SSR) markers across the related cereal grasses. J. Plant Biochem. Biotechnol. 2019, 28, 176–188. [Google Scholar] [CrossRef]
- Gurung, D.B.; George, M.L.C.; DeLaCruz, Q.D. Determination of Heterotic Groups in Nepalese Yellow Maize Populations. Nepal J. Sci. Technol. 2009, 10, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Gupta, S.K. Formation of heterotic pools and understanding relationship between molecular divergence and heterosis in pearl millet [Pennisetum glaucum (L.) R. Br.]. PLoS ONE 2019, 14, e0207463. [Google Scholar] [CrossRef] [Green Version]
- Teklewold, A.; Becker, H.C. Comparison of phenotypic and molecular distances to predict heterosis and F1 performance in Ethiopian mustard (Brassica carinata A. Braun). Theor. Appl. Genet. 2005, 112, 752–759. [Google Scholar] [CrossRef]
- 168. Basavaraj, G; Rao, P.P; Bhagavatula, S; Ahmed, W. Availability and utilization of pearl millet in India. SAT eJournal 2010, 8, 1–6.
- Singh, A.M.; Rana, M.K.; Singh, S.; Kumar, S.; Kumar, D.; Arya, L. Assessment of genetic diversity among pearl millet [Pennisetum glaucum (L) R Br] cultivars using SSR markers. Range Manag. Agrofor. 2013, 34, 77–81. [Google Scholar]
- Singh, S.; Gupta, S.K.; Thudi, M.; Das, R.R.; Vemula, A.; Garg, V.; Varshney, R.K.; Rathore, A.; Pahuja, S.K.; Yadav, D.V. Genetic Diversity Patterns and Heterosis Prediction Based on SSRs and SNPs in Hybrid Parents of Pearl Millet. Crop. Sci. 2018, 58, 2379–2390. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, R.; Garg, T.; Malik, E.A.; Vikal, Y.; Sohu, R.S.; Gupta, S.K. Genetic divergence studies in pearl millet (Pennisetum glaucum L. (R.) Br.) inbred lines. Indian J. Genet. Plant. Breed. 2018, 78, 382–385. [Google Scholar] [CrossRef]
- Kapadia, V.N. Estimation of Heterosis for Yield and Its Relevant Traits in Forage Pearl Millet [Pennisetum glaucum LR Br.]. Int. J. Agric. Sci. 2016, 8. [Google Scholar] [CrossRef]
- Satyavathi, C.T.; Tiwari, S.; Bharadwaj, C.; Rao, A.R.; Bhat, J.; Singh, S.P. Genetic diversity analysis in a novel set of restorer lines of pearl millet [Pennisetum glaucum (L.) R. Br] using SSR markers. Vegetos 2013, 26, 72–82. [Google Scholar]
- Sumanth, M.; Sumathi, P.; Vinodhana, N.K.; Sathya, M. Assessment of genetic distance among the inbred lines of pearl millet (Pennisetum glaucum (L.) R. Br.) using SSR markers. Int. J. Biotechnol. Allied Fields 2013, 1, 153–162. [Google Scholar]
- Stich, B.; Haussmann, B.I.; Pasam, R.K.; Bhosale, S.; Hash, C.T.; Melchinger, A.E.; Parzies, H.K. Patterns of molecular and phenotypic diversity in pearl millet [Pennisetum glaucum (L.) R. Br.] from West and Central Africa and their relation to geographical and environmental parameters. BMC Plant. Biol. 2010, 10, 216. [Google Scholar] [CrossRef] [Green Version]
- Spindel, J.; Begum, H.; Akdemir, D.; Virk, P.; Collard, B.; Redona, E.; Atlin, G.; Jannink, J.L.; McCouch, S.R. Genomic selection and association mapping in rice (Oryza sativa): Effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLoS Genet. 2015, 11, e1004982. [Google Scholar]
- Zhong, S.; Dekkers, J.C.M.; Fernando, R.L.; Jannink, J.-L. Factors Affecting Accuracy From Genomic Selection in Populations Derived From Multiple Inbred Lines: A Barley Case Study. Genetics 2009, 182, 355–364. [Google Scholar] [CrossRef] [Green Version]
- Heffner, E.L.; Sorrells, M.E.; Jannink, J. Genomic Selection for Crop Improvement. Crop. Sci. 2009, 49, 1–12. [Google Scholar] [CrossRef]
- Crossa, J.; Campos, G.D.L.; Pérez-Rodríguez, P.; Gianola, D.; Burgueño, J.; Araus, J.L.; Makumbi, D.; Singh, R.P.; Dreisigacker, S.; Yan, J.; et al. Prediction of Genetic Values of Quantitative Traits in Plant Breeding Using Pedigree and Molecular Markers. Genetics 2010, 186, 713–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poland, J.; Endelman, J.B.; Dawson, J.; Rutkoski, J.; Wu, S.; Manès, Y.; Dreisigacker, S.; Crossa, J.; Sanchez-Villeda, H.; Sorrells, M.; et al. Genomic Selection in Wheat Breeding using Genotyping-by-Sequencing. Plant. Genome 2012, 5, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Ornella, L.; Singh, S.; Pérez-Rodríguez, P.; Burgueño, J.; Singh, R.; Tapia, E.; Bhavani, S.; Dreisigacker, S.; Braun, H.-J.; Mathews, K.; et al. Genomic Prediction of Genetic Values for Resistance to Wheat Rusts. Plant. Genome 2012, 5, 136–148. [Google Scholar] [CrossRef] [Green Version]
- Muleta, K.T.; Pressoir, G.; Morris, G.P. Optimizing Genomic Selection for a Sorghum Breeding Program in Haiti: A Simulation Study. G3 Genes|Genomes|Genet. 2018, 9, 391–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meuwissen, T.H.; Hayes, B.J.; E Goddard, M. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157, 1819–1829. [Google Scholar] [PubMed]
- Lorenz, A.J.; Smith, K.; Jannink, J.-L. Potential and Optimization of Genomic Selection for Fusarium Head Blight Resistance in Six-Row Barley. Crop. Sci. 2012, 52, 1609–1621. [Google Scholar] [CrossRef]
- Heffner, E.L.; Lorenz, A.J.; Jannink, J.; Sorrells, M.E. Plant Breeding with Genomic Selection: Gain per Unit Time and Cost. Crop. Sci. 2010, 50, 1681–1690. [Google Scholar] [CrossRef]
- Crossa, J.; Pérez-Rodríguez, P.; Cuevas, J.; Montesinos-Lopez, O.A.; Jarquin, D.; Campos, G.D.L.; Burgueño, J.; González-Camacho, J.M.; Elizalde, S.P.; Beyene, Y.; et al. Genomic Selection in Plant Breeding: Methods, Models, and Perspectives. Trends Plant Sci. 2017, 22, 961–975. [Google Scholar] [CrossRef]
Traits | Seed Parent | Pollen Parent | F1 Hybrid | Heterosis % (Over Better Parent) |
---|---|---|---|---|
Days to flowering | 47 | 47 | 36 | −23.40 |
Days to maturity | 77 | 72 | 69 | −4.12 |
Plant height (cm) | 110 | 100 | 160 | 45.45 |
No. of productive tillers | 3 | 4 | 6 | 50.00 |
Head length (cm) | 17 | 10 | 21 | 23.53 |
Head thickness (mm) | 21 | 14 | 22 | 4.76 |
Grain yield (g/plant) | 15 | 8 | 27 | 80.00 |
Fresh stover yield (g/plant) | 26 | 30 | 97 | 223.22 |
Study | Germplasm | Markers | Reference |
---|---|---|---|
1 | 150 hybrid parental lines (75 B lines and 75 R lines) | 56 polymorphic SSR markers | [166] |
2 | 342 hybrid parental lines (160 B lines and 182 R lines) and world reference germplasm Tift 23D2B1-P1-P5 (control) | EST-SSR (72 of which 69 IPES and 3 ICMP) markers and genomic SSR (6) markers | [83] |
3 | 150 advanced hybrid parental lines (75 B lines and 75 R lines) | 56 highly polymorphic SSR markers and approximately 75,000 SNP markers | [170] |
4 | 95 B and 95 R lines | 40 SSR markers | [171] |
5 | 18 pearl millet genotypes | 28 SSR markers | [172] |
6 | A set of 45 novel R lines | 50 SSR markers | [168] |
7 | 20 pearl millet hybrids and open-pollinated varieties | 60 SSR markers | [169] |
8 | 42 inbred lines (22 B lines and 20 R lines) | 17 SSR markers | [174] |
9 | 145 pearl millet inbreds derived from 122 landraces | 20 SSR markers | [175] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
K. Srivastava, R.; Bollam, S.; Pujarula, V.; Pusuluri, M.; Singh, R.B.; Potupureddi, G.; Gupta, R. Exploitation of Heterosis in Pearl Millet: A Review. Plants 2020, 9, 807. https://doi.org/10.3390/plants9070807
K. Srivastava R, Bollam S, Pujarula V, Pusuluri M, Singh RB, Potupureddi G, Gupta R. Exploitation of Heterosis in Pearl Millet: A Review. Plants. 2020; 9(7):807. https://doi.org/10.3390/plants9070807
Chicago/Turabian StyleK. Srivastava, Rakesh, Srikanth Bollam, Vijayalakshmi Pujarula, Madhu Pusuluri, Ram B. Singh, Gopi Potupureddi, and Rajeev Gupta. 2020. "Exploitation of Heterosis in Pearl Millet: A Review" Plants 9, no. 7: 807. https://doi.org/10.3390/plants9070807
APA StyleK. Srivastava, R., Bollam, S., Pujarula, V., Pusuluri, M., Singh, R. B., Potupureddi, G., & Gupta, R. (2020). Exploitation of Heterosis in Pearl Millet: A Review. Plants, 9(7), 807. https://doi.org/10.3390/plants9070807