Effects of Gibberellin (GA4+7) in Grain Filling, Hormonal Behavior, and Antioxidants in High-Density Maize (Zea mays L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seed and Reagent Source
2.2. Study Site Description
2.3. Experimental Design and Treatments
2.4. Sampling and Measurements
2.4.1. Grain-Filling Process
2.4.2. Endogenous Hormone
2.4.3. Antioxidant Enzyme
2.4.4. Yield and Yield Components
2.5. Statistical Analysis
3. Results
3.1. Effects of GA4+7 on Yield and Yield Component
3.2. Effects of GA4+7 on Grain-Filling Rate
3.3. Effect of GA4+7 on Hormonal Changes in Grains
3.3.1. IAA and ZR Contents in Grains
3.3.2. GA Contents in Grains
3.3.3. ABA Contents in Grains
3.4. Effects of GA4+7 on Antioxidant Enzymes
3.4.1. SOD Activity
3.4.2. POD Activity
3.4.3. CAT Activity
3.4.4. MDA Contents
3.5. Economic Benefit Analysis of Applying GA4+7 in Maize
4. Discussion
4.1. Effects of GA4+7 Smearing Application on Grain Yield
4.2. Relationship of Hormone Changes and Maize Grain Filling
4.3. Effects of GA4+7 Smearing Application on the Antioxidant Enzymes
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Achard, P.; Renou, J.P.; Berthomé, R.; Harberd, N.P.; Genschik, P. Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr. Biol. 2008, 18, 656–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, W.Z.; Liu, H.H.; Liu, P.; Dong, S.T.; Zhao, B.Q.; So, H.B.; Li, G.; Liu, H.D.; Zhang, J.W.; Zhao, B. Morphological and physiological characteristics of corn (Zea mays L.) roots from cultivars with different yield potentials. Eur. J. Agron. 2012, 38, 54–63. [Google Scholar] [CrossRef]
- Kamran, M.; Cui, W.W.; Ahmad, I.; Meng, X.P.; Zhang, X.D.; Su, W.N.; Chen, J.Z.; Ahmad, S.; Fahad, S.; Han, Q.F.; et al. Effect of paclobutrazol, a potential growth regulator on stalk mechanical strength, lignin accumulation and its relation with lodging resistance of maize. Plant Growth Regul. 2017, 84, 317–332. [Google Scholar] [CrossRef]
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision; ESA Working Papers; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012. [Google Scholar]
- Hussain, S.; Peng, S.B.; Fahad, S.; Khaliq, A.; Huang, J.L.; Cui, K.H.; Nie, L.X. Rice management interventions to mitigate greenhouse gas emissions: A review. Environ. Sci. Pollut. Res. Int. 2015, 22, 3342–3360. [Google Scholar] [CrossRef] [PubMed]
- Tokatlidis, I.S.; Has, V.; Melidis, V.; Has, I.; Mylonas, I.; Evgenidis, G.; Copandean, A.; Ninou, E.; Fasoula, V.A. Maize hybrids less dependent on high plant densities improve resource-use efficiency in rainfed and irrigated conditions. Field Crops Res. 2011, 120, 345–351. [Google Scholar] [CrossRef]
- Tokatlidis, I.S.; Koutroubas, S.D. A review of maize hybrids’ dependence on high plant populations and its implications for crop yield stability. Field Crops Res. 2004, 88, 103–114. [Google Scholar] [CrossRef]
- Van Ittersum, M.K.; Cassman, K.G. Yield gap analysis-rationale, methods and applications—Introduction to the special issue. Field Crops Res. 2013, 143, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Feng, P.; Shen, X.H.; Zheng, H.Y.; Zhang, H.; Li, Z.J.; Yang, H.K.; Li, M.S. Effects of planting density on kernel filling and dehydration characteristics for maize hybrids. Chin. Agric. Sci. Bull. 2014, 30, 92–100. [Google Scholar]
- Tollenaar, M.; Aguilera, A. Radiation use efficiency of an old and a new maize hybrid. Agron. J. 1992, 84, 536–541. [Google Scholar] [CrossRef]
- Maddonni, G.A.; Otegui, M.E. Intra-specific competition in maize: Early establishment of hierarchies among plants affects final kernel set. Field Crops Res. 2004, 85, 1–13. [Google Scholar] [CrossRef]
- Yang, J.S.; Gao, H.Y.; Liu, P.; Geng, L.I.; Dong, S.T.; Zhang, J.W.; Wang, J.F. Effects of planting density and row spacing on canopy apparent photosynthesis of high-yield summer corn. Acta Agron. Sin. 2010, 36, 1226–1235. [Google Scholar] [CrossRef]
- Novacek, M.J.; Mason, S.C.; Galusha, T.D.; Yaseen, M. Twin rows minimally impact irrigated maize yield, morphology, and lodging. Agron. J. 2013, 105, 268–276. [Google Scholar] [CrossRef]
- Sangoi, L.; Almeida, M.L.D.; Silva, P.R.F.D.; Argenta, G. Morpho-physilogical bases for greater tolerance of modern maize hybrids to high plant densities. Bragantia 2002, 61, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Song, Z.W.; Chen, T.; Yan, X.G.; Zhu, P.; Ren, J.; Deng, A.X.; Zhang, W.J. Differences in responses of biomass production and grain-filling to planting density between spring maize cultivars. J. Maize Sci. 2015, 23, 57–65. [Google Scholar]
- Echartea, L.; Luque, S.; Andradea, F.H.; Sadrasa, V.O.; Cirilo, A.; Oteguic, M.E.; Vega, C.R.C. Response of maize kernel number to plant density in Argentinean hybrids released between 1965 and 1993. Field Crops Res. 2000, 68, 1–8. [Google Scholar] [CrossRef]
- Vega, C.R.C.; Andrade, F.H.; Sadras, V.O.; Uhart, S.A.; Valentinuz, O.R. Seed number as a function of growth. A comparative study in soybean, sunflower, and maize. Crop Sci. 2001, 41, 748–754. [Google Scholar] [CrossRef] [Green Version]
- Vega, C.R.C.; Andrade, F.H.; Sadras, V.O. Reproductive partitioning and seed set efficiency in soybean, sunflower and maize. Field Crops Res. 2001, 72, 163–175. [Google Scholar] [CrossRef]
- Borrás, L.; Maddonni, G.A.; Otegui, M.E. Leaf senescence in maize hybrids: Plant population, row spacing and kernel set effects. Field Crops Res. 2003, 82, 13–26. [Google Scholar] [CrossRef]
- Takai, T.; Fukuta, Y.; Shiraiwa, T.; Horie, T. Time-related mapping of quantitative trait loci controlling grain-filling in rice (Oryza sativa L.). J. Exp. Bot. 2005, 56, 2107–2118. [Google Scholar] [CrossRef] [Green Version]
- Wang, E.; Wang, J.J.; Zhu, X.D.; Hao, W.; Wang, L.Y.; Li, Q.; Lin, H.X.; Ma, H.; Zhang, G.Q.; He, Z.H. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat. Genet. 2008, 40, 1370–1374. [Google Scholar] [CrossRef]
- Yang, J.C.; Zhang, J.H.; Liu, K.; Wang, Z.Q.; Liu, L.J. Abscisic acid and ethylene interact in wheat grains in response to soil drying during grain filling. New Phytol. 2006, 171, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Morris, R.O.; Blevins, D.G.; Dietrich, J.T.; Durley, R.C.; Gelvin, S.B.; Gray, J.; Hommes, N.G.; Kaminek, M.; Mathews, L.J.; Meilan, R. Cytokinins in plant pathogenic bacteria and developing cereal grains. Funct. Plant Biol. 1993, 20, 621. [Google Scholar] [CrossRef]
- Wu, C.Y.; Trieu, A.; Radhakrishnan, P.; Kwok, S.F.; Harris, S.; Zhang, K.; Wang, J.; Wan, J.; Zhai, H.; Takatsuto, S.; et al. Brassinosteroids regulate grain filling in rice. Plant Cell 2008, 20, 2130–2145. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.W.; Zhang, J.H.; Lam, H.M.; Wang, Z.Q.; Yang, J.C. Hormonal changes are related to the poor grain filling in the inferior spikelets of rice cultivated under non-flooded and mulched condition. Field Crops Res. 2007, 101, 53–61. [Google Scholar] [CrossRef]
- Liu, Y.; Sui, Y.W.; Gu, D.D.; Wen, X.X.; Chen, Y.; Li, C.H.; Liao, Y.C. Effects of conservation tillage on grain filling and hormonal changes in wheat under simulated rainfall conditions. Field Crops Res. 2013, 144, 43–51. [Google Scholar] [CrossRef]
- Ali, S.; Xu, Y.Y.; Ahmad, I.; Jia, Q.M.; Huang, F.Y.; Daur, I.; Wei, T.; Cai, T.; Ren, X.L.; Zhang, P.; et al. The ridge furrow cropping technique indirectly improves seed filling endogenous hormonal changes and winter wheat production under simulated rainfall conditions. Agric. Water Manag. 2018, 204, 138–148. [Google Scholar] [CrossRef]
- Yang, J.C.; Zhang, J.J.; Wang, Z.Q.; Zhu, Q.S.; Wang, W. Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiol. 2001, 127, 315–323. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, I.; Kamran, M.; Ali, S.; Cai, T.; Bilegjargal, B.; Liu, T.L.; Han, Q.F. Seed filling in maize and hormones crosstalk regulated by exogenous application of uniconazole in semiarid regions. Environ. Sci. Pollut. Res. 2018, 25, 33225–33239. [Google Scholar] [CrossRef]
- Hedden, P. Gibberellin metabolism and its regulation. J. Plant Growth Regul. 2001, 20, 317–318. [Google Scholar] [CrossRef]
- Yamaguchi, S. Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol. 2008, 59, 225–251. [Google Scholar] [CrossRef]
- Grennan, A.K. Gibberellin metabolism enzymes in rice. Plant Physiol. 2006, 141, 524–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macmillan, J. Occurrence of gibberellins in vascular plants, fungi, and bacteria. J. Plant Growth Regul. 2001, 20, 387–442. [Google Scholar] [CrossRef] [PubMed]
- Hedden, P.; Thomas, S.G. Gibberellin biosynthesis and its regulation. Biochem. J. 2012, 444, 11–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, C.L.; Ren, N.N.; Wang, J.Y.; Xu, Q.; Chen, X.H.; Qi, X.H. Effects of exogenous application of CPPU, NAA and GA4+7 on parthenocarpy and fruit quality in cucumber (Cucumis sativus L.). Food Chem. 2018, 243, 410–413. [Google Scholar] [CrossRef] [PubMed]
- Niu, Q.F.; Wang, T.; Li, J.Z.; Yang, Q.Q.; Qian, M.J.; Teng, Y.W. Effects of exogenous application of GA4+7 and N-(2-chloro-4-pyridyl)-N′-phenylurea on induced parthenocarpy and fruit quality in Pyrus pyrifolia ‘Cuiguan’. Plant Growth Regul. 2014, 76, 251–258. [Google Scholar] [CrossRef]
- Looney, N.E.; Granger, R.L.; Chu, C.L.; Mcartney, S.J.; Mander, L.N.; Pharis, R.P. Influences of gibberellins A4, A4 + 7, and A4 + iso—A7 on apple fruit quality and tree productivity. I. Effects on fruit russet and tree yield components. J. Hortic. Sci. Biotechnol. 2015, 67, 613–618. [Google Scholar] [CrossRef]
- Shi, P.; Chen, G.C.; Huang, Z.W. Effects of La3+ on the active oxygen-scavenging enzyme activities in cucumber seedling leaves. Russ. J. Plant Physiol. 2005, 52, 294–297. [Google Scholar]
- Wang, Y.C.; Gu, W.R.; Xie, T.L.; Li, L.J.; Sun, Y.; Zhang, H.; Li, J.; Wei, S. Mixed compound of DCPTA and CCC increases maize yield by improving plant morphology and up-regulating photosynthetic capacity and antioxidants. PLoS ONE 2016, 11, e0149404. [Google Scholar] [CrossRef]
- Zhang, L.J.; Zeng, F.L.; Xiao, R. Effect of lanthanum ions (La3+) on the reactive oxygen species scavenging enzymes in wheat leaves. Biol. Trace Elem. Res. 2003, 91, 243–252. [Google Scholar] [CrossRef]
- Liu, Y.; Han, J.; Liu, D.D.; Gu, D.D.; Wang, Y.P.; Liao, Y.C.; Wen, X.X. Effect of plastic film mulching on the grain filling and hormonal changes of maize under different irrigation conditions. PLoS ONE 2015, 10, e0122791. [Google Scholar] [CrossRef]
- Richards, F.J. A flexible growth function for empirical use. J. Exp. Bot. 1959, 10, 290–301. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, T.T.; Wang, Z.Q.; Yang, J.C.; Zhang, J.H. Involvement of cytokinins in the grain filling of rice under alternate wetting and drying irrigation. J. Exp. Bot. 2010, 61, 3719–3733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekmekci, Y.; Terzioglu, S. Effects of oxidative stress induced by paraquat on wild and cultivated wheats. Pestic. Biochem. Physiol. 2005, 83, 69–81. [Google Scholar] [CrossRef]
- Zhao, H.; Dai, T.B.; Jing, Q.; Jiang, D.; Cao, W.X. Leaf senescence and grain filling affected by post-anthesis high temperatures in two different wheat cultivars. Plant Growth Regul. 2007, 51, 149–158. [Google Scholar] [CrossRef]
- Zhang, Z.L. Experimental Guide of Plant Physiology; Higher Education Press: Beijing, China, 2001; pp. 28–32. [Google Scholar]
- Bilyeu, K.D.; Laskey, J.G.; Morris, R.O. Dynamics of expression and distribution of cytokinin oxidase/dehydrogenase in developing maize kernels. Plant Growth Regul. 2003, 39, 195–203. [Google Scholar] [CrossRef]
- Dietrich, J.T.; Kaminek, M.; Blevins, D.G.; Reinbott, T.M.; Morris, R.O. Changes in cytokinins and cytokinin oxidase activity in developing maize kernels and the effects of exogenous cytokinin on kernel development. Plant Physiol. Biochem. 1995, 33, 327–336. [Google Scholar]
- Yang, J.C.; Peng, S.B.; Visperas, R.M.; Sanico, A.L.; Zhu, Q.S.; Gu, S.L. Grain filling pattern and cytokinin content in the grains and roots of rice plants. Plant Growth Regul. 2000, 30, 261–270. [Google Scholar] [CrossRef]
- Yang, J.C.; Zhang, J.H.; Huang, Z.L.; Wang, Z.Q.; Zhu, Q.S.; Liu, L.J. Correlation of cytokinin levels in the endosperms and roots with cell number and cell division activity during endosperm development in rice. Ann. Bot. 2002, 90, 369–377. [Google Scholar] [CrossRef] [Green Version]
- Herzog, H. Relation of source and sink during grain filling period in Wheat and some aspects of its regulation. Physiol. Plant 2006, 56, 155–160. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Zhang, X.; Chen, C.J.; Zhou, M.G.; Wang, H.C. Effects of fungicides JSi-12099-19, azoxystrobin, tebuconazloe, and carbendazim on the physiological and biochemical indices and grain yield of winter wheat. Pestic. Biochem. Physiol. 2010, 98, 151–157. [Google Scholar] [CrossRef]
- Ishimaru, K.; Hirotsu, N.; Madoka, Y.; Murakami, N.; Hara, N.; Onodera, H.; Kashiwagi, T.; Ujiie, K.; Shimizu, B.; Onishi, A.; et al. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat. Genet. 2013, 45, 707–711. [Google Scholar] [CrossRef]
- Fu, J.; Xu, Y.J.; Chen, L.; Yuan, L.M.; Wang, Z.Q.; Yang, J.C. Changes in enzyme activities involved in starch synthesis and hormone concentrations in superior and inferior spikelets and their association with grain filling of super rice. Rice Sci. 2013, 20, 120–128. [Google Scholar] [CrossRef]
- Davies, P.J. The plant hormones: Their Nature, occurrence, and functions. In Plant Hormones; Davies, P.J., Ed.; Springer: Dordrecht, The Netherlands, 2010; pp. 1–15. [Google Scholar]
- Seth, A.K.; Wareing, P.F. Hormone-directed transport of metabolites and its possible role in plant Senescence. J. Exp. Bot. 1967, 18, 65–77. [Google Scholar] [CrossRef]
- Singh, G.; Gerung, S.B. Hormonal role in the problem of sterility in Oryza sativa. Plant Physiol. Biochem. 1982, 9, 22–23. [Google Scholar]
- Yang, J.C.; Wang, Z.Q.; Zhu, Q.S.; Su, B.L. Regulation of ABA and GA to the grain filling of rice. Acta Agron. Sin. 1999, 25, 341–348. [Google Scholar]
- White, C.N.; Proebsting, W.M.; Hedden, P.; Rivin, C.J. Gibberellins and Seed Development in Maize. I. Evidence That Gibberellin/Abscisic Acid Balance Governs Germination versus Maturation Pathways. Plant Physiol. 2000, 122, 1081–1088. [Google Scholar] [CrossRef] [Green Version]
- White, C.N.; Rivin, C.J. Gibberellins and Seed Development in Maize. II. Gibberellin Synthesis Inhibition Enhances Abscisic Acid Signaling in Cultured Embryos. Plant Physiol. 2000, 122, 1089–1097. [Google Scholar] [CrossRef] [Green Version]
- Pang, C.H.; Wang, B.S. Oxidative stress and salt tolerance in plants. In Progress in Botany; Lüttge, U., Beyschlag, W., Murata, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 69, pp. 231–245. [Google Scholar]
- Zhang, L.J.; Yang, T.W.; Gao, Y.S.; Liu, Y.B.; Zhang, T.G.; Xu, S.J.; Zeng, F.L.; An, L.Z. Effect of lanthanum ions (La3+) on ferritin-regulated antioxidant process under PEG stress. Biol. Trace Elem. Res. 2006, 113, 193–208. [Google Scholar] [CrossRef]
- Li, Y.T. Plant Physiology; Higher Education Press: Beijing, China, 2002. [Google Scholar]
Soil Layer (cm) | SOM (g kg−1) | STN (g kg−1) | STP (g kg−1) | STK (g kg−1) | SAN (mg kg−1) | SAP (mg kg−1) | SAK (mg kg−1) |
---|---|---|---|---|---|---|---|
0–20 | 10.91 | 1.41 | 0.82 | 5.86 | 58.41 | 26.18 | 95.98 |
20–40 | 8.85 | 0.99 | 0.73 | 4.99 | 46.30 | 19.85 | 68.24 |
Year | Treatments | Kernel Number (No.ear−1) | Ear Length (cm) | Ear Diameter (mm) | Thousand Kernel Weight (g) | Grain Yield (t hm−2) |
---|---|---|---|---|---|---|
2015 | Sh-0 | 477 ± 7ab | 14.1 ± 0.4b | 45.6 ± 0.4b | 284.1 ± 7.1b | 8.3 ± 0.3c |
Sh-10 | 474 ± 18ab | 14.9 ± 0.2a | 46.2 ± 1.1b | 311.9 ± 9.6a | 9.5 ± 0.3b | |
Sh-60 | 501 ± 12a | 14.9 ± 0.1a | 49.7 ± 0.7a | 319.1 ± 4.1a | 10.5 ± 0.7a | |
Sh-120 | 470 ± 17b | 14 ± 0.5b | 45.3 ± 0.9b | 294.2 ± 8.8b | 8.9 ± 0.5bc | |
Si-0 | 475.1 ± 2.3b | 14.1 ± 0.5b | 45.8 ± 0.1b | 285.1 ± 6.2c | 8.2 ± 0.22c | |
Si-10 | 462.1 ± 25.2b | 14.1 ± 0.3b | 45.3 ± 0.7b | 297 ± 2b | 8.16 ± 0.49c | |
Si-60 | 523 ± 20.1a | 15.4 ± 0.5a | 47.1 ± 0.5a | 311.7 ± 6.5a | 10.88 ± 0.14a | |
Si-120 | 489.2 ± 19.9ab | 14.6 ± 0.3ab | 46.8 ± 0.3a | 305.4 ± 6.2ab | 9.89 ± 0.17b | |
2016 | Sh-0 | 512 ± 2c | 15.4 ± 0.2c | 46.8 ± 1b | 294.1 ± 4.6c | 8.8 ± 0.5c |
Sh-10 | 582 ± 4b | 16.3 ± 0.2b | 49.5 ± 0.5a | 315.3 ± 3.9b | 9.9 ± 0.5b | |
Sh-60 | 602 ± 10a | 17.3 ± 0.7a | 50.2 ± 0.4a | 329.8 ± 6.5a | 11.1 ± 0.1a | |
Sh-120 | 577 ± 3b | 16.7 ± 0.5ab | 48 ± 0.9b | 312 ± 3.9b | 9.1 ± 0.4bc | |
Si-0 | 506 ± 6c | 15.2 ± 0.5b | 46.9 ± 0.5c | 290.8 ± 7.5b | 8.7 ± 0.03d | |
Si-10 | 581 ± 6b | 17.2 ± 0.1a | 49.7 ± 0.2a | 310.3 ± 7.1a | 9.6 ± 0.02c | |
Si-60 | 613 ± 9a | 17.5 ± 0.4a | 49.3 ± 0.6a | 320.9 ± 3.9a | 11.74 ± 0.76a | |
Si-120 | 581 ± 7b | 17.4 ± 0.2a | 48.3 ± 0.5b | 307.7 ± 9.6a | 10.5 ± 0.05b |
Treatments | Wmax (mg) | Gmax (mg Grain−1 d−1) | Gmean (mg Grain−1 d−1) |
---|---|---|---|
Sh-0 | 288.3 ± 4.51c | 8.48 ± 0.37c | 5.47 ± 0.08c |
Sh-10 | 309.0 ± 3.81b | 9.16 ± 0.31b | 5.89 ± 0.15b |
Sh-60 | 323.2 ± 2.2a | 10.88 ± 0.47a | 6.74 ± 0.05a |
Sh-120 | 305.8 ± 3.86b | 9.09 ± 0.12bc | 5.75 ± 0.11b |
Si-0 | 285.3 ± 2.18c | 8.55 ± 0.54b | 5.48 ± 0.24c |
Si-10 | 300.1 ± 2.09b | 8.98 ± 0.14ab | 5.61 ± 0.03bc |
Si-60 | 318.5 ± 3.09a | 9.74 ± 0.58a | 6.43 ± 0.06a |
Si-120 | 303.6 ± 5.64b | 9.18 ± 0.35ab | 5.93 ± 0.37b |
Years | Treatments | CC (Yuan hm−2) | FC (Yuan hm−2) | LC (Yuan hm−2) | GC (Yuan hm−2) | TC (Yuan hm−2) | YI (Yuan hm−2) | NI (Yuan hm−2) |
---|---|---|---|---|---|---|---|---|
2015 | Sh-0 | 1325 | 2603 | 370 | 0 | 4298 | 16,740 | 12,442b |
Sh-10 | 126 | 4424 | 17,100 | 12,676b | ||||
Sh-60 | 756 | 5054 | 18,900 | 13,846a | ||||
Sh-120 | 1512 | 5810 | 16,020 | 10,210c | ||||
Si-0 | 1325 | 2603 | 370 | 0 | 4298 | 14,760 | 10,462c | |
Si-10 | 126 | 4424 | 14,690 | 10,266c | ||||
Si-60 | 756 | 5054 | 19,580 | 14,526a | ||||
Si-120 | 1512 | 5810 | 17,800 | 11,990b | ||||
2016 | Sh-0 | 1325 | 2603 | 370 | 0 | 4298 | 16,720 | 12,422c |
Sh-10 | 126 | 4424 | 18,810 | 14,386b | ||||
Sh-60 | 756 | 5054 | 21,090 | 16,036a | ||||
Sh-120 | 1512 | 5810 | 17,290 | 11,480d | ||||
Si-0 | 1325 | 2603 | 370 | 0 | 4298 | 16530 | 12,232c | |
Si-10 | 126 | 4424 | 18,240 | 13,816b | ||||
Si-60 | 756 | 5054 | 22,306 | 17,252a | ||||
Si-120 | 1512 | 5810 | 19,950 | 14,140b |
Wmax | Gmax | Gmean | |
---|---|---|---|
IAA | 0.889 ** | 0.866 ** | 0.832 * |
ZR | 0.988 ** | 0.914 ** | 0.908 ** |
GA3 | 0.859 ** | 0.841 ** | 0.897 ** |
ABA | 0.481 | 0.376 | 0.495 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, W.; Song, Q.; Zuo, B.; Han, Q.; Jia, Z. Effects of Gibberellin (GA4+7) in Grain Filling, Hormonal Behavior, and Antioxidants in High-Density Maize (Zea mays L.). Plants 2020, 9, 978. https://doi.org/10.3390/plants9080978
Cui W, Song Q, Zuo B, Han Q, Jia Z. Effects of Gibberellin (GA4+7) in Grain Filling, Hormonal Behavior, and Antioxidants in High-Density Maize (Zea mays L.). Plants. 2020; 9(8):978. https://doi.org/10.3390/plants9080978
Chicago/Turabian StyleCui, Wenwen, Quanhao Song, Bingyun Zuo, Qingfang Han, and Zhikuan Jia. 2020. "Effects of Gibberellin (GA4+7) in Grain Filling, Hormonal Behavior, and Antioxidants in High-Density Maize (Zea mays L.)" Plants 9, no. 8: 978. https://doi.org/10.3390/plants9080978
APA StyleCui, W., Song, Q., Zuo, B., Han, Q., & Jia, Z. (2020). Effects of Gibberellin (GA4+7) in Grain Filling, Hormonal Behavior, and Antioxidants in High-Density Maize (Zea mays L.). Plants, 9(8), 978. https://doi.org/10.3390/plants9080978