Arsenic Uptake by Two Tolerant Grass Species: Holcus lanatus and Agrostis capillaris Growing in Soils Contaminated by Historical Mining
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Areas and Field Study
2.2. Pot Experiment
2.3. Data Interpretation and Statistics
3. Results and Discussion
3.1. Soil Properties
3.2. Plant Growth in Greenhouse
3.3. Arsenic Uptake from Soils in the Greenhouse
3.4. Arsenic Uptake in the Field
3.5. Comparison of Greenhouse and Field Data
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wenzel, W.W. Arsenic. In Heavy Metals in Soils. Trace Metals and Metalloids in Soils and Their Bioavailability, 3rd ed.; Alloway, B.J., Ed.; Springer: Berlin, Germany, 2013; pp. 241–282. [Google Scholar]
- Mandal, B.K.; Suzuki, K.T. Arsenic round the world: A review. Talanta 2002, 58, 201–235. [Google Scholar] [CrossRef]
- Porter, E.K.; Peterson, P.J. Arsenic accumulation by plants on mine waste (United Kingdom). Sci. Total Environ. 1975, 4, 365–371. [Google Scholar] [CrossRef]
- Craw, D.; Rufaut, C.; Haffert, L.; Paterson, L. Plant colonization and arsenic uptake on high arsenic mine wastes, New Zealand. Water Air Soil Pollut. 2007, 179, 351–364. [Google Scholar] [CrossRef]
- Álvarez-Ayuso, E.; Otones, V.; Murciego, A.; García-Sánchez, A.; Santa Regina, I. Antimony, arsenic and lead distribution in soils and plants of an agricultural area impacted by former mining activities. Sci. Total Environ. 2012, 439, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Simmler, M.; Suess, E.; Christl, I.; Kotsev, T.; Kretzschmar, R. Soil-to-plant transfer of arsenic and phosphorus along a contamination gradient in the mining-impacted Ogosta River floodplain. Sci. Total Environ. 2016, 572, 742–754. [Google Scholar] [CrossRef] [Green Version]
- Drahota, P.; Knappová, M.; Kindlová, H.; Culka, A.; Majzlan, J.; Mihaljevič, M.; Jehlička, J. Mobility and attenuation of arsenic in sulfide-rich mining wastes from the Czech Republic. Sci. Total Environ. 2016, 557, 192–203. [Google Scholar] [CrossRef]
- Krysiak, A.; Karczewska, A. Arsenic extractability in soils in the areas of former arsenic mining and smelting, SW Poland. Sci Total Environ. 2007, 379, 190–200. [Google Scholar] [CrossRef]
- Karczewska, A.; Bogda, A.; Krysiak, A. Arsenic in soils in the areas of former arsenic mining and processing in Lower Silesia, SW Poland. In Arsenic in Soil and Groundwater Environments; Bhattacharya, P., Mukherjee, A.B., Loeppert, R.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 9, pp. 411–440. [Google Scholar]
- Karczewska, A.; Krysiak, A.; Mokrzycka, D.; Jezierski, P.; Szopka, K. Arsenic distribution in soils of former As mining area and processing. Pol. J. Environ. Stud. 2013, 22, 175–181. [Google Scholar]
- Dradrach, A.; Szopka, K.; Karczewska, A. Ecotoxicity of soil pore water on historical arsenic mine dumps—The effects of forest litter. Ecotox. Environ. Saf. 2019, 181, 202–213. [Google Scholar] [CrossRef]
- Dradrach, A.; Karczewska, A.; Szopka, K.; Lewińska, K. Accumulation of arsenic by plants growing in the sites strongly contaminated by historical mining in the Sudetes region of Poland. IJERPH 2020, 17, 3342. [Google Scholar] [CrossRef]
- EU Directive 2002/32/EC of May, 7th, 2002 of the European Parliament and of the Council on Undesirable Substances in Animal Feed. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32002L0032 (accessed on 7 June 2020).
- Porter, E.; Peterson, P.J. Arsenic tolerance in grasses growing on mine waste. Environ. Pollut. 1977, 14, 255–265. [Google Scholar] [CrossRef]
- Meharg, A.A.; Hartley-Whitaker, J. Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol. 2002, 154, 29–43. [Google Scholar] [CrossRef] [Green Version]
- Meharg, A.A.; Macnair, M.R. The mechanisms of arsenate tolerance in Deschampsia cespitosa (L.) Beauv. and Agrostis capillaris L. adaptation of the arsenate uptake system. New Phytol. 1991, 119, 291–297. [Google Scholar] [CrossRef]
- Meharg, A.A.; Macnair, M.R. Suppression of the high affinity phosphate uptake system: A mechanism of arsenate tolerance in Holcus lanatus L. J. Exp. Bot. 1992, 43, 519–524. [Google Scholar] [CrossRef]
- Cai, Y.; Ma, L.Q. Metal tolerance, accumulation, and detoxification in plants with emphasis on arsenic in terrestrial plants. In Biogeochemistry of Environmentally Important Trace Elements; Cai, Y., Braids, O.C., Eds.; ACS Symposium Series, Chapter 8; American Chemical Society: Washington, DC, USA, 2003; Volume 835, pp. 95–114. [Google Scholar] [CrossRef]
- Zhao, F.J.; Ma, J.F.; Meharg, A.A.; McGrath, S.P. Arsenic uptake and metabolism in plants. New Phytol. 2009, 181, 777–794. [Google Scholar] [CrossRef]
- Moreno-Jiménez, E.; Esteban, E.; Peñalosa, J.M. The fate of arsenic in soil-plant systems. In Reviews of Environmental Contamination and Toxicology; Whitacre, D., Ed.; Springer: New York, NY, USA, 2012; Volume 215, pp. 1–37. [Google Scholar] [CrossRef] [Green Version]
- Benson, L.M.; Porter, E.K.; Peterson, P.J. Arsenic accumulation, tolerance and genotypic variation in plants on arsenical mine wastes in SW England. J. Plant. Nutr. 1981, 3, 655–666. [Google Scholar] [CrossRef]
- Casado, M.; Anawar, H.M.; Garcia-Sanchez, A.; Santa Regina, I. Antimony and arsenic uptake by plants in an abandoned mining area. Comm Soil Science Plant Anal. 2007, 38, 1255–1275. [Google Scholar] [CrossRef]
- Kralova, L.; Száková, J.; Kubík, Š.; Tlustoš, P.; Balík, J. The variability of arsenic and other risk element uptake by individual plant species growing on contaminated soil. Soil Sed. Contamin. 2010, 19, 617–634. [Google Scholar] [CrossRef]
- Milton, A.; Johnson, M. Arsenic in the food chains of a revegetated metalliferous mine tailings pond. Chemosphere 1999, 39, 765–779. [Google Scholar] [CrossRef]
- Alvarenga, P.; De Varennes, A.; Cunha-Queda, A.C. The effect of compost treatments and a plant cover with Agrostis tenuis on the immobilization/mobilization of trace elements in a mine-contaminated soil. Int. J. Phytorem. 2014, 16, 138–154. [Google Scholar] [CrossRef]
- Quaghebeur, M.; Rengel, Z. The distribution of arsenate and arsenite in shoots and roots of Holcus lanatus is influenced by arsenic tolerance and arsenate and phosphate supply. Plant Physiol. 2003, 132, 1600–1609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raab, A.; Williams, P.N.; Meharg, A.; Feldmann, J. Uptake and translocation of inorganic and methylated arsenic species by plants. Environ. Chem. 2007, 4, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Bleeker, P.M.; Assunção, A.G.; Teiga, P.M.; de Koe, T.; Verkleij, J.A. Revegetation of the acidic, As contaminated Jales mine spoil tips using a combination of spoil amendments and tolerant grasses. Sci. Total Environ. 2002, 300, 1–13. [Google Scholar] [CrossRef]
- Bleeker, P.M.; Teiga, P.M.; Santos, M.H.; De Koe, T.; Verkleij, J.A.C. Ameliorating effects of industrial sugar residue on the Jales gold mine spoil (NE Portugal) using Holcus lanatus and Phaseolus vulgaris as indicators. Environ. Pollut. 2003, 125, 237–244. [Google Scholar] [CrossRef]
- Boshoff, M.; De Jonge, M.; Scheifler, R.; Bervoets, L. Predicting As, Cd, Cu, Pb and Zn levels in grasses (Agrostis sp. and Poa sp.) and stinging nettle (Urtica dioica) applying soil–plant transfer models. Sci. Total Environ. 2014, 493, 862–871. [Google Scholar] [CrossRef] [PubMed]
- Ames, R.B. Turfgrass Response to Levels of Arsenate and Phosphate in the Soil. Master’s Thesis, University of Rhode Island, Kingston, RI, USA, 1963. [Google Scholar]
- Austruy, A.; Wanat, N.; Moussard, C.; Vernay, P.; Joussein, E.; Ledoigt, G.; Hitmi, A. Physiological impacts of soil pollution and arsenic uptake in three plant species: Agrostis capillaris, Solanum nigrum and Vicia faba. Ecotox. Environ. Saf. 2013, 90, 28–34. [Google Scholar] [CrossRef]
- Bolan, N.S.; Mahimairaja, S.; Kunhikrishnan, A.; Choppala, G. Phosphorus–arsenic interactions in variable-charge soils in relation to arsenic mobility and bioavailability. Sci. Total Environ. 2013, 463, 1154–1162. [Google Scholar] [CrossRef]
- Lewińska, K.; Karczewska, A. Influence of soil properties and phosphate addition on arsenic uptake from polluted soils by velvetgrass (Holcus lanatus). Int. J. Phytorem. 2013, 15, 91–104. [Google Scholar] [CrossRef]
- Anawar, H.M.; Rengel, Z.; Damon, P.; Tibbett, M. Arsenic-phosphorus interactions in the soil-plant-microbe system: Dynamics of uptake, suppression and toxicity to plants. Environ. Pollut. 2018, 233, 1003–1012. [Google Scholar] [CrossRef]
- Moreno-Jiménez, E.; Clemente, R.; Mestrot, A.; Meharg, A.A. Arsenic and selenium mobilisation from organic matter treated mine spoil with and without inorganic fertilization. Environ. Pollut. 2013, 173, 238–244. [Google Scholar] [CrossRef]
- Arco-Lázaro, E.; Agudo, I.; Clemente, R.; Bernal, M. Arsenic (V) adsorption-desorption in agricultural and mine soils: Effects of organic matter addition and phosphate competition. Environ. Pollut. 2016, 216, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Karczewska, A.; Gałka, B.; Dradrach, A.; Lewińska, K.; Mołczan, M.; Cuske, M.; Gersztyn, L.; Litak, K. Solubility of arsenic and its uptake by ryegrass from polluted soils amended with organic matter. J. Geochem. Explor. 2017, 182, 193–200. [Google Scholar] [CrossRef]
- Xie, H.; Han, D.; Cheng, J.; Zhou, P.; Wang, W. Fate and risk assessment of arsenic compounds in soil amended with poultry litter under aerobic and anaerobic circumstances. Water Air Soil Pollut. 2015, 226, 1–11. [Google Scholar] [CrossRef]
- Meharg, A.A.; Naylor, J.; Macnair, M.R. Phosphorus nutrition of arsenate-tolerant and nontolerant phenotypes of velvetgrass. J. Environ. Qual. 1994, 23, 234–238. [Google Scholar] [CrossRef]
- Vangronsveld, J.; Herzig, R.; Weyens, N.; Boulet, J.; Adriaensen, K.; Ruttens, A.; van der Lelie, D. Phytoremediation of contaminated soils and groundwater: Lessons from the field. Environ. Sci. Pollut. Res. 2009, 16, 765–794. [Google Scholar] [CrossRef] [PubMed]
- Dittmar, J.; Voegelin, A.; Maurer, F.; Roberts, L.C.; Hug, S.J.; Saha, G.C.; Kretzschmar, R. Arsenic in soil and irrigation water affects arsenic uptake by rice: Complementary insights from field and pot studies. Environ. Sci. Technol. 2010, 44, 8842–8848. [Google Scholar] [CrossRef]
- Dradrach, A.; Karczewska, A.; Szopka, K. Arsenic accumulation by red fescue (Festuca rubra) growing in mine affected soils—Findings from the field and greenhouse studies. Chemosphere 2020, 126045. [Google Scholar] [CrossRef]
- Egnér, H.; Riehm, H.; Domingo, W.R. Untersuchungen uber die chemische Bodenanalyse als Grundlage fur die beurteilung des nährstoffzustandes der böden. ii. chemische extraktionsmethoden zur phosphor- und kaliumbestimmung. K. Lantbr. Ann. 1960, 26, 199–215. [Google Scholar]
- Lou, L.Q.; Ye, Z.H.; Lin, A.J.; Wong, M.H. Interaction of arsenic and phosphate on their uptake and accumulation in Chinese brake fern. Int. J. Phytorem. 2010, 12, 487–502. [Google Scholar] [CrossRef]
- Christophersen, H.M.; Smith, S.E.; Pope, S.; Smith, F.A. No evidence for competition between arsenate and phosphate for uptake from soil by medic or barley. Environ. Int. 2009, 35, 485–490. [Google Scholar] [CrossRef]
- Karczewska, A.; Lewińska, K.; Gałka, B. Arsenic extractability and uptake by velvetgrass Holcus lanatus and ryegrass Lolium perenne in variously treated soils polluted by tailing spills. J. Hazard Mater. 2013, 262, 1014–1021. [Google Scholar] [CrossRef] [PubMed]
- Macnair, M.R. The genetics of metal tolerance in vascular plants. New Phytol. 1993, 124, 541–559. [Google Scholar] [CrossRef]
As in Soil mg/kg | As in Roots mg/kg | As in Shoots mg/kg | Origin of Data | Details on the Site or Experiment | Analytical Method | Source |
---|---|---|---|---|---|---|
Holcus lanatus | ||||||
n.d. 1 | n.d. | Mean 350 Max. 560 | Field (mine sites) | Rural area, high As sites, Tolvaddon Downs | Acid digestion (HNO3 + H2SO4), arsine generation, colorimetric determination Ag–DDC2 | [3] |
128–130 (0–10 cm) | n.d. | 0.73 | Field (mine sites) | El Cabaco mine soils | Digestion in aqua regia + HF, AAS | [22] |
595–2568 (0–25 cm) | n.d. | 0.61 | Field | A medieval silver mine—Kutna Hora (Czech Republic) | Dry ashing, HG–AAS | [23] |
Up to 17,000; water soluble As: 0.2–2.1 mg/kg | n.d. | 28–158 | Field plot experiment: (54 × 20 m) | Various kinds of treatment for remediation | Digestion in mixed acid (HNO3:HCl, 4:1), HG–AAS | [28] |
1325 (0–30 cm) | 2030–2980 | 130–166 | Pot experiment | Soil of old mine Jales amended with industrial sugar residue | Digestion in mixed acid (HNO3:HCl, 4:1), HG–AAS | [29] |
2.2–22 | 2.0–6.7 | Hydroponic study, 24 h exposure | 1 mg/L As in various forms | Digestion in concentr. HNO3 + H2O2 | [27] | |
10–300 | 5–30 | Hydroponic study, 30 d exposure | 0.1 mg/L As | HNO3 digestion, Hydride generation, ICP–MS | [26] | |
40–1400 | 20–45 | 0.6 mg/L As | ||||
300–7400 | 140–950 | 8 mg/L As | ||||
Agrostis capillaris | ||||||
n.d | n.d. | Mean: 1480, Max 3470 | Field, mine sites (high arsenic sites) | Mine wastes sites (Gawton Utd. Mine) | Digestion in HNO3 + H2SO4, arsine generation, colorimetric determination Ag–DDC | [3] |
n.d. | n.d. | Mean: 1.4, Max. 3 | Field (low arsenic sites) | Westfield College, London, reference | ||
8510–26,530 Median: 12,800 | n.d. | 3–3470; Median: 430 | Field, mine-affected sites | Various mine-affected sites and reference soil | Digestion in HNO3 + H2SO4, arsine generation, colorimetric determination Ag–DDC | [14] |
n.d. | Mean: 675 (90–2080) | Field | Wheal Josiah | |||
n.d. | Mean: 1070 (90–3470) | Gawton Utd. Mine | ||||
20 (?) | n.d. | 1.4–3.0 | Westfield College, London, reference | |||
630 | nd | 1.1 | Field, tailings | A surface of tailings pond | Digestion in mixed acid (HNO3, H2SO4 + HCIO4), HG–AAS | [24] |
8–300 | n.d. | 0.2–8 | Field 3 | Various industrial sites in Flanders | Acid digestion, high-resolution ICP–MS | [30] |
395–480 (0–2.5 cm) 76 (2.5–5.1 cm) | 34–58 | 33–35 | Pot and field plot experiments | Application of calcium arsenate as herbicide | Official method of the Assoc. of Agricultural Chemists. USA, 1955 | [31] |
3160 +/− 800 | 1040 | 280 | 1-month culture greenhouse experiment | Polluted soil, industrial wasteland of Auzon | Digestion in concentr. HNO3 + H2O2, GF–AAS | [32] |
234 +/− 46 | 34 | 5 | Naturally enriched soil (hydrothermal deposits) | |||
203 | n.d. | 1.4 | Semi-field experiment (large pots) | Mine-contaminated soil, Aljustrel mining area | Dry ashing, FAA/GF–AAS | [25] |
15 (T 4), 26 (N 4) | n.d. | Hydroponic, 40 min. exposure | 3.7 mg/L; tolerant plants from Devon Great Console mine | Digestion in concentrated HNO3, HG–AAS | [16] | |
105 (T) 570 (N) | 35 (T) 75 (N) | Hydroponic, 7 d exposure | 5 mg/L | Digestion in HNO3+H2SO4, arsine generation, colorimetric determination Ag–DDC | [14] | |
1305–2880 (T) 1960–3320 (N) | 230–565 (T) 240–875 (N) | 20–50 mg/L | ||||
6950–7700 (T) 4930–8890 (N) | 445–795 (T) 555–1625 (N) | 100–150 mg/L |
Soil/Site | Description | Clay, % | Textural Group 1 | Corg, % | pH | As Total mg/kg | As (NH4NO3) mg/kg | P Available mg/kg |
---|---|---|---|---|---|---|---|---|
1 | Złoty Stok, hay meadow flooded with tailings | 6 | SL | 2.45 | 6.38 | 5020 | 7.32 | 242 |
2 | Złoty Stok, plateau built of tailings, dry meadow | 3 | LS | 0.25 | 7.40 | 8000 | 12.9 | 194 |
3 | Złoty Stok, hay meadow flooded with tailings | 1 | LS | 1.89 | 5.68 | 856 | 3.86 | 38 |
4 | Radzimowice, hay meadow, the vicinity of former mines and smelter | 8 | L | 1.97 | 4.18 | 394 | 0.18 | 18 |
5 | Złoty Stok, reclaimed mine dump, “Orchid Dump” | 3 | LS | 0.13 | 5.50 | 19,600 | 3.61 | 109 |
All fields (n = 33) | Min | 0 | x | 0.20 | 2.88 | 72 | 0.02 | 6 |
Median | 3 | x | 1.70 | 4.84 | 3030 | 1.22 | 41 | |
Max | 9 | x | 17.2 | 7.60 | 98,400 | 58.5 | 290 |
Soil/Site | As in Shoots mg/kg | As in Roots mg/kg | TF | BAF Shoots | BAF Roots | BCF Shoots | BCF Roots | P (g/kg) Shoots | P (g/kg) Roots | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Median | (Max) | Median | (Max) | Median | ||||||||
Holcus lanatus | ||||||||||||
1 | 158 | (323) | 1340 | (1730) | 0.09 | 0.03 | 0.27 | 20 | 183 | 1.63 | 1.34 | |
2 | 300 | (561) | 2990 | (3110) | 0.14 | 0.04 | 0.37 | 13 | 179 | 3.25 | 2.98 | |
3 | 47 | (65) | 1710 | (2260) | 0.02 | 0.05 | 2.00 | 5 | 210 | 3.14 | 1.17 | |
4 | 18 | (23) | 201 | (760) | 0.08 | 0.05 | 0.51 | 32 | 372 | 3.65 | 2.25 | |
All fields (n = 26) | Min | 1.2 | 2.8 | 0.01 | <0.001 | 0.001 | 0.3 | 3 | 0.41 | 0.52 | ||
Median | 7.1 | 52 | 0.10 | 0.004 | 0.012 | 7 | 41 | 0.69 | 0.72 | |||
Max | 62 | 5570 | 1.70 | 0.06 | 0.63 | 206 | 2900 | 1.25 | 1.39 | |||
Agrostis capillaris | ||||||||||||
1 | 103 | (113) | 1940 | (2340) | 0.05 | 0.02 | 0.39 | 6 | 132 | 3.91 | 1.33 | |
2 | 180 | (1030) | 5250 | (6100) | 0.06 | 0.02 | 0.66 | 8 | 330 | 4.52 | 3.38 | |
3 | 53 | (124) | 980 | (1330) | 0.06 | 0.06 | 1.15 | 8 | 142 | 3.56 | 1.51 | |
4 | 24 | (107) | 202 | (237) | 0.15 | 0.06 | 0.51 | 39 | 215 | 5.35 | 2.11 | |
All fields (n = 29) | Min | 0.5 | 2.3 | <0.01 | <0.001 | <0.001 | <0.1 | 1 | 0.48 | 0.59 | ||
Median | 5.2 | 44 | 0.16 | 0.002 | 0.05 | 5 | 69 | 1.02 | 1.19 | |||
Max | 115 | 9400 | 10.3 | 0.12 | 0.89 | 74 | 8290 | 1.48 | 1.73 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dradrach, A.; Karczewska, A.; Szopka, K. Arsenic Uptake by Two Tolerant Grass Species: Holcus lanatus and Agrostis capillaris Growing in Soils Contaminated by Historical Mining. Plants 2020, 9, 980. https://doi.org/10.3390/plants9080980
Dradrach A, Karczewska A, Szopka K. Arsenic Uptake by Two Tolerant Grass Species: Holcus lanatus and Agrostis capillaris Growing in Soils Contaminated by Historical Mining. Plants. 2020; 9(8):980. https://doi.org/10.3390/plants9080980
Chicago/Turabian StyleDradrach, Agnieszka, Anna Karczewska, and Katarzyna Szopka. 2020. "Arsenic Uptake by Two Tolerant Grass Species: Holcus lanatus and Agrostis capillaris Growing in Soils Contaminated by Historical Mining" Plants 9, no. 8: 980. https://doi.org/10.3390/plants9080980
APA StyleDradrach, A., Karczewska, A., & Szopka, K. (2020). Arsenic Uptake by Two Tolerant Grass Species: Holcus lanatus and Agrostis capillaris Growing in Soils Contaminated by Historical Mining. Plants, 9(8), 980. https://doi.org/10.3390/plants9080980