Global Trends in Phytohormone Research: Google Trends Analysis Revealed African Countries Have Higher Demand for Phytohormone Information
Abstract
:1. Introduction
2. Results
2.1. Country-Wide Search Trends
2.1.1. India Leads in Abscisic Acid, and Zambia Leads in Auxin Search Queries
2.1.2. China Leads in Brassinosteroids and Kenya Leads in Cytokinin Search Queries
2.1.3. South Korea Leads in Ethylene and Kenya Leads in Gibberellin Search Queries
2.1.4. South Korea Leads in Jasmonic Acid and Philippines Leads in Salicylic Acid Search Queries
2.1.5. China Lead in Strigolactones Search Queries
2.2. Year-Wise and Total Number of Search Queries
2.2.1. Salicylic Acid Queries Are Increasing
2.2.2. Only India and The United States of America Had Search Queries for All of the Examined Phytohormones
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Data Collection
5.2. Data Normalization
5.3. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Consent for Publication
Availability of Data
References
- Mohanta, T.K.; Mohanta, N.; Bae, H. Identification and Expression Analysis of PIN-Like (PILS) Gene Family of Rice Treated with Auxin and Cytokinin. Genes 2015, 6, 622–640. [Google Scholar] [CrossRef] [PubMed]
- Mohanta, T.K.; Bashir, T.; Hashem, A.; Abd_Allah, E.F.; Khan, A.L.; Al-Harrasi, A.S. Early Events in Plant Abiotic Stress Signaling: Interplay Between Calcium, Reactive Oxygen Species and Phytohormones. J. Plant Growth Regul. 2018, 37, 1033–1049. [Google Scholar] [CrossRef]
- Gururani, M.A.; Mohanta, T.K.; Bae, H. Current Understanding of the Interplay between Phytohormones and Photosynthesis under Environmental Stress. Int. J. Mol. Sci. 2015, 16, 19055–19085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, P.; Mohanta, T.K.; Sinha, A.K. Unraveling the intricate nexus of molecular mechanisms governing rice root development: OsMPK3/6 and auxin-cytokinin interplay. PLoS ONE 2015, 10, e0123620. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, P.; Rasool, S.; Gul, A.; Sheikh, S.A.; Akram, N.A.; Ashraf, M.; Kazi, A.M.; Gucel, S. Jasmonates: Multifunctional Roles in Stress Tolerance. Front. Plant Sci. 2016, 7, 813. [Google Scholar] [CrossRef] [Green Version]
- Davies, P.J. The Plant Hormones: Their Nature, Occurrence, and Functions. In Plant Hormones; Davies, P.J., Ed.; Springer: Dordrecht, The Netherlands, 2010; pp. 1–15. ISBN 978-1-4020-2686-7. [Google Scholar]
- Miransari, M.; Smith, D.L. Plant hormones and seed germination. Environ. Exp. Bot. 2014, 99, 110–121. [Google Scholar] [CrossRef]
- Tanimoto, E. Regulation of Root Growth by Plant Hormones—Roles for Auxin and Gibberellin. Crit. Rev. Plant Sci. 2005, 24, 249–265. [Google Scholar] [CrossRef]
- Voesenek, L.A.C.J.; Rijnders, J.H.G.M.; Peeters, A.J.M.; van de Steeg, H.M.; de Kroon, H. Plant Hormones Regulate Fast Shoot Elongation under Water: From Genes to Communities. Ecology 2004, 85, 16–27. [Google Scholar] [CrossRef] [Green Version]
- Bar, M.; Ori, N. Leaf development and morphogenesis. Development 2014, 141, 4219–4230. [Google Scholar] [CrossRef] [Green Version]
- Emery, R.J.N.; Longnecker, N.E.; Atkins, C.A. Branch development in Lupinus angustifolius L. II. Relationship with endogenous ABA, IAA and cytokinins in axillary and main stem buds. J. Exp. Bot. 1998, 49, 555–562. [Google Scholar] [CrossRef] [Green Version]
- Metzger, J.D. Plant Hormones: Physiology, Biochemistry and Molecular Biology. In Hormones and Reproductive Development; Davies, P.J., Ed.; Springer: Dordrecht, The Netherlands, 1995; pp. 617–648. ISBN 978-94-011-0473-9. [Google Scholar]
- Nitsch, J.P. Plant Hormones in the Development of Fruits. Q. Rev. Biol. 1952, 27, 33–57. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Khurana, A.; Sharma, A.K. Role of plant hormones and their interplay in development and ripening of fleshy fruits. J. Exp. Bot. 2014, 65, 4561–4575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, M.K.; Dwivedi, U.N. Delayed ripening of banana fruit by salicylic acid. Plant Sci. 2000, 158, 87–96. [Google Scholar] [CrossRef]
- Vidya Vardhini, B.; Rao, S.S.R. Acceleration of ripening of tomato pericarp discs by brassinosteroids. Phytochemistry 2002, 61, 843–847. [Google Scholar] [CrossRef]
- Joo, J.H.; Bae, Y.S.; Lee, J.S. Role of Auxin-Induced Reactive Oxygen Species in Root Gravitropism. Plant Physiol. 2001, 126, 1055–1060. [Google Scholar] [CrossRef] [Green Version]
- Marchant, A.; Kargul, J.; May, S.T.; Muller, P.; Delbarre, A.; Perrot-Rechenmann, C.; Bennett, M.J. AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. EMBO J. 1999, 18, 2066–2073. [Google Scholar] [CrossRef]
- Moore, I. Gravitropism: Lateral Thinking in Auxin Transport. Curr. Biol. 2002, 12, R452–R454. [Google Scholar] [CrossRef] [Green Version]
- Band, L.R.; Wells, D.M.; Larrieu, A.; Sun, J.; Middleton, A.M.; French, A.P.; Brunoud, G.; Sato, E.M.; Wilson, M.H.; Péret, B.; et al. Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism. Proc. Natl. Acad. Sci. USA 2012, 109, 4668–4673. [Google Scholar] [CrossRef] [Green Version]
- Tarakhovskaya, E.R.; Maslov, Y.I.; Shishova, M.F. Phytohormones in algae. Russ. J. Plant Physiol. 2007, 54, 163–170. [Google Scholar] [CrossRef]
- Kiseleva, A.A.; Tarachovskaya, E.R.; Shishova, M.F. Biosynthesis of phytohormones in algae. Russ. J. Plant Physiol. 2012, 59, 595–610. [Google Scholar] [CrossRef]
- Araújo, F.F.; Henning, A.A.; Hungria, M. Phytohormones and Antibiotics Produced by Bacillus subtilis and their Effects on Seed Pathogenic Fungi and on Soybean Root Development. World J. Microbiol. Biotechnol. 2005, 21, 1639–1645. [Google Scholar] [CrossRef]
- Tudzynski, B. Fungal Phytohormones in Pathogenic and Mutualistic Associations. In Plant Relationships; Carroll, G.C., Tudzynski, P., Eds.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 167–184. ISBN 978-3-662-10370-8. [Google Scholar]
- Tudzynski, B.; Sharon, A. Biosynthesis, Biological Role and Application of Fungal Phytohormones. In Industrial Applications; Osiewacz, H.D., Ed.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 183–211. ISBN 978-3-662-10378-4. [Google Scholar]
- Costacurta, A.; Vanderleyden, J. Synthesis of Phytohormones by Plant-Associated Bacteria. Crit. Rev. Microbiol. 1995, 21, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Tsavkelova, E.A.; Cherdyntseva, T.A.; Netrusov, A.I. Auxin production by bacteria associated with orchid roots. Microbiology 2005, 74, 46–53. [Google Scholar] [CrossRef]
- Shahid, M.; Khan, M.S. Cellular destruction, phytohormones and growth modulating enzymes production by Bacillus subtilis strain BC8 impacted by fungicides. Pestic. Biochem. Physiol. 2018, 149, 8–19. [Google Scholar] [CrossRef]
- Kalra, G.; Bhatla, S.C. Abscisic Acid. In Plant Physiology, Development and Metabolism; Bhatla, S.C., Lal, A.M., Eds.; Springer: Singapore, 2018; pp. 629–641. ISBN 978-981-13-2023-1. [Google Scholar]
- Addicott, F.T.; Lyon, J.L.; Ohkuma, K.; Thiessen, W.E.; Carns, H.R.; Smith, O.E.; Cornforth, J.W.; Milborrow, B.V.; Ryback, G.; Wareing, P.F. Abscisic Acid: A New Name for Abscisin II (Dormin). Science 1968, 159, 1493. [Google Scholar] [CrossRef] [Green Version]
- Kurepin, L.V.; Zaman, M.; Pharis, R.P. Phytohormonal basis for the plant growth promoting action of naturally occurring biostimulators. J. Sci. Food Agric. 2014, 94, 1715–1722. [Google Scholar] [CrossRef]
- Khan, A.; Bilal, S.; Khan, A.L.; Imran, M.; Shahzad, R.; Al-Harrasi, A.; Al-Rawahi, A.; Al-Azhri, M.; Mohanta, T.K.; Lee, I.-J. Silicon and Gibberellins: Synergistic Function in Harnessing ABA Signaling and Heat Stress Tolerance in Date Palm (Phoenix dactylifera L.). Plants 2020, 9, 620. [Google Scholar] [CrossRef]
- Passioura, J.B. Environmental biology and crop improvement. Funct. Plant Biol. 2002, 29, 537–546. [Google Scholar] [CrossRef]
- Daughtrey, M.L.; Benson, D.M. Principles of Plant Health Management for Ornamental Plants. Annu. Rev. Phytopathol. 2005, 43, 141–169. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, T. Phytohormones and rice crop yield: Strategies and opportunities for genetic improvement. Transgenic Res. 2006, 15, 399–404. [Google Scholar] [CrossRef]
- Larrigaudiere, C.; Guillen, P.; Vendrell, M. Harvest maturity related changes in the content of endogenous phytohormones and quality parameters of melon. Postharvest Biol. Technol. 1995, 6, 73–80. [Google Scholar] [CrossRef]
- Clendennen, S.K.; Kipp, P.B.; May, G.D. The Role of Ethylene in Banana Fruit Ripening. In Biology and Biotechnology of the Plant Hormone Ethylene; Kanellis, A.K., Chang, C., Kende, H., Grierson, D., Eds.; Springer: Dordrecht, The Netherlands, 1997; pp. 141–148. ISBN 978-94-011-5546-5. [Google Scholar]
- Koukourikou-Petridou, M.A. Etiolation of stock plants affects adventitious root formation and hormone content of pea stem cuttings. Plant Growth Regul. 1998, 25, 17–21. [Google Scholar] [CrossRef]
- Zahir, Z.A.; Arshad, M.; Azam, M.; Hussain, A. Effect of an auxin precursor tryptophan and Azotobacter inoculation on yield and chemical composition of potato under fertilized conditions. J. Plant Nutr. 1997, 20, 745–752. [Google Scholar] [CrossRef]
- Stirk, W.A.; Van Staden, J. Comparison of cytokinin- and auxin-like activity in some commercially used seaweed extracts. J. Appl. Phycol. 1996, 8, 503–508. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization of the United Nations. 2016. Available online: http://www.fao.org/faostat/en/#rankings/countries_by_commodity (accessed on 5 January 2020).
- Choi, H.; Varian, H.A.L. Predicting the Present with Google Trends. Econ. Rec. 2012, 88, 2–9. [Google Scholar] [CrossRef]
- Polykalas, S.E.; Prezerakos, G.N.; Konidaris, A. An algorithm based on Google Trends’ data for future prediction. Case study: German elections. In IEEE International Symposium on Signal Processing and Information Technology; IEEE: Piscataway Township, NJ, USA, 2013; pp. 69–73. [Google Scholar]
- Cocco, A.M.; Zordan, R.; Taylor, M.D.; Weiland, T.J.; Dilley, T.J.; Kant, J.; Dombgolla, M.; Hendarto, A.; Lai, F.; Hutton, J. Dr Google in the ED: Searching for online health information by adult emergency department patients. Med. J. Aust. 2018, 209, 342–347. [Google Scholar] [CrossRef]
- Arora, V.S.; McKee, M.; Stuckler, D. Google Trends: Opportunities and limitations in health and health policy research. Health Policy 2019, 123, 338–341. [Google Scholar] [CrossRef] [Green Version]
- Husnayain, A.; Fuad, A.; Lazuardi, L. Correlation between Google Trends on dengue fever and national surveillance report in Indonesia. Glob. Health Action 2019, 12, 1552652. [Google Scholar] [CrossRef] [Green Version]
- Polgreen, P.M.; Chen, Y.; Pennock, D.M.; Nelson, F.D. Using Internet Searches for Influenza Surveillance. Clin. Infect. Dis. 2008, 47, 1443–1448. [Google Scholar] [CrossRef] [Green Version]
- Nuti, S.V.; Wayda, B.; Ranasinghe, I.; Wang, S.; Dreyer, R.P.; Chen, S.I.; Murugiah, K. The use of google trends in health care research: A systematic review. PLoS ONE 2014, 9, e109583. [Google Scholar] [CrossRef] [Green Version]
- Chan, E.H.; Sahai, V.; Conrad, C.; Brownstein, J.S. Using web search query data to monitor dengue epidemics: A new model for neglected tropical disease surveillance. PLoS Negl. Trop. Dis. 2011, 5, e1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, P.; Wang, L.; Zhang, Y.; Luo, G.; Zhang, Y.; Deng, C.; Zhang, Q.; Zhang, Q. Can internet search queries be used for dengue fever surveillance in China? Int. J. Infect. Dis. 2017, 63, 74–76. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, H.A.; Mylonakis, E. Google Trends: A Web-Based Tool for Real-Time Surveillance of Disease Outbreaks. Clin. Infect. Dis. 2009, 49, 1557–1564. [Google Scholar] [CrossRef] [PubMed]
- Kirk, A. One in Four Self-Diagnose on the Internet instead of Visiting the Doctor. The Telegraph. Available online: https://www.telegraph.co.uk/news/health/news/11760 (accessed on 24 July 2015).
- Gadgil, S.; Gadgil, S. The Indian Monsoon, GDP and Agriculture. Econ. Political Wkly. 2006, 41, 4887–4895. [Google Scholar]
- Abimanyu, A. Impact of Agriculture Trade and Subsidy Policy on the Macroeconomy, Distribution, and Environment in Indonesia: A Strategy for Future Industrial Development. Dev. Econ. 2000, 38, 547–571. [Google Scholar] [CrossRef]
- Export.Gov. Zambia-Agricultural Sector. 2019. Available online: https://www.export.gov/apex/article2?id=Zambia-Agricultural-Sector (accessed on 4 April 2019).
- The Agriculture Sector in Kenya. Available online: http://www.fao.org/kenya/fao-in-kenya/kenya-at-a-glance/en/#:~:text=Agriculture%20is%20key%20to%20Kenya’s,cent%20of%20Kenya’s%20rural%20people (accessed on 5 January 2020).
- Moon, I.; Hyun Cho, J. The chemical industry of South Korea: Progress and challenges. Chem. Eng. Prog. 2011, 107, 40–45. [Google Scholar]
- Lotte Chemical to Increase Ethylene Production Capacity in South Korea. Available online: https://www.techsciresearch.com/news/2135-lotte-chemical-to-increase-ethylene-production-capacity-in-south-korea.html (accessed on 5 January 2020).
- Koiwa, H.; Bressan, R.A.; Hasegawa, P.M. Regulation of protease inhibitors and plant defense. Trends Plant Sci. 1997, 2, 379–384. [Google Scholar] [CrossRef]
- Farmer, E.E.; Ryan, C.A. Octadecanoid Precursors of Jasmonic Acid Activate the Synthesis of Wound-Inducible Proteinase Inhibitors. Plant Cell 1992, 4, 129–134. [Google Scholar] [CrossRef]
- Bhasker, G.V. Agriculture Role of Indian Economy. Int. J. Trend Sci. Res. Dev. 2017, 1, 1066–1067. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.Y.; Guo, S.R. Role of brassinosteroids on horticultural crops. In Brassinosteroids: A Class of Plant Hormone; Hayat, S., Ahmad, A., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 269–288. ISBN 978-94-007-0189-2. [Google Scholar]
- Luo, X.; Liu, G.; Xia, Y.; Chen, L.; Jiang, Z.; Zheng, H.; Wang, Z. Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta, China. J. Soils Sediments 2017, 17, 780–789. [Google Scholar] [CrossRef]
- Cai, Z.C.; Qin, S.W. Dynamics of crop yields and soil organic carbon in a long-term fertilization experiment in the Huang-Huai-Hai Plain of China. Geoderma 2006, 136, 708–715. [Google Scholar] [CrossRef]
- Brun, G.; Braem, L.; Thoiron, S.; Gevaert, K.; Goormachtig, S.; Delavault, P. Seed germination in parasitic plants: What insights can we expect from strigolactone research? J. Exp. Bot. 2017, 69, 2265–2280. [Google Scholar] [CrossRef] [PubMed]
- Matusova, R.; Rani, K.; Verstappen, F.W.A.; Franssen, M.C.R.; Beale, M.H.; Bouwmeester, H.J. The Strigolactone Germination Stimulants of the Plant-Parasitic Striga and Orobanche spp. Are Derived from the Carotenoid Pathway. Plant Physiol. 2005, 139, 920–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heberle, H.; Meirelles, G.V.; da Silva, F.R.; Telles, G.P.; Minghim, R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform. 2015, 16, 169. [Google Scholar] [CrossRef] [PubMed]
Crops | Top 5 High Crop Producing Countries |
---|---|
Apple | China, United States of America, Poland, Turkey, India |
Barley | Russia, Germany, France, Ukraine, Australia |
Buckwheat | Russia, China, Ukraine, France, Poland |
Coffee | Brazil, Vietnam, Colombia, Indonesia, Ethiopia |
Grapes | China, Italy, United States of America, France, Spain |
Maize | United States of America, China, Brazil, Argentina, Mexico |
Millet | India, Niger, China, Mali, Nigeria |
Oat | Russia, Canada, Australia, Poland, Finland |
Orange | Brazil, China, India, United States of America, Mexico |
Potato | China, India, Russia, Ukraine, United States of America |
Pulses | India, Poland, Mozambique, United Kingdom, Pakistan |
Rice | China, India, Indonesia, Bangladesh, Vietnam |
Rye | Germany, Russia, Poland, Belarus, Denmark |
Sorghum | United States of America, Nigeria, Sudan, Mexico, Ethiopia |
Triticale | Poland, Germany, Belgium, France, Russia |
Sugarcane | Brazil, India, Thailand, China, United States of America |
Sunflower | Ukraine, Russia, Argentina, China, Romania |
Tea | China, India, Kenya, Sri Lanka, Vietnam |
Wheat | China, India, Russia, United States of America, Canada |
Statistical Parameters | Abscisic Acid | Auxin | Brassinosteroids | Cytokinin | Ethylene | Gibberellins | Jasmonic Acid | Salicylic Acid | Strigolactones |
---|---|---|---|---|---|---|---|---|---|
Number of values | 190 | 190 | 190 | 190 | 190 | 190 | 190 | 190 | 190 |
Minimum | 13.00 | 16.00 | 0.0 | 12.00 | 27.00 | 9.000 | 6.000 | 28.00 | 0.0 |
25% percentile | 20.00 | 25.00 | 8.000 | 21.00 | 36.00 | 15.00 | 11.00 | 40.00 | 9.000 |
Median | 25.00 | 29.00 | 12.00 | 24.00 | 42.00 | 18.00 | 14.00 | 48.00 | 17.00 |
75% percentile | 30.25 | 37.00 | 17.00 | 31.00 | 53.00 | 25.00 | 20.00 | 55.00 | 22.00 |
Maximum | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Mean | 27.56 | 31.61 | 15.80 | 27.53 | 47.68 | 23.16 | 18.96 | 50.62 | 16.51 |
Standard deviation | 12.90 | 10.63 | 12.87 | 11.59 | 17.00 | 14.47 | 14.57 | 14.37 | 12.52 |
Standard error of mean | 0.9357 | 0.7715 | 0.9338 | 0.8410 | 1.234 | 1.050 | 1.057 | 1.042 | 0.9081 |
Phytohormones | Common Countries |
---|---|
Auxin | Zambia, Ethiopia, Tanzania |
Auxin and gibberellins | Jamaica |
Cytokinin | Mauritius |
Salicylic acid | Trinidad & Tobago, Ghana, Jordan, Iraq |
Ethylene | Qatar, Kuwait, Algeria, Portugal, Colombia, Chile, Argentina, Ukraine |
Ethylene and salicylic acid | Lebanon, Finland, Greece, Romania |
Auxin and salicylic acid | Nepal |
Auxin and ethylene | Czechia, Hungary, Austria |
Auxin, cytokinin, ethylene, gibberellins | China |
Abscisic acid, auxin, ethylene, and salicylic acid | Thailand |
Abscisic acid, auxin, cytokinin, ethylene, gibberellins, and salicylic acid | India, Philippines, Australia, Canada, United States, United Kingdom |
Auxin, cytokinin, ethylene, gibberellins, and salicylic acid | Nigeria, Pakistan, Malaysia, Kenya, South Africa |
Auxin, ethylene, gibberellins, and salicylic acid | Spain |
Auxin, cytokinin, ethylene, and salicylic acid | New Zealand, Egypt, Poland |
Auxin, ethylene, and salicylic acid | South Korea, Vietnam, Hong Kong, Sri Lanka, Singapore, Taiwan, Bangladesh, Israel, United Arab Emirates, Germany, Ireland, Sweden, Belgium, Iran, Switzerland, Indonesia, Netherlands, Denmark, Norway, Japan, Saudi Arabia, Italy, France, Mexico, Brazil, Turkey, and Russia |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohanta, T.K.; Mohanta, Y.K.; Yadav, D.; Hashem, A.; Abd_Allah, E.F.; Al-Harrasi, A. Global Trends in Phytohormone Research: Google Trends Analysis Revealed African Countries Have Higher Demand for Phytohormone Information. Plants 2020, 9, 1248. https://doi.org/10.3390/plants9091248
Mohanta TK, Mohanta YK, Yadav D, Hashem A, Abd_Allah EF, Al-Harrasi A. Global Trends in Phytohormone Research: Google Trends Analysis Revealed African Countries Have Higher Demand for Phytohormone Information. Plants. 2020; 9(9):1248. https://doi.org/10.3390/plants9091248
Chicago/Turabian StyleMohanta, Tapan Kumar, Yugal Kishore Mohanta, Dhananjay Yadav, Abeer Hashem, Elsayed Fathi Abd_Allah, and Ahmed Al-Harrasi. 2020. "Global Trends in Phytohormone Research: Google Trends Analysis Revealed African Countries Have Higher Demand for Phytohormone Information" Plants 9, no. 9: 1248. https://doi.org/10.3390/plants9091248
APA StyleMohanta, T. K., Mohanta, Y. K., Yadav, D., Hashem, A., Abd_Allah, E. F., & Al-Harrasi, A. (2020). Global Trends in Phytohormone Research: Google Trends Analysis Revealed African Countries Have Higher Demand for Phytohormone Information. Plants, 9(9), 1248. https://doi.org/10.3390/plants9091248