Towards Efficient and Trustworthy Pandemic Diagnosis in Smart Cities: A Blockchain-Based Federated Learning Approach
Abstract
:1. Introduction
- We introduce a pioneering framework that combines the decentralized and immutable nature of blockchain technology with the collaborative and privacy-preserving capabilities of FL, providing a secure and transparent environment for pandemic disease diagnosis in smart cities.
- A decentralized and secure aggregation method is presented to empower the global model to be unaffected by malicious updates from unknown clients in smart cities, which is aimed to improve the overall efficiency and trustworthiness of our system.
- We demonstrate the practicality and effectiveness of our framework through a rigorous case study on COVID-19, showcasing its potential to improve diagnostic accuracy and efficiency compared to traditional centralized approaches.
- We address critical considerations such as data privacy, security, and regulatory compliance within the smart city context, proposing mechanisms such as consensus algorithms, data aggregation techniques, and privacy-preserving mechanisms to overcome associated challenges.
2. Related Works
2.1. Pandemic Management in Smart Cities
2.2. Federated Learning in Smart Cities
2.3. Blockchain in Smart Cities
3. Methodology
3.1. System Model
3.2. Methodological Design
4. Case Study and Setup
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hassankhani, M.; Alidadi, M.; Sharifi, A.; Azhdari, A. Smart city and crisis management: Lessons for the COVID-19 pandemic. Int. J. Environ. Res. Public Health 2021, 18, 7736. [Google Scholar] [CrossRef] [PubMed]
- Strielkowski, W.; Zenchenko, S.; Tarasova, A.; Radyukova, Y. Management of Smart and Sustainable Cities in the Post-COVID-19 Era: Lessons and Implications. Sustainability 2022, 14, 7267. [Google Scholar] [CrossRef]
- Das; Zhang, J.J. Pandemic in a smart city: Singapore’s COVID-19 management through technology & society. Urban Geogr. 2020, 42, 408–416. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, J.Y. How Should the Structure of Smart Cities Change to Predict and Overcome a Pandemic? Sustainability 2022, 14, 2981. [Google Scholar] [CrossRef]
- Costa, D.G.; Peixoto, J.P.J. COVID-19 pandemic: A review of smart cities initiatives to face new outbreaks. ET Smart Cities 2020, 2, 64–73. [Google Scholar] [CrossRef]
- Born, J.; Wiedemann, N.; Cossio, M.; Buhre, C.; Brändle, G.; Leidermann, K.; Goulet, J.; Aujayeb, A.; Moor, M.; Rieck, B.; et al. Accelerating detection of lung pathologies with explainable ultrasound image analysis. Appl. Sci. 2021, 11, 672. [Google Scholar] [CrossRef]
- Roy, S.; Menapace, W.; Oei, S.; Luijten, B.; Fini, E.; Saltori, C.; Huijben, I.; Chennakeshava, N.; Mento, F.; Sentelli, A.; et al. Deep Learning for Classification and Localization of COVID-19 Markers in Point-of-Care Lung Ultrasound. IEEE Trans. Med. Imaging 2020, 39, 2676–2687. [Google Scholar] [CrossRef]
- Ebadi, A.; Xi, P.; MacLean, A.; Florea, A.; Tremblay, S.; Kohli, S.; Wong, A. COVIDx-US: An Open-Access Benchmark Dataset of Ultrasound Imaging Data for AI-Driven COVID-19 Analytics. Front. Biosci. 2022, 27, 198. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhou, Y.; Sun, Y.; Wang, Z.; Liu, B.; Li, K. Applications of federated learning in smart cities: Recent advances, taxonomy, and open challenges. Connect. Sci. 2022, 34, 1–28. [Google Scholar] [CrossRef]
- Jiang, J.C.; Kantarci, B.; Oktug, S.; Soyata, T. Federated learning in smart city sensing: Challenges and opportunities. Sensors 2020, 20, 6230. [Google Scholar] [CrossRef]
- Ramu, S.P.; Boopalan, P.; Pham, Q.-V.; Maddikunta, P.K.R.; Huynh-The, T.; Alazab, M.; Nguyen, T.T.; Gadekallu, T.R. Federated learning enabled digital twins for smart cities: Concepts, recent advances, and future directions. Sustain. Cities Soc. 2022, 79, 103663. [Google Scholar] [CrossRef]
- Rasha, A.H.; Li, T.; Huang, W.; Gu, J.; Li, C. Federated learning in smart cities: Privacy and security survey. Inf. Sci. 2023, 632, 833–857. [Google Scholar]
- Pandya, S.; Srivastava, G.; Jhaveri, R.; Babu, M.R.; Bhattacharya, S.; Maddikunta, P.K.R.; Mastorakis, S.; Piran, J.; Gadekallu, T.R. Federated learning for smart cities: A comprehensive survey. Sustain. Energy Technol. Assess. 2023, 55, 102987. [Google Scholar] [CrossRef]
- Bhushan, B.; Khamparia, A.; Sagayam, K.M.; Sharma, S.K.; Ahad, M.A.; Debnath, N.C. Blockchain for smart cities: A review of architectures, integration trends and future research directions. Sustain. Cities Soc. 2020, 61, 102360. [Google Scholar] [CrossRef]
- Xie, J.; Tang, H.; Huang, T.; Yu, F.R.; Xie, R.; Liu, J.; Liu, Y. A survey of blockchain technology applied to smart cities: Research issues and challenges. IEEE Commun. Surv. Tutor. 2019, 21, 2794–2830. [Google Scholar] [CrossRef]
- Majeed, U.; Khan, L.U.; Yaqoob, I.; Kazmi, S.A.; Salah, K.; Hong, C.S. Blockchain for IoT-based smart cities: Recent advances, requirements, and future challenges. J. Netw. Comput. Appl. 2021, 181, 103007. [Google Scholar] [CrossRef]
- Hakak, S.; Khan, W.Z.; Gilkar, G.A.; Imran, M.; Guizani, N. Securing smart cities through blockchain technology: Architecture, requirements, and challenges. IEEE Netw. 2020, 34, 8–14. [Google Scholar] [CrossRef]
- Kim, J.W.; Kim, S.J.; Cha, W.C.; Kim, T. A blockchain-applied personal health record application: Development and user experience. Appl. Sci. 2022, 12, 1847. [Google Scholar] [CrossRef]
- Fiore, M.; Capodici, A.; Rucci, P.; Bianconi, A.; Longo, G.; Ricci, M.; Sanmarchi, F.; Golinelli, D. Blockchain for the healthcare supply chain: A systematic literature review. Appl. Sci. 2023, 13, 686. [Google Scholar] [CrossRef]
- Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 116–131. [Google Scholar]
- Hejazi, H.D.; Khamees, A.A. Employees Motivational Factors toward Knowledge Sharing: A Systematic Review. Int. J. Adv. Appl. Comput. Intell. 2022, 1, 45–55. [Google Scholar]
- Mehta, S.; Rastegari, M. Mobilevit: Light-weight, general-purpose, and mobile-friendly vision transformer. arXiv 2021, arXiv:2110.02178. [Google Scholar]
- Graham, B.; El-Nouby, A.; Touvron, H.; Stock, P.; Joulin, A.; Jégou, H.; Douze, M. Levit: A vision transformer in convnet’s clothing for faster inference. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 12259–12269. [Google Scholar]
- Zhang, W.; Zhou, T.; Lu, Q.; Wang, X.; Zhu, C.; Sun, H.; Wang, Z.; Lo, S.K.; Wang, F.-Y. Dynamic-fusion-based federated learning for COVID-19 detection. IEEE Internet Things J. 2021, 8, 15884–15891. [Google Scholar] [CrossRef] [PubMed]
- Feki, I.; Ammar, S.; Kessentini, Y.; Muhammad, K. Federated learning for COVID-19 screening from Chest X-ray images. Appl. Soft Comput. 2021, 106, 107330. [Google Scholar] [CrossRef]
- Kumar, R.; Khan, A.A.; Kumar, J.; Zakria, A.; Golilarz, N.A.; Zhang, S.; Ting, Y.; Zheng, C.; Wang, W. Blockchain-federated-learning and deep learning models for COVID-19 detection using CT imaging. IEEE Sens. J. 2021, 21, 16301–16314. [Google Scholar] [CrossRef] [PubMed]
- Malik, H.; Naeem, A.; Naqvi, R.A.; Loh, W.K. DMFL_Net: A Federated Learning-Based Framework for the Classification of COVID-19 from Multiple Chest Diseases Using X-rays. Sensors 2023, 23, 743. [Google Scholar] [CrossRef]
- Bian, G.; Qu, W.; Shao, B. Blockchain-Based Trusted Federated Learning with Pre-Trained Models for COVID-19 Detection. Electronics 2023, 12, 2068. [Google Scholar] [CrossRef]
- Wibawa, F.; Catak, F.O.; Kuzlu, M.; Sarp, S.; Cali, U. Homomorphic encryption and federated learning based privacy-preserving cnn training: COVID-19 detection use-case. In Proceedings of the 2022 European Interdisciplinary Cybersecurity Conference, Barcelona, Spain, 15–16 June 2022; pp. 85–90. [Google Scholar]
Probe | COVID-19 | Pneumonia | Healthy | Total | ||
---|---|---|---|---|---|---|
POCUS | CONVEX | Videos | 64 | 52 | 66 | 182 |
Images | 18 | 20 | 15 | 53 | ||
LINEAR | Videos | 6 | 5 | 9 | 20 | |
Images | 4 | 2 | / | / | ||
COVIDx-US | Convex | Videos | 63 | 40 | 19 | 122 |
Images | / | / | / | / | ||
Linear | Videos | 8 | 9 | 9 | 26 | |
Images | / | / | / | / | ||
ICLUS-DB | Convex/Linear | Videos | 42 | 9 | 9 | 60 |
Method | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) |
---|---|---|---|---|
[24] | 92.72 ± 5.43 | 93.57 ± 4.54 | 93.53 ± 5.97 | 93.55 ± 4.81 |
[25] | 93.16 ± 5.89 | 95.08 ± 4.42 | 93.53 ± 2.89 | 93.8 ± 4.67 |
[26] | 93.53 ± 5.11 | 94.99 ± 2.98 | 93.41 ± 1.96 | 93.7 ± 2.31 |
[27] | 93.93 ± 1.54 | 92.39 ± 4.91 | 95.73 ± 4.44 | 94.03 ± 1.54 |
[28] | 91.51 ± 0.17 | 92.33 ± 4.54 | 94.33 ± 0.88 | 93.32 ± 5.31 |
[29] | 93.19 ± 4.56 | 92.36 ± 5.35 | 95.11 ± 1.21 | 93.72 ± 4.89 |
BFLPD | 95.14 ± 1.76 | 95.26 ± 5.11 | 95.77 ± 5.66 | 95.52 ± 2.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel-Basset, M.; Alrashdi, I.; Hawash, H.; Sallam, K.; Hameed, I.A. Towards Efficient and Trustworthy Pandemic Diagnosis in Smart Cities: A Blockchain-Based Federated Learning Approach. Mathematics 2023, 11, 3093. https://doi.org/10.3390/math11143093
Abdel-Basset M, Alrashdi I, Hawash H, Sallam K, Hameed IA. Towards Efficient and Trustworthy Pandemic Diagnosis in Smart Cities: A Blockchain-Based Federated Learning Approach. Mathematics. 2023; 11(14):3093. https://doi.org/10.3390/math11143093
Chicago/Turabian StyleAbdel-Basset, Mohamed, Ibrahim Alrashdi, Hossam Hawash, Karam Sallam, and Ibrahim A. Hameed. 2023. "Towards Efficient and Trustworthy Pandemic Diagnosis in Smart Cities: A Blockchain-Based Federated Learning Approach" Mathematics 11, no. 14: 3093. https://doi.org/10.3390/math11143093
APA StyleAbdel-Basset, M., Alrashdi, I., Hawash, H., Sallam, K., & Hameed, I. A. (2023). Towards Efficient and Trustworthy Pandemic Diagnosis in Smart Cities: A Blockchain-Based Federated Learning Approach. Mathematics, 11(14), 3093. https://doi.org/10.3390/math11143093