K-L Estimator: Dealing with Multicollinearity in the Logistic Regression Model
Abstract
:1. Introduction
2. Proposed Estimator
3. Comparison among the Estimators
3.1. Comparison between and
3.2. Comparison between and
3.3. Comparison between and
3.4. Comparison between and
3.5. Comparison between and
3.6. Selection of k
- LKLE 1:
- LKLE 2: k =
- LRE 1:
- LRE 2:
- LLE:
- LLTE: ,
- LTPE: ,
4. Monte Carlo Simulation
5. Application: Cancer Data
6. Some Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Frisch, R. Statistical Confluence Analysis by Means of Complete Regression Systems; University Institute of Economics: Oslo, Norway, 1934. [Google Scholar]
- Kibria, B.M.G.; Mansson, K.; Shukur, G. Performance of some logistic ridge regression estimators. Comp. Econ. 2012, 40, 401–414. [Google Scholar] [CrossRef]
- Lukman, A.F.; Ayinde, K. Review and classifications of the ridge parameter estimation techniques. Hacet. J. Math. Stat. 2017, 46, 953–967. [Google Scholar] [CrossRef]
- Hoerl, A.E.; Kennard, R.W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 1970, 12, 55–67. [Google Scholar] [CrossRef]
- Schaeffer, R.L.; Roi, L.D.; Wolfe, R.A. A ridge logistic estimator. Commun. Stat. Theory Methods 1984, 13, 99–113. [Google Scholar] [CrossRef]
- Liu, K. A new class of biased estimate in linear regression. Commun. Stat. 1993, 22, 393–402. [Google Scholar]
- Mansson, K.; Kibria, B.M.G.; Shukur, G. On Liu estimators for the logit regression model. Econ. Model. 2012, 29, 1483–1488. [Google Scholar] [CrossRef] [Green Version]
- Lukman, A.F.; Ayinde, K.; Binuomote, S.; Onate, A.C. Modified ridge-type estimator to combat multicollinearity: Application to chemical data. J. Chemomet. 2019, 33, e3125. [Google Scholar] [CrossRef]
- Lukman, A.F.; Adewuyi, E.; Onate, A.C.; Ayinde, K. A Modified Ridge-Type Logistic Estimator. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 437–443. [Google Scholar] [CrossRef]
- Kibria, B.M.G.; Lukman, A.F. A new ridge type estimator for the linear regression model: Simulations and applications. Scientifica 2020, 2020, 9758378. [Google Scholar] [CrossRef]
- Lukman, A.F.; Ayinde, K.; Aladeitan, B.; Bamidele, R. An unbiased estimator with prior information. Arab. J. Basic Appl. Sci. 2020, 27, 45–55. [Google Scholar] [CrossRef]
- Dawoud, I.; Lukman, A.F.; Haadi, A. A new biased regression estimator: Theory, simulation and application. Sci. Afr. 2022, 15, e01100. [Google Scholar] [CrossRef]
- Hoerl, A.E.; Kennard, R.W.; Baldwin, K.F. Ridge regression: Some simulation. Commun. Stat. Theory Methods 1975, 4, 105–123. [Google Scholar] [CrossRef]
- Schaeffer, R.L. Alternative estimators in logistic regression when the data is collinear. J. Stat. Comput. Simul. 1986, 25, 75–91. [Google Scholar] [CrossRef]
- Özkale, M.R.; Kaciranlar, S. The restricted and unrestricted two-parameter estimators. Commun. Statist. Theor. Meth 2007, 36, 2707–2725. [Google Scholar] [CrossRef]
- Liu, K. Using Liu-type estimator to combat collinearity. Commun. Stat.-Theory Methods 2003, 32, 1009–2003. [Google Scholar] [CrossRef]
- Inan, D.; Erdogan, B.E. Liu-Type logistic estimator. Commun. Stat. Simul. Comput. 2013, 42, 1578–1586. [Google Scholar] [CrossRef]
- Huang, J. A Simulation Research on a Biased Estimator in Logistic Regression Model. In Computational Intelligence and Intelligent Systems. ISICA 2012. Communications in Computer and Information Science; Li, Z., Li, X., Liu, Y., Cai, Z., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 316. [Google Scholar] [CrossRef]
- Farebrother, R.W. Further results on the mean square error of ridge regression. J. R. Stat. Soc. Ser. B 1976, 38, 248–250. [Google Scholar] [CrossRef]
- Trenkler, G.; Toutenburg, H. Mean squared error matrix comparisons between biased estimators—An overview of recent results. Stat. Pap. 1990, 31, 165–179. [Google Scholar] [CrossRef]
- Kibria, B.M.G. Performance of some new ridge regression estimators. Commun. Stat. Simul. Comput. 2003, 32, 419–435. [Google Scholar] [CrossRef]
- Qasim, M.; Amin, M.; Ullah, M.A. On the performance of some new liu parameters for the gamma regression model. J. Stat. Comput Simul 2018, 88, 3065–3080. [Google Scholar] [CrossRef]
- Amin, M.; Akram, M.N.; Majid, A. On the estimation of Bell regression model using ridge estimator. Commun. Stat. Simul. Comput. 2021. [Google Scholar] [CrossRef]
- Lukman, A.F.; Zakariya, A.; Kibria, B.M.G.; Ayinde, K. The KL estimator for the inverse gaussian regression model. Concurrency Computat. Pract. Exper. 2021, 33, e6222. [Google Scholar] [CrossRef]
- Lukman, A.F.; Aladeitan, B.; Ayinde, K.; Abonazel, M.R. Modified ridge-type for the Poisson Regression Model: Simulation and Application. J. Appl. Stat. 2021, 49, 2124–2136. [Google Scholar] [CrossRef] [PubMed]
- Lukman, A.F.; Adewuyi, E.; Månsson, K.; Kibria, B.M.G. A new estimator for the multicollinear poisson regression model: Simulation and application. Sci. Rep. 2021, 11, 3732. [Google Scholar] [CrossRef]
- Amin, M.; Qasim, M.; Amanullah, M.; Afzal, S. Performance of some ridge estimators for the gamma regression model. Stat. Pap. 2020, 61, 997–1026. [Google Scholar] [CrossRef]
- Amin, M.; Qasim, M.; Afzal, S.; Naveed, M. New ridge estimators in the inverse Gaussian regression: Monte Carlo simulation and application to chemical data. Commun. Stat. Simul. Comput. 2020, 51, 6170–6187. [Google Scholar] [CrossRef]
- Naveed, M.; Amin, M.; Afzal, S.; Qasim, M. New shrinkage parameters for the inverse Gaussian liu regression. Commun. Stat. Theory Methods 2020, 51, 3216–3236. [Google Scholar] [CrossRef]
- Qasim, M.; Amin, M.; Omer, T. Performance of some new Liu parameters for the linear regression model. Commun. Stat. Theory Methods 2020, 49, 4178–4196. [Google Scholar] [CrossRef]
- Ayinde, K.; Lukman, A.F.; Samuel, O.O.; Ajiboye, S.A. Some new adjusted ridge estimators of linear regression model. Int. J. Civil Eng. Technol. 2018, 9, 2838–2852. [Google Scholar]
- Asar, Y.; Genç, A. Two-parameter ridge estimator in the binary logistic regression. Commun. Stat.-Simul. Comput. 2017, 46, 7088–7099. [Google Scholar] [CrossRef]
- Kibria, B.M.G.; Banik, S. Some ridge regression estimators and their performances. J. Mod. Appl. Stat. Methods 2016, 15, 206–238. [Google Scholar] [CrossRef]
- Özkale, M.R.; Arıcan, E. A new biased estimator in logistic regression model. Statistics 2016, 50, 233–253. [Google Scholar] [CrossRef]
- Varathan, N.; Wijekoon, P. Optimal generalized logistic estimator. Commun. Stat. Theory Methods 2018, 47, 463–474. [Google Scholar] [CrossRef]
- Saleh, A.K.; Md, E.; Arashi, M.; Kibria, B.M.G. Theory of Ridge Regression Estimation with Applications; John Wiley: Hoboken, NJ, USA, 2019. [Google Scholar]
- Newhouse, J.P.; Oman, S.D. An Evaluation of Ridge Estimators; P-716-PR; Rand Corporation: Santa Monica, CA, USA, 1971; pp. 1–28. [Google Scholar]
- Gibbons, D.G. A simulation study of some ridge estimators. J. Am. Stat. Assoc. 1981, 76, 131–139. [Google Scholar] [CrossRef]
- McDonald, G.; Galarneau, D.I. A Monte Carlo evaluation of some ridge-type estimators. J. Am. Stat. Assoc. 1975, 70, 407–416. [Google Scholar] [CrossRef]
- Lesaffre, E.; Marx, B.D. Collinearity in generalized linear regression. Commun. Stat. Theory Methods 1993, 22, 1933–1952. [Google Scholar] [CrossRef]
- Gujarati, D.N. Basic Econometrics; McGraw-Hill: New York, NY, USA, 1995. [Google Scholar]
n | 50 | 50 | 50 | 50 | 100 | 100 | 100 | 100 | |
ρ | 0.9 | 0.95 | 0.99 | 0.999 | 0.9 | 0.95 | 0.99 | 0.999 | |
MLE | MSE | 1.4837 | 2.5668 | 11.6012 | 112.132 | 0.8648 | 1.3979 | 5.6404 | 53.8 |
LLE | MSE | 1.0597 | 1.4893 | 5.0029 | 47.674 | 0.7492 | 1.0409 | 2.6449 | 21.6 |
BIAS | −0.7965 | −0.8000 | −0.8029 | −0.8034 | −0.8014 | −0.8030 | −0.8080 | −0.8126 | |
LRE 1 | MSE | 0.9867 | 1.4492 | 5.4291 | 49.507 | 0.6677 | 0.9090 | 2.7611 | 23.9 |
BIAS | −0.8349 | −0.8190 | −0.7934 | −0.7802 | −0.8323 | −0.8234 | −0.8098 | −0.8039 | |
LRE 2 | MSE | 0.8332 | 1.1187 | 3.7215 | 32.719 | 0.6040 | 0.7538 | 1.9624 | 15.9 |
BIAS | −0.8967 | −0.8651 | −0.8150 | −0.7906 | −0.8695 | −0.8517 | −0.8225 | −0.8089 | |
LLTE | MSE | 0.6927 | 0.8063 | 7.3947 | 50.125 | 0.5983 | 0.6394 | 2.6679 | 48 |
BIAS | −0.9207 | −0.9011 | −0.9448 | −1.9698 | −0.8751 | −0.8595 | −0.8447 | −1.0067 | |
LTPE | MSE | 0.7238 | 0.8732 | 2.3002 | 18.585 | 0.5911 | 0.6384 | 1.3563 | 9.82 |
BIAS | −0.9322 | −0.8974 | −0.8384 | −0.8075 | −0.8897 | −0.8697 | −0.8342 | −0.8164 | |
LKLE 1 | MSE | 0.7458 | 0.8043 | 1.6510 | 11.563 | 0.5918 | 0.6303 | 1.0533 | 6.21 |
BIAS | −1.0436 | −0.9752 | −0.8734 | −0.8256 | −0.9502 | −0.9131 | −0.8536 | −0.8251 | |
LKLE 2 | MSE | 0.9598 | 1.4017 | 5.2142 | 47.268 | 0.6582 | 0.8916 | 2.6610 | 22.7 |
BIAS | −0.8186 | −0.8032 | −0.7848 | −0.7790 | −0.8224 | −0.8136 | −0.8038 | −0.8029 |
n | 250 | 250 | 250 | 250 | 300 | 300 | 300 | 300 | |
ρ | 0.9 | 0.95 | 0.99 | 0.999 | 0.9 | 0.95 | 0.99 | 0.999 | |
MLE | MSE | 0.5112 | 0.7083 | 2.2958 | 20.4 | 0.4834 | 0.6532 | 1.9918 | 16.931 |
LLE | MSE | 0.4997 | 0.6530 | 1.4819 | 8.36 | 0.4757 | 0.6119 | 1.3344 | 6.708 |
BIAS | −0.8273 | −0.8256 | −0.8239 | −0.8271 | −0.8189 | −0.8180 | −0.8187 | −0.8198 | |
LRE 1 | MSE | 0.4847 | 0.5844 | 1.2803 | 9.07 | 0.4659 | 0.5550 | 1.1523 | 7.558 |
BIAS | −0.8497 | −0.8417 | −0.8290 | −0.8244 | −0.8389 | −0.8329 | −0.8247 | −0.8182 | |
LRE 2 | MSE | 0.4825 | 0.5421 | 0.9858 | 6.14 | 0.4656 | 0.5192 | 0.9011 | 5.118 |
BIAS | −0.8746 | −0.8612 | −0.8381 | −0.8275 | −0.8603 | −0.8501 | −0.8331 | −0.8207 | |
LLTE | MSE | 0.4794 | 0.5239 | 0.6785 | 10.23 | 0.4634 | 0.5059 | 0.6580 | 7.865 |
BIAS | −0.8766 | −0.8637 | −0.8438 | −0.8609 | −0.8618 | −0.8519 | −0.8370 | −0.8414 | |
LTPE | MSE | 0.4785 | 0.5083 | 0.7690 | 3.98 | 0.4631 | 0.4894 | 0.7201 | 3.398 |
BIAS | −0.8873 | −0.8723 | −0.8456 | −0.8314 | −0.8726 | −0.8608 | −0.8404 | −0.8241 | |
LKLE 1 | MSE | 0.2344 | 0.3576 | 0.6250 | 2.81 | 0.3087 | 0.3285 | 0.5771 | 2.364 |
BIAS | −0.9275 | −0.9024 | −0.8594 | −0.8367 | −0.9053 | −0.8856 | −0.8515 | −0.8281 | |
LKLE 2 | MSE | 0.4344 | 0.5027 | 1.2531 | 8.66 | 0.4625 | 0.5533 | 1.1303 | 7.200 |
BIAS | −0.8469 | −0.8385 | −0.8261 | −0.8237 | −0.8358 | −0.8291 | −0.8211 | −0.8170 |
n | 50 | 50 | 50 | 50 | 100 | 100 | 100 | 100 | |
ρ | 0.9 | 0.95 | 0.99 | 0.999 | 0.9 | 0.95 | 0.99 | 0.999 | |
MLE | MSE | 6.2754 | 11.5251 | 61.5 | 585 | 2.5865 | 4.9251 | 23.922 | 236 |
LLE | MSE | 1.9336 | 2.3581 | 10.2 | 117 | 1.5505 | 2.0802 | 4.720 | 40.9 |
BIAS | −1.4187 | −1.4699 | −1.5091 | −1.5071 | −1.3487 | −1.3548 | −1.4039 | −1.4231 | |
LRE 1 | MSE | 3.5013 | 6.0056 | 31.8 | 297 | 1.6169 | 2.8887 | 13.218 | 128 |
BIAS | −1.3122 | −1.3329 | −1.3042 | −1.3101 | −1.3431 | −1.3225 | −1.3280 | −1.3272 | |
LRE 2 | MSE | 1.6420 | 2.6788 | 13.2 | 122 | 0.9322 | 1.5026 | 6.273 | 59.3 |
BIAS | −1.4628 | −1.4578 | −1.4198 | −1.4181 | −1.4314 | −1.3944 | −1.3825 | −1.3761 | |
LLTE | MSE | 1.2682 | 1.8409 | 1200 | 477 | 0.8472 | 1.2163 | 15.024 | 188 |
BIAS | −1.5043 | −1.5429 | −2.2742 | −10.5093 | −1.4396 | −1.4161 | −1.5587 | −3.0291 | |
LTPE | MSE | 1.3488 | 2.0536 | 8.96 | 78 | 0.8076 | 1.2358 | 4.747 | 43.2 |
BIAS | −1.4979 | −1.4971 | −1.4701 | −1.4802 | −1.4483 | −1.4162 | −1.4102 | −1.4045 | |
LKLE 1 | MSE | 0.7149 | 0.9988 | 3.43 | 31 | 0.6939 | 0.7074 | 1.710 | 14.5 |
BIAS | −1.7501 | −1.7118 | −1.6656 | −1.6547 | −1.5857 | −1.5257 | −1.4894 | −1.4755 | |
LKLE 2 | MSE | 3.3646 | 5.7296 | 30.1 | 281 | 1.5856 | 2.8236 | 12.878 | 125 |
BIAS | −1.3135 | −1.3373 | −1.3132 | −1.3202 | −1.3416 | −1.3222 | −1.3293 | −1.3294 |
n | 250 | 250 | 250 | 250 | 300 | 300 | 300 | 300 | |
ρ | 0.9 | 0.95 | 0.99 | 0.999 | 0.9 | 0.95 | 0.99 | 0.999 | |
MLE | MSE | 1.0284 | 1.7662 | 7.58 | 72.9 | 0.8894 | 1.4841 | 6.2274 | 60.1 |
LLE | MSE | 0.8894 | 1.3001 | 2.64 | 13.5 | 0.7944 | 1.1611 | 2.4346 | 9.43 |
BIAS | −1.4056 | −1.4033 | −1.4287 | −1.4415 | −1.3846 | −1.3865 | −1.3990 | −1.4195 | |
LRE 1 | MSE | 0.7632 | 1.1834 | 4.40 | 40.5 | 0.6815 | 1.0195 | 3.6523 | 33.6 |
BIAS | −1.4242 | −1.4107 | −1.4121 | −1.4083 | −1.4047 | −1.3981 | −1.3904 | −1.3917 | |
LRE 2 | MSE | 0.5474 | 0.7325 | 2.23 | 19.2 | 0.5088 | 0.6572 | 1.8915 | 16.2 |
BIAS | −1.4755 | −1.4483 | −1.4333 | −1.4245 | −1.4518 | −1.4331 | −1.4089 | −1.4063 | |
LLTE | MSE | 0.5392 | 0.7005 | 1.62 | 115 | 0.5033 | 0.6341 | 1.4637 | 47 |
BIAS | −1.4768 | −1.4502 | −1.4422 | −1.5435 | −1.4529 | −1.4353 | −1.4163 | −1.4908 | |
LTPE | MSE | 0.5117 | 0.6530 | 1.78 | 14.2 | 0.4808 | 0.5892 | 1.5361 | 12.6 |
BIAS | −1.4849 | −1.4559 | −1.4403 | −1.4332 | −1.4619 | −1.4433 | −1.4169 | −1.4139 | |
LKLE 1 | MSE | 0.5344 | 0.5576 | 0.7250 | 2.81 | 0.5087 | 0.5285 | 0.6771 | 2.364 |
BIAS | −1.5577 | −1.5105 | −1.4735 | −1.4582 | −1.5285 | −1.4925 | −1.4471 | −1.4375 | |
LKLE 2 | MSE | 0.4844 | 0.5827 | 1.2531 | 8.66 | 0.4655 | 0.5533 | 1.1303 | 7.200 |
BIAS | −1.4217 | −1.4089 | −1.4117 | −1.4085 | −1.4026 | −1.3968 | −1.3900 | −1.3919 |
Theorems | Conditions | Value |
---|---|---|
1 | 0.2413 | |
2 | 0.8866 | |
3 | 0.6443 | |
4 | 0.0958 | |
5 | 0.7540 |
Estimators | Estimated MSEs | |||||
---|---|---|---|---|---|---|
MLE | −0.1966 | −1.5957 | 1.8139 | 1.3073 | −0.4208 | 32.9393 |
(0.328) | (0.513) | (0.571) | (0.664) | (5.639) | ||
LLE | 0.1940 | −0.4751 | 0.5808 | 1.0259 | −0.3078 | 5.0989 |
(0.305) | (0.498) | (0.571) | (0.592) | (1.645) | ||
LRE 1 | 0.3706 | −0.2218 | 0.2266 | 1.1366 | −0.3457 | 1.4278 |
(0.318) | (0.489) | (0.544) | (0.605) | (0.652) | ||
LRE 2 | 0.3503 | −0.0999 | 0.1472 | 0.9838 | −0.2883 | 1.2544 |
(0.303) | (0.504) | (0.584) | (0.596) | (0.461) | ||
LLTE | 0.5373 | 0.4116 | −0.4227 | 0.8732 | −0.2430 | 4.1372 |
(0.295) | (0.536) | (0.643) | (0.624) | (1.720) | ||
LTPE | 0.4949 | 0.2955 | −0.2933 | 0.8983 | −0.2533 | 3.8161 |
(0.310) | (0.491) | (0.556) | (0.592) | (1.679) | ||
LKLE 1 | 0.8972 | 1.3960 | −1.5195 | 0.6604 | −0.1558 | 28.9236 |
(0.278) | (0.400) | (0.446) | (0.418) | (5.208) | ||
LKLE 2 | 0.4696 | −0.1212 | 0.0576 | 1.2298 | −0.3815 | 1.1350 |
(0.326) | (0.505) | (0.560) | (0.646) | (0.084) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lukman, A.F.; Kibria, B.M.G.; Nziku, C.K.; Amin, M.; Adewuyi, E.T.; Farghali, R. K-L Estimator: Dealing with Multicollinearity in the Logistic Regression Model. Mathematics 2023, 11, 340. https://doi.org/10.3390/math11020340
Lukman AF, Kibria BMG, Nziku CK, Amin M, Adewuyi ET, Farghali R. K-L Estimator: Dealing with Multicollinearity in the Logistic Regression Model. Mathematics. 2023; 11(2):340. https://doi.org/10.3390/math11020340
Chicago/Turabian StyleLukman, Adewale F., B. M. Golam Kibria, Cosmas K. Nziku, Muhammad Amin, Emmanuel T. Adewuyi, and Rasha Farghali. 2023. "K-L Estimator: Dealing with Multicollinearity in the Logistic Regression Model" Mathematics 11, no. 2: 340. https://doi.org/10.3390/math11020340
APA StyleLukman, A. F., Kibria, B. M. G., Nziku, C. K., Amin, M., Adewuyi, E. T., & Farghali, R. (2023). K-L Estimator: Dealing with Multicollinearity in the Logistic Regression Model. Mathematics, 11(2), 340. https://doi.org/10.3390/math11020340