On Linear Codes over Finite Singleton Local Rings
Abstract
:1. Introduction
2. Preliminaries
3. Singleton Local Frobenius Rings
Full Characterization of Singleton Local Frobenius and Non-Frobenius Rings of Order 32
4. Generating Characters and MacWilliams Identities
MacWilliams Relations
5. Generator Matrices
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wood, J.A. Duality for modules over finite rings and applications to coding theory. Am. J. Math. 1999, 121, 555–575. [Google Scholar] [CrossRef]
- Alkhamees, Y.; Alabiad, S. The structure of local rings with singleton basis and their enumeration. Mathematics 2022, 10, 4040. [Google Scholar] [CrossRef]
- Raghavendran, R. Finite associative rings. Compos. Math. 1969, 21, 195–229. [Google Scholar]
- Honold, T. Characterization of finite Frobenius rings. Arch. Math. 2001, 76, 406–415. [Google Scholar] [CrossRef]
- Martínez-Moro, E.; Szabo, S.; Yildiz, B. Linear codes over ℤ4[x]/(x2 + 2x). Int. Inf. Coding Theory 2015, 3, 78–96. [Google Scholar]
- Sriwirach, W.; Klin-Eam, C. Repeated-root constacyclic codes of length 2ps over Fpm + uFpm + u2Fpm. Cryptogr. Comm. 2021, 13, 27–52. [Google Scholar] [CrossRef]
- Laaouine, J.; Charkani, M.E.; Wang, L. Complete classification of repeated-root-constacyclic codes of prime power length over Fpm[u]/(u3). Discrete Math. 2021, 344, 112325. [Google Scholar] [CrossRef]
- Yildiz, B.; Karadeniz, S. Self-dual codes over F2 + uF2 + vF2 + uvF2. J. Frankl. Inst. 2010, 347, 1888–1894. [Google Scholar] [CrossRef]
- Aydin, N.; Karadeniz, S.; Yildiz, B. Some new binary quasi-cyclic codes from codes over the ring F2 + uF2 + vF2 + uvF2. Appl. Algebra Eng. Commun. Comput. 2013, 24, 355–367. [Google Scholar] [CrossRef]
- Greferath, M. Cyclic codes over finite rings. Discrete Math. 1997, 177, 273–277. [Google Scholar] [CrossRef]
- Norton, G.; Salagean, A. On the structure of linear cyclic codes over finite chain rings. Appl. Algebra Eng. Commun. Comput. 2000, 10, 489–506. [Google Scholar] [CrossRef]
- Shi, M.; Wu, R.; Krotov, D. On ZpZpk-additive codes and their duality. IEEE Trans. Inform. Theory 2018, 65, 3842–3847. [Google Scholar]
- Shi, M.; Ozbudak, F.; Xu, L.; Sol’e, P. LCD codes from tridiagonal Toeplitz matrices. Finite Fields Their Appl. 2021, 75, 101892. [Google Scholar] [CrossRef]
- Shi, M.; Zhu, S.; Yang, S. A class of optimal p-ary codes from one-weight codes over Fp[u]/<um>. J. Frankl. Inst. 2013, 350, 929–937. [Google Scholar] [CrossRef]
- Yildiz, B.; Karadeniz, S. Linear codes over ℤ4 + uℤ4: MacWilliams identities, projections, and formally self-dual codes. Finite Fields Their Appl. 2014, 27, 24–40. [Google Scholar] [CrossRef]
- Dougherty, S.T.; Saltürk, E.; Szabo, S. Codes over local rings of order 16 and binary codes. Adv. Math. Commun. 2016, 10, 379–391. [Google Scholar] [CrossRef]
- Dougherty, S.T.; Saltürk, E.; Szabo, S. On codes over Frobenius rings: Generating characters, MacWilliams identities and generator matrices. Appl. Algebra Eng. Commun. Comput. 2019, 30, 193–206. [Google Scholar] [CrossRef]
- Martínez-Moro, E.; Szabo, S. On codes over local Frobenius non-chain rings of order 16. In Noncommutative Rings and Their Applications; Contemporary Mathematics; Dougherty, S., Facchini, A., Leroy, A., Puczylowski, E., Solé, P., Eds.; American Mathematical Society: Providence, RI, USA, 2015; Volume 634, pp. 227–241. [Google Scholar]
- Alabiad, S.; Alkhamees, Y. Constacyclic codes over finite chain rings of characteristic p. Axioms 2021, 10, 303. [Google Scholar] [CrossRef]
Frobenius Rings | ||
---|---|---|
Chain Rings | Non-Chain Rings | Non-Frobenius Rings |
Ring | Additive Structure | Generating Character |
---|---|---|
Ring | Associated Matrix | Equivalence Classes |
---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alabiad, S.; Alhomaidhi, A.A.; Alsarori, N.A. On Linear Codes over Finite Singleton Local Rings. Mathematics 2024, 12, 1099. https://doi.org/10.3390/math12071099
Alabiad S, Alhomaidhi AA, Alsarori NA. On Linear Codes over Finite Singleton Local Rings. Mathematics. 2024; 12(7):1099. https://doi.org/10.3390/math12071099
Chicago/Turabian StyleAlabiad, Sami, Alhanouf Ali Alhomaidhi, and Nawal A. Alsarori. 2024. "On Linear Codes over Finite Singleton Local Rings" Mathematics 12, no. 7: 1099. https://doi.org/10.3390/math12071099
APA StyleAlabiad, S., Alhomaidhi, A. A., & Alsarori, N. A. (2024). On Linear Codes over Finite Singleton Local Rings. Mathematics, 12(7), 1099. https://doi.org/10.3390/math12071099