Preparation and Enhanced Acetone-Sensing Properties of ZIF-8-Derived Co3O4@ZnO Microspheres
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Co3O4 Microspheres
2.3. Synthesis of Co3O4@ZnO Microspheres
2.4. Material Characterization
2.5. Preparation and Measurement of Sensors
3. Results
3.1. Materials Characterization
3.2. Gas-Sensing Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hanh, N.H.; Van Duy, L.; Hung, C.M.; Xuan, C.T.; Van Duy, N.; Hoa, N.D. High-Performance Acetone Gas Sensor Based on Pt–Zn2SnO4 Hollow Octahedra for Diabetic Diagnosis. J. Alloys Compd. 2021, 886, 161284. [Google Scholar] [CrossRef]
- Isaac, N.; Pikaar, I.; Biskos, G. Metal Oxide Semiconducting Nanomaterials for Air Quality Gas Sensors: Operating Principles, Performance, and Synthesis Techniques. Microchim. Acta 2022, 189, 196. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Zhao, Q.N.; Xie, C.Y.; Liang, J.G.; Duan, X.H.; Duan, Z.H.; Li, S.R.; Jiang, Y.D.; Tai, H.L. Gold-Loaded Tellurium Nanobelts Gas Sensor for ppt-Level NO2 Detection at Room Temperature. Sens. Actuators B Chem. 2022, 355, 131300. [Google Scholar] [CrossRef]
- Kohli, N.; Hastir, A.; Kumari, M.; Singh, R.C. Hydrothermally Synthesized Heterostructures of In2O3/MWCNT as Acetone Gas Sensor. Sens. Actuators A Phys. 2020, 314, 112240. [Google Scholar] [CrossRef]
- Kim, H.; Cai, Z.; Chang, S.-P.; Park, S. Improved Sub-ppm Acetone Sensing Properties of SnO2 Nanowire-Based Sensor by Attachment of Co3O4 Nanoparticles. J. Mater. Res. Technol. 2020, 9, 1129–1136. [Google Scholar] [CrossRef]
- Kumarage, G.W.; Comini, E. Low-Dimensional Nanostructures Based on Cobalt Oxide (Co3O4) in Chemical-Gas Sensing. Chemosensors 2021, 9, 197. [Google Scholar] [CrossRef]
- Yusof, N.M.; Rozali, S.; Ibrahim, S.; Siddick, S.Z. Synthesis of Hybridized Fireworks-like go-Co3O4 Nanorods for Acetone Gas Sensing Applications. Mater. Today Commun. 2023, 35, 105516. [Google Scholar] [CrossRef]
- Ramakrishnan, V.; Unnathpadi, R.; Pullithadathil, B. P-Co3O4 Supported Heterojunction Carbon Nanofibers for Ammonia Gas Sensor Applications. J. Mater. Sci. 2022, 9, 61–67. [Google Scholar]
- Zhang, R.; Zhou, T.-T.; Wang, L.-L.; Zhang, T. Metal–Organic Frameworks-Derived Hierarchical Co3O4 Structures as Efficient Sensing Materials for Acetone Detection. ACS Appl. Mater. Interfaces 2018, 10, 9765–9773. [Google Scholar] [CrossRef]
- Park, J.; Shen, X.P.; Wang, G.X. Solvothermal Synthesis and Gas-Sensing Performance of Co3O4 Hollow Nanospheres. Sens. Actuators B Chem. 2009, 136, 494–498. [Google Scholar] [CrossRef]
- Zhao, L.P.; Jin, R.R.; Wang, C.; Wang, T.S.; Sun, Y.F.; Sun, P.; Lu, G.Y. Flower-like ZnO-Co3O4 Heterojunction Composites for Enhanced Acetone Sensing. Sens. Actuators B Chem. 2023, 390, 133964. [Google Scholar] [CrossRef]
- Meng, D.; Si, J.P.; Wang, M.Y.; Wang, G.S.; Shen, Y.B.; San, X.G.; Meng, F.L. One-Step Synthesis and the Enhanced Trimethylamine Sensing Properties of Co3O4/SnO2 Flower-like Structures. Vacuum 2020, 171, 108994. [Google Scholar] [CrossRef]
- Fan, X.X.; Xu, Y.J.; He, W.M. High Acetone Sensing Properties of In2O3–NiO One-Dimensional Heterogeneous Nanofibers Based on Electrospinning. RSC Adv. 2021, 11, 11215–11223. [Google Scholar] [CrossRef]
- Cai, Z.; Park, S. Highly Selective Acetone Sensor Based on Co3O4-Decorated Porous TiO2 Nanofibers. J. Alloys Compd. 2022, 919, 165875. [Google Scholar] [CrossRef]
- Karnati, P.; Akbar, S.; Morris, P.A. Conduction Mechanisms in One Dimensional Core-Shell Nanostructures for Gas Sensing: A Review. Sens. Actuators B Chem. 2019, 295, 127–143. [Google Scholar] [CrossRef]
- Rehman, B.; Bhalla, N.K.; Vihari, S.; Jain, S.K.; Vashishtha, P.; Gupta, G. SnO2/Au Multilayer Heterostructure for Efficient CO Sensing. Mater. Chem. Phys. 2020, 244, 122741. [Google Scholar] [CrossRef]
- Xu, Y.S.; Zheng, L.L.; Yang, C.; Zheng, W.; Liu, X.H.; Zhang, J. Chemiresistive Sensors Based on Core-Shell ZnO@TiO2 Nanorods Designed by Atomic Layer Deposition for N-Butanol Detection. Sens. Actuators B Chem. 2020, 310, 127846. [Google Scholar] [CrossRef]
- Xu, Y.H.; Ding, L.J.; Wen, Z.R.; Zhang, M.; Jiang, D.; Guo, Y.S.; Ding, C.F.; Wang, K. Core-Shell LaFeO3@G-C3N4 PN Heterostructure with Improved Photoelectrochemical Performance for Fabricating Streptomycin Aptasensor. Appl. Surf. Sci. 2020, 511, 145571. [Google Scholar] [CrossRef]
- Wan, K.; Wang, D.; Wang, F.; Li, H.J.; Xu, J.C.; Wang, X.Y.; Yang, J.H. Hierarchical In2O3@SnO2 Core–Shell Nanofiber for High Efficiency Formaldehyde Detection. ACS Appl. Mater. Interfaces 2019, 11, 45214–45225. [Google Scholar] [CrossRef]
- Yan, S.; Song, W.N.; Wu, D.; Jin, S.C.; Dong, S.W.; Hao, H.S.; Gao, W.Y. Assembly of In2O3 Nanoparticles Decorated NiO Nanosheets Heterostructures and Their Enhanced Gas Sensing Characteristics. J. Alloys Compd. 2022, 896, 162887. [Google Scholar] [CrossRef]
- Yu, S.W.; Jia, X.H.; Yang, J.; Wang, S.Z.; Li, Y.; Song, H.J. Highly Sensitive and Low Detection Limit of Ethanol Gas Sensor Based on CeO2 Nanodot-Decorated ZnSnO3 Hollow Microspheres. Ceram. Int. 2022, 48, 14865–14875. [Google Scholar] [CrossRef]
- Gui, Y.H.; Yang, L.-L.; Tian, K.; Zhang, H.Z.; Fang, S.M. P-Type Co3O4 Nanoarrays Decorated on the Surface of N-Type Flower-like WO3 Nanosheets for High-Performance Gas Sensing. Sens. Actuators B Chem. 2019, 288, 104–112. [Google Scholar] [CrossRef]
- Felix Sahayaraj, A.; Joy Prabu, H.; Maniraj, J.; Kannan, M.; Bharathi, M.; Diwahar, P.; Salamon, J. Metal–Organic Frameworks (MOFs): The Next Generation of Materials for Catalysis, Gas Storage, and Separation. J. Inorg. Organomet. Polym. Mater. 2023. [Google Scholar] [CrossRef]
- Kavian, S.; Hajati, S.; Moradi, M. High-Rate Supercapacitor Based on NiCo-MOF-Derived Porous NiCoP for Efficient Energy Storage. J. Mater. Sci. Mater. Electron. 2021, 32, 13117–13128. [Google Scholar] [CrossRef]
- Najafi, M.; Rahimi, R. Synthesis of Novel Zr-MOF/Cloisite-30B Nanocomposite for Anionic and Cationic Dye Adsorption: Optimization by Design-Expert, Kinetic, Thermodynamic, and Adsorption Study. J. Inorg. Organomet. Polym. Mater. 2023, 33, 138–150. [Google Scholar] [CrossRef]
- Nair, S.S.; Illyaskutty, N.; Tam, B.; Yazaydin, A.O.; Emmerich, K.; Steudel, A.; Hashem, T.; Schöttner, L.; Wöll, C.; Kohler, H. ZnO@ZIF-8: Gas Sensitive Core-Shell Hetero-Structures Show Reduced Cross-Sensitivity to Humidity. Sens. Actuators B Chem. 2020, 304, 127184. [Google Scholar] [CrossRef]
- Liu, C.Q.; Li, D.W.; Tang, W. Enhanced Ethanol Sensors Based on MOF-Derived ZnO/Co3O4 Bimetallic Oxides with High Selectivity and Improved Stability. Vacuum 2023, 214, 112185. [Google Scholar] [CrossRef]
- Arul, C.; Moulaee, K.; Donato, N.; Iannazzo, D.; Lavanya, N.; Neri, G.; Sekar, C. Temperature Modulated Cu-MOF Based Gas Sensor with Dual Selectivity to Acetone and NO2 at Low Operating Temperatures. Sens. Actuators B Chem. 2021, 329, 129053. [Google Scholar] [CrossRef]
- Wei, Q.; Sun, J.; Song, P.; Li, J.; Yang, Z.X.; Wang, Q. Spindle-like Fe2O3/ZnFe2O4 Porous Nanocomposites Derived from Metal-Organic Frameworks with Excellent Sensing Performance Towards Triethylamine. Sens. Actuators B Chem. 2020, 317, 128205. [Google Scholar] [CrossRef]
- Qin, W.B.; Yuan, Z.Y.; Gao, H.L.; Zhang, R.Z.; Meng, F.L. Perovskite-Structured LaCoO3 Modified ZnO Gas Sensor and Investigation on Its Gas Sensing Mechanism by First Principle. Sens. Actuators B Chem. 2021, 341, 130015. [Google Scholar] [CrossRef]
- Zhou, Q.; Zeng, W.; Chen, W.G.; Xu, L.N.; Kumar, R.; Umar, A. High Sensitive and Low-Concentration Sulfur Dioxide (SO2) Gas Sensor Application of Heterostructure NiO-ZnO Nanodisks. Sens. Actuators B Chem. 2019, 298, 126870. [Google Scholar] [CrossRef]
- Chang, X.; Li, X.F.; Qiao, X.R.; Li, K.; Xiong, Y.; Li, X.; Guo, T.C.; Zhu, L.; Xue, Q.Z. Metal-Organic Frameworks Derived ZnO@MoS2 Nanosheets Core/Shell Heterojunctions for ppb-Level Acetone Detection: Ultra-Fast Response and Recovery. Sens. Actuators B Chem. 2020, 304, 127430. [Google Scholar] [CrossRef]
- Zhan, M.M.; Ge, C.X.; Hussain, S.; Alkorbi, A.S.; Alsaiari, R.; Alhemiary, N.A.; Qiao, G.J.; Liu, G.W. Enhanced No2 Gas-Sensing Performance by Core-Shell SnO2/ZIF-8 Nanospheres. Chemosphere 2022, 291, 132842. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.X.; Xu, Y.J.; Ma, C.Y.; He, W.M. In-Situ Growth of Co3O4 Nanoparticles Based on Electrospray for an Acetone Gas Sensor. J. Alloys Compd. 2021, 854, 157234. [Google Scholar] [CrossRef]
- Fan, X.X.; Wang, J.F.; Sun, C.L.; Huang, C.; Lu, Y.J.; Dai, P.; Xu, Y.J.; He, W.M. Effect of Pr/Zn on the Anti-Humidity and Acetone-Sensing Properties of Co3O4 Prepared by Electrospray. RSC Adv. 2022, 12, 19384–19393. [Google Scholar] [CrossRef]
- Fan, X.-X.; He, X.-L.; Li, J.-P.; Gao, X.-G.; Jia, J. Ethanol Sensing Properties of Hierarchical SnO2 Fibers Fabricated with Electrospun Polyvinylpyrrolidone Template. Vacuum 2016, 128, 112–117. [Google Scholar] [CrossRef]
- Xiong, Y.; Xu, W.-W.; Zhu, Z.Y.; Xue, Q.Z.; Lu, W.B.; Ding, D.G.; Zhu, L. ZIF-Derived Porous ZnO-Co3O4 Hollow Polyhedrons Heterostructure with Highly Enhanced Ethanol Detection Performance. Sens. Actuators B Chem. 2017, 253, 523–532. [Google Scholar] [CrossRef]
- Qu, F.D.; Thomas, T.; Zhang, B.X.; Zhou, X.-X.; Zhang, S.D.; Ruan, S.P.; Yang, M.H. Self-Sacrificing Templated Formation of Co3O4/ZnCo2O4 Composite Hollow Nanostructures for Highly Sensitive Detecting Acetone Vapor. Sens. Actuators B Chem. 2018, 273, 1202–1210. [Google Scholar] [CrossRef]
- Cheng, P.F.; Lv, L.; Wang, Y.L.; Zhang, B.; Zhang, Y.; Zhang, Y.Q.; Lei, Z.H.; Xu, L.P. SnO2/ZnSnO3 Double-Shelled Hollow Microspheres Based High-Performance Acetone Gas Sensor. Sens. Actuators B Chem. 2021, 332, 129212. [Google Scholar] [CrossRef]
- Lee, J.; Choi, Y.; Park, B.J.; Han, J.W.; Lee, H.-S.; Park, J.H.; Lee, W. Precise Control of Surface Oxygen Vacancies in ZnO Nanoparticles for Extremely High Acetone Sensing Response. J. Adv. Ceram. 2022, 11, 769–783. [Google Scholar] [CrossRef]
- Reddeppa, M.; Park, B.-G.; Murali, G.; Choi, S.H.; Chinh, N.D.; Kim, D.; Yang, W.; Kim, M.-D. NOx Gas Sensors Based on Layer-Transferred N-MoS2/P-GaN Heterojunction at Room Temperature: Study of UV Light Illuminations and Humidity. Sens. Actuators B Chem. 2020, 308, 127700. [Google Scholar] [CrossRef]
- Wang, S.M.; Cao, J.; Cui, W.; Fan, L.L.; Li, X.; Li, D.J.; Zhang, T. One-Dimensional Porous Co3O4 Rectangular Rods for Enhanced Acetone Gas Sensing Properties. Sens. Actuators B Chem. 2019, 297, 126746. [Google Scholar] [CrossRef]
- Xu, K.; Zhao, W.; Yu, X.; Duan, S.L.; Zeng, W. MOF-Derived Co3O4/Fe2O3 PN Hollow Cubes for Improved Acetone Sensing Characteristics. Phys. E 2020, 118, 113869. [Google Scholar] [CrossRef]
- Qu, F.D.; Jiang, H.F.; Yang, M.H. MOF-Derived Co3O4/NiCo2O4 Double-Shelled Nanocages with Excellent Gas Sensing Properties. Mater. Lett. 2017, 190, 75–78. [Google Scholar] [CrossRef]
- Koo, W.-T.; Yu, S.; Choi, S.-J.; Jang, J.-S.; Cheong, J.Y.; Kim, I.-D. Nanoscale PdO Catalyst Functionalized Co3O4 Hollow Nanocages Using MOF Templates for Selective Detection of Acetone Molecules in Exhaled Breath. ACS Appl. Mater. Interfaces 2017, 9, 8201–8210. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Zhao, W.; Yu, X.; Duan, S.L.; Zeng, W. Enhanced Ethanol Sensing Performance Using Co3O4–ZnSnO3 Arrays Prepared on Alumina Substrates. Phys. E 2020, 117, 113825. [Google Scholar] [CrossRef]
- Li, P.P.; Jin, H.Q.; Yu, J.; Chen, W.M.; Zhao, R.Q.; Cao, C.Y.; Song, W.G. NO2 Sensing with CdS Nanowires at Room Temperature under Green Light Illumination. Mater. Futures 2022, 1, 025303. [Google Scholar] [CrossRef]
- Srirattanapibul, S.; Nakarungsee, P.; Issro, C.; Tang, I.-M.; Thongmee, S. Enhanced Room Temperature NH3 Sensing of rGO/Co3O4 Nanocomposites. Mater. Chem. Phys. 2021, 272, 125033. [Google Scholar] [CrossRef]
- Kim, H.-J.; Lee, J.-H. Highly Sensitive and Selective Gas Sensors Using P-Type Oxide Semiconductors: Overview. Sens. Actuators B Chem. 2014, 192, 607–627. [Google Scholar] [CrossRef]
Material | Operating Temperature | Response | Detection Limit | References |
---|---|---|---|---|
Co3O4 rectangular rods | 200 °C | 1.94 (50 ppm) | 5 ppm | [42] |
Co3O4/Fe2O3 hollow cubes | 250 °C | 2.27 (100 ppm) | 1 ppm | [43] |
Co3O4/NiCo2O4 nanocages | 238.9 °C | 2.09 (100 ppm) | - | [44] |
PdO-Co3O4 hollow Nanocages | 350 °C | 1.51 (5 ppm) | 0.1 ppm | [45] |
Co3O4/ZnSnO3 nanorod array | 250 °C | 2.61 (100 ppm) | - | [46] |
Co3O4@ZnO microspheres | 250 °C | 2.3 (50 ppm) | 0.5 ppm | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, X.; Yang, S.; Huang, C.; Lu, Y.; Dai, P. Preparation and Enhanced Acetone-Sensing Properties of ZIF-8-Derived Co3O4@ZnO Microspheres. Chemosensors 2023, 11, 376. https://doi.org/10.3390/chemosensors11070376
Fan X, Yang S, Huang C, Lu Y, Dai P. Preparation and Enhanced Acetone-Sensing Properties of ZIF-8-Derived Co3O4@ZnO Microspheres. Chemosensors. 2023; 11(7):376. https://doi.org/10.3390/chemosensors11070376
Chicago/Turabian StyleFan, Xiangxiang, Susu Yang, Chun Huang, Yujie Lu, and Pan Dai. 2023. "Preparation and Enhanced Acetone-Sensing Properties of ZIF-8-Derived Co3O4@ZnO Microspheres" Chemosensors 11, no. 7: 376. https://doi.org/10.3390/chemosensors11070376
APA StyleFan, X., Yang, S., Huang, C., Lu, Y., & Dai, P. (2023). Preparation and Enhanced Acetone-Sensing Properties of ZIF-8-Derived Co3O4@ZnO Microspheres. Chemosensors, 11(7), 376. https://doi.org/10.3390/chemosensors11070376