Proving the Formation of Carbonic Acid Hemiesters Using Self-Assembled Monolayers and Electrochemistry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Modification of the Gold Electrode with Mercaptoethanol
2.3. Electrochemical Measurements
3. Results
Electrochemical Characterization of a Gold Electrode Modified with 2-Mercaptoethanol
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- dos Santos, V.B.; Vidal, D.T.; Francisco, K.J.; Ducati, L.C.; do Lago, C.L. Formation of isomers of anionic hemiesters of sugars and carbonic acid in aqueous medium. Carbohydr. Res. 2016, 428, 18–22. [Google Scholar] [CrossRef]
- Vidal, D.T.R.; Nogueira, T.; Saito, R.M.; do Lago, C.L. Investigating the formation and the properties of monoalkyl carbonates in aqueous medium using capillary electrophoresis with capacitively coupled contactless conductivity detection. Electrophoresis 2011, 32, 850–856. [Google Scholar] [CrossRef]
- Dumas, J.B.; Peligot, E. Sur le Carbrbovinate de Potasse. Compte Rendu 1837, 4, 563–565. [Google Scholar]
- Habermann, J. Über die Elektrolyse organischer Substanzen. Monatshefte Chem. Verwandte Teile Anderer Wiss. 1886, 7, 529–551. [Google Scholar] [CrossRef]
- Hempel, W.; Seidel, J. Über verbindungen des kohlendioxyds mit wasser, aethyläther und alkoholen. Berichte Der Dtsch. Chem. Ges. 1898, 31, 2997–3001. [Google Scholar] [CrossRef]
- Siegfried, M.; Howwjanz, S. On the bond of carbonic acid by alcohols, sugars and oxy acids. HS Z Physiol. Chem. 1909, 59, 376–404. [Google Scholar] [CrossRef]
- do Lago, C.L.; Vidal, D.T.; Rossi, M.R.; Hotta, G.M.; da Costa, E.T. On the formation of carbonate adducts of fatty alcohols, sterols, and sugars in biological conditions. Electrophoresis 2012, 33, 2102–2111. [Google Scholar] [CrossRef]
- Cieslarova, Z.; dos Santos, V.B.; do Lago, C.L. Both carbamates and monoalkyl carbonates are involved in carbon dioxide capture by alkanolamines. Int. J. Greenh. Gas Control 2018, 76, 142–149. [Google Scholar] [CrossRef]
- Behrens, R.; von Harbou, E.; Thiel, W.R.; Böttinger, W.; Ingram, T.; Sieder, G.; Hasse, H. Monoalkylcarbonate formation in methyldiethanolamine–H2O–CO2. Ind. Eng. Chem. Res. 2017, 56, 9006–9015. [Google Scholar] [CrossRef]
- Behrens, R.; Kessler, E.; Münnemann, K.; Hasse, H.; von Harbou, E. Monoalkylcarbonate formation in the system monoethanolamine–water–carbon dioxide. Fluid Phase Equilibria 2019, 486, 98–105. [Google Scholar] [CrossRef]
- Rossi, M.R.; Vidal, D.T.R.; do Lago, C.L. Monoalkyl carbonates in carbonated alcoholic beverages. Food Chem. 2012, 133, 352–357. [Google Scholar] [CrossRef]
- do Lago, C.L.; Francisco, K.J.M.; Daniel, D.; Vidal, D.T.R.; dos Santos, V.B. A capillary electrophoresis/tandem mass spectrometry approach for the determination of monoalkyl carbonates. RSC Adv. 2014, 4, 19674–19679. [Google Scholar] [CrossRef]
- Bernard, J.; Köck, E.M.; Huber, R.G.; Liedl, K.R.; Call, L.; Schlögl, R.; Grothe, H.; Loerting, T. Carbonic acid monoethyl ester as a pure solid and its conformational isomerism in the gas-phase. RSC Adv. 2017, 7, 22222–22233. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Kaur, N.; Comini, E. The role of self-assembled monolayers in electronic devices. J. Mater. Chem. C 2020, 8, 3938–3955. [Google Scholar] [CrossRef]
- Mirsky, V.M. New electroanalytical applications of self-assembled monolayers. TrAC Trends Anal. Chem. 2002, 21, 439–450. [Google Scholar] [CrossRef]
- Casalini, S.; Bortolotti, C.A.; Leonardi, F.; Biscarini, F. Self-assembled monolayers in organic electronics. Chem. Soc. Rev. 2017, 46, 40–71. [Google Scholar] [CrossRef]
- Nicosia, C.; Huskens, J. Reactive self-assembled monolayers: From surface functionalization to gradient formation. Mater. Horiz. 2014, 1, 32–45. [Google Scholar] [CrossRef]
- Kudelski, A. Chemisorption of 2-mercaptoethanol on silver, copper, and gold: Direct Raman evidence of acid-induced changes in adsorption/desorption equilibria. Langmuir 2003, 19, 3805–3813. [Google Scholar] [CrossRef]
- Paik, W.K.; Han, S.; Shin, W.; Kim, Y. Adsorption of carboxylic acids on gold by anodic reaction. Langmuir 2003, 19, 4211–4216. [Google Scholar] [CrossRef]
- Weissham, D.E.; Walczak, M.M.; Porter, M.D. Electrochemically induced transformations of monolayers formed by self-assembly of mercaptoethanol at gold. Langmuir 1993, 9, 323–329. [Google Scholar] [CrossRef]
- Wang, W.; Lee, T.; Reed, M.A. Mechanism of electron conduction in self-assembled alkanethiol monolayer devices. Phys. Rev. 2003, 68, 035416. [Google Scholar] [CrossRef]
- Busenberg, E.; Plummer, L.N. The solubility of BaCO3 (cr)(witherite) in CO2-H2O solutions between 0 and 90 °C, evaluation of the association constants of BaHCO3+ (aq) and BaCO3 (aq) between 5 and 80 °C, and a preliminary evaluation of the thermodynamic properties of Ba2+ (aq). Geochim. Cosmochim. Acta 1986, 50, 2225–2233. [Google Scholar] [CrossRef]
- Lazanas, A.C.; Prodromidis, M.I. Electrochemical Impedance Spectroscopy—A Tutorial. ACS Meas. Sci. Au 2023, 3, 162–193. [Google Scholar] [CrossRef]
- Laschuk, N.O.; Easton, E.B.; Zenkina, O.V. Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry. RSC Adv. 2021, 11, 27925. [Google Scholar] [CrossRef]
- Jordan, J.; Ewing, G.J. The Protonation of Hexacyanoferrates. Inorg. Chem. 1962, 1, 587–591. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, B.G.; Carli, F.P.; do Lago, C.L.; Gutz, I.G.R.; Angnes, L. Proving the Formation of Carbonic Acid Hemiesters Using Self-Assembled Monolayers and Electrochemistry. Chemosensors 2025, 13, 93. https://doi.org/10.3390/chemosensors13030093
Santos BG, Carli FP, do Lago CL, Gutz IGR, Angnes L. Proving the Formation of Carbonic Acid Hemiesters Using Self-Assembled Monolayers and Electrochemistry. Chemosensors. 2025; 13(3):93. https://doi.org/10.3390/chemosensors13030093
Chicago/Turabian StyleSantos, Berlane G., Fernanda P. Carli, Claudimir L. do Lago, Ivano G. R. Gutz, and Lúcio Angnes. 2025. "Proving the Formation of Carbonic Acid Hemiesters Using Self-Assembled Monolayers and Electrochemistry" Chemosensors 13, no. 3: 93. https://doi.org/10.3390/chemosensors13030093
APA StyleSantos, B. G., Carli, F. P., do Lago, C. L., Gutz, I. G. R., & Angnes, L. (2025). Proving the Formation of Carbonic Acid Hemiesters Using Self-Assembled Monolayers and Electrochemistry. Chemosensors, 13(3), 93. https://doi.org/10.3390/chemosensors13030093