The Potential of Scopolamine as an Antidepressant in Major Depressive Disorder: A Systematic Review of Randomized Controlled Trials
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- U.S. Department of Veterans Affairs. U.S. Department of Defense. VA/DoD Clinical Practice Guideline. In The Management of Major Depressive Disorder; U.S. Government Printing Office: Washington, DC, USA, 2022. [Google Scholar]
- American Psychological Association. Clinical Practice Guideline for the Treatment of Depression across Three Age Cohorts. 2019. Available online: https://www.apa.org/depression-guideline (accessed on 6 July 2023).
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Wells, K.B.; Sherbourne, C.D. Functioning and utility of current health of patients with depression or chronic medical conditions in managed, primary care practices. Arch. Gen. Psychiatry 1999, 56, 897–904. [Google Scholar] [CrossRef] [PubMed]
- Brenes, G.A. Anxiety, depression, and quality of life in primary care patients. Prim. Care Companion J. Clin. Psychiatry 2007, 9, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Chen, C. Editorial: Towards a mechanistic understanding of depression, anxiety, and their comorbidity: Perspectives from cognitive neuroscience. Front. Behav. Neurosci. 2023, 17, 1268156. [Google Scholar] [CrossRef] [PubMed]
- Sobolewska-Nowak, J.; Wachowska, K.; Nowak, A.; Orzechowska, A.; Szulc, A.; Płaza, O.; Gałecki, P. Exploring the Heart–Mind Connection: Unraveling the Shared Pathways between Depression and Cardiovascular Diseases. Biomedicines 2023, 11, 1903. [Google Scholar] [CrossRef]
- Rajan, S.; McKee, M.; Rangarajan, S.; Bangdiwala, S.; Rosengren, A.; Gupta, R.; Raman Kutty, V.; Wielgosz, A.; Lear, S.; AlHabib, K.F.; et al. Association of Symptoms of Depression with Cardiovascular Disease and Mortality in Low-, Middle-, and High-Income Countries. JAMA Psychiatry 2020, 77, 1052–1063. [Google Scholar] [CrossRef]
- Cañas-González, B.; Fernández-Nistal, A.; Ramírez, J.M.; Martínez-Fernández, V. Influence of Stress and Depression on the Immune System in Patients Evaluated in an Anti-aging Unit. Front. Psychol. 2020, 11, 1844. [Google Scholar] [CrossRef]
- Machado, M.O.; Veronese, N.; Sanches, M.; Stubbs, B.; Koyanagi, A.; Thompson, T.; Tzoulaki, I.; Solmi, M.; Vancampfort, D.; Schuch, F.B.; et al. The association of depression and all-cause and cause-specific mortality: An umbrella review of systematic reviews and meta-analyses. BMC Med. 2018, 16, 112. [Google Scholar] [CrossRef]
- Institute of Health Metrics and Evaluation. Global Health Data Exchange (GHDx). Available online: https://vizhub.healthdata.org/gbd-results/ (accessed on 6 July 2023).
- World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 6 July 2023).
- COVID-19 Mental Disorders Collaborators. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet 2021, 398, 1700–1712. [Google Scholar] [CrossRef]
- World Health Organization. Available online: https://www.who.int/news/item/02-03-2022-covid-19-pandemic-triggers-25-increase-in-prevalence-of-anxiety-and-depression-worldwide (accessed on 6 July 2023).
- Ettman, C.K.; Abdalla, S.M.; Cohen, G.H.; Sampson, L.; Viver, P.K.; Galea, S.G. Prevalence of Depression Symptoms in US Adults Before and During the COVID-19 Pandemic. JAMA Netw. Open 2020, 3, e2019686. [Google Scholar] [CrossRef]
- Culpepper, L.; Higa, S.; Martin, A.; Gillard, P.; Parikh, M.; Harrington, A. Direct and Indirect Costs Associated with Major Depressive Disorder. Value Health 2022, 25, S296. [Google Scholar] [CrossRef]
- Chow, W.; Doane, M.J.; Sheehan, J.; Alphs, L.; Le, H. Economic Burden Among Patients with Major Depressive Disorder: An Analysis of Healthcare Resource Use, Work Productivity, and Direct and Indirect Costs by Depression Severity. Am. J. Manag. Care 2019, 1–4. Available online: https://cdn.sanity.io/files/0vv8moc6/ajmc/00b6df5f89156e2f418a8a70ad29cbc7e3698d81.pdf/AJMC_A896_02_2019_EconomicBurden.pdf (accessed on 13 September 2023).
- Braund, T.A.; Tillman, G.; Palmer, D.M.; Gordon, E.; Rush, A.J.; Harris, A.W.F. Antidepressant side effects and their impact on treatment outcome in people with major depressive disorder: An iSPOT-D report. Transl. Psychiatry 2021, 11, 417. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, M.A.; Framer, A.; Hengartner, M.P.; Sorensen, A.; Taylor, D. Estimating Risk of Antidepressant Withdrawal from a Review of Published Data. CNS Drugs 2023, 37, 143–157. [Google Scholar] [CrossRef] [PubMed]
- Healy, D. The Antidepressant Era; Harvard University Press: Cambridge, MA, USA; London, UK, 1999. [Google Scholar]
- McIntyre, M.S. Targeting unmet needs in the treatment of major depressive disorder. Curr Psychiatry 2019, 18, S1–S4. [Google Scholar]
- Berman, R.M.; Cappiello, A.; Anand, A.; Oren, D.A.; Heninger, G.R.; Charney, D.S.; Krystal, J.H. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 2000, 47, 351–354. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Vlisides, P.E. Ketamine: 50 Years of Modulating the Mind. Front. Hum. Neurosci. 2016, 10, 612. [Google Scholar] [CrossRef]
- Janowsky, D.S.; el Yousef, M.K.; Davis, J.M.; Sekerke, H.J. A cholinergic-adrenergic hypothesis of mania and depression. Lancet 1972, 2, 632–635. [Google Scholar] [CrossRef]
- Risch, S.C.; Kalin, N.H.; Janowsky, D.S. Cholinergic challenges in affective illness: Behavioral and neuroendocrine correlates. J. Clin. Psychopharmacol. 1981, 1, 186–192. [Google Scholar] [CrossRef]
- Furey, M.L.; Drevets, W.C. Antidepressant efficacy of the antimuscarinic drug scopolamine—A randomized, placebo-controlled clinical trial. Arch. Gen. Psychiatry 2006, 63, 1121–1129. [Google Scholar] [CrossRef]
- Drevets, W.C.; Furey, M.L. Replication of Scopolamine’s Antidepressant Efficacy in Major Depressive Disorder: A Randomized, Placebo-Controlled Clinical Trial. Biol. Psychiatry 2010, 67, 432–438. [Google Scholar] [CrossRef]
- Johnson, C.R.; Kangas, B.D.; Jutkiewicz, E.M.; Bergman, J.; Coop, A. Drug Design Targeting the Muscarinic Receptors and the Implications in Central Nervous System Disorders. Biomedicines 2022, 10, 398. [Google Scholar] [CrossRef]
- Corsetti, M.; Forestier, S.; Jimenez, M. Hyoscine butylbromide mode of action on bowel motility: From pharmacology to clinical practice. Neurogastroenterol. Motil. 2023, 35, e14451. [Google Scholar] [CrossRef]
- Drugbank Online. Available online: https://go.drugbank.com/drugs/DB00747 (accessed on 6 July 2023).
- Wess, J. Molecular Biology of Muscarinic Acetylcholine Receptors. Crit. Rev. Neurobiol. 2023, 10, 69–99. [Google Scholar] [CrossRef] [PubMed]
- Nathanson, N.M. A multiplicity of muscarinic mechanisms: Enough signaling pathways to take your breath away. Proc. Natl. Acad. Sci. USA 2000, 97, 6245–6247. [Google Scholar] [CrossRef] [PubMed]
- Voleti, B.; Navarria, A.; Liu, R.-J.; Banasr, M.; Li, N.; Terwilliger, R.; Sanacora, G.; Eid, T.; Aghajanian, G.; Duman, R.S. Scopolamine Rapidly Increases Mammalian Target of Rapamycin Complex 1 Signaling, Synaptogenesis, and Antidepressant Behavioral Responses. Biol. Psychiatry 2013, 74, 742–749. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.E.; Schober, D.A.; Nikolayev, A.; Tolstikov, V.V.; Anderson, W.H.; Higgs, R.E.; Kuo, M.S.; Laksmanan, A.; Catlow, J.T.; Li, X.; et al. Further Evaluation of Mechanisms Associated with the Antidepressantlike Signature of Scopolamine in Mice. CNS Neurol. Disord. Drug Targets 2017, 16, 492–500. [Google Scholar] [CrossRef]
- Ghosal, S.; Bang, E.; Yue, W.; Hare, B.D.; Lepack, A.E.; Girgenti, M.J.; Duman, R.S. Activity-Dependent Brain-Derived Neurotrophic Factor Release Is Required for the Rapid Antidepressant Actions of Scopolamine. Biol. Psychiatry 2018, 83, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Hoeffer, C.A.; Klann, E. mTOR signaling: At the crossroads of plasticity, memory and disease. Trends Neurosci. 2010, 33, 67–75. [Google Scholar] [CrossRef]
- Newhouse, P.A.; Sunderland, T.; Tariot, P.N.; Weingartner, H.; Thompson, K.; Mellow, A.M.; Cohen, R.M.; Murphy, D.L. The effects of acute scopolamine in geriatric depression. Arch. Gen. Psychiatry 1988, 45, 906Y912. [Google Scholar] [CrossRef]
- Jaffe, R.J.; Novakovic, V.; Peselow, E.D. Scopolamine as an antidepressant: A systematic review. Clin. Neuropharmacol. 2013, 36, 24–26. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, H.J.; Welch, W.A. Cochrane Handbook for Systematic Reviews of Interventions, 2nd ed.; John Wiley and Sons: Chichester, UK, 2019. [Google Scholar]
- McGuinness, L.A.; Higgins, J.P.T. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res. Synth. Methods 2021, 12, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Khajavi, D.; Farokhnia, M.; Modabbernia, A.; Ashrafi, M.; Abbasi, S.H.; Tabrizi, M.; Akhondzadeh, S. Oral scopolamine augmentation in moderate to severe major depressive disorder: A randomized, double-blind, placebo-controlled study. J. Clin. Psychiatry 2012, 73, 1428–1433. [Google Scholar] [CrossRef]
- Park, L.; Furey, M.; Nugent, A.C.; Farmer, C.; Ellis, J.; Szczepanik, J.; Lener, M.S.; Zarate, C.A., Jr. Neurophysiological Changes Associated with Antidepressant Response to Ketamine Not Observed in a Negative Trial of Scopolamine in Major Depressive Disorder. Int. J. Neuropsychopharmacol. 2019, 22, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Yang, J.; Zhu, X.; Zghoul, T.; Feng, L.; Chen, R.; Wang, G. The effects of intramuscular administration of scopolamine augmentation in moderate to severe major depressive disorder: A randomized, double-blind, placebo-controlled trial. Ther. Adv. Psychopharmacol. 2020, 10, 2045125320938556. [Google Scholar] [CrossRef]
- Chen, J.C.C.; Sumner, R.L.; Naga, V.K.; Hoeh, N.; Ayeni, H.A.; Singh, V.; Wilson, A.; Campbell, D.; Sundram, F.; Muthukumaraswamy, S.D.A. Randomized Controlled Trial of Intravenous Scopolamine Versus Active-Placebo Glycopyrrolate in Patients with Major Depressive Disorder. J. Clin. Psychiatry 2022, 83, 21m14310. [Google Scholar] [CrossRef]
- Ellis, J.S.; Zarate, C.Z., Jr.; Luckenbaugh, D.A.; Furey, M. Antidepressant treatment history as a predictor of response to scopolamine: Clinical implications. J. Affect. Disord. 2014, 162, 39–42. [Google Scholar] [CrossRef]
- Miravalles, C.; Kane, R.; McMahon, E.; McDonald, C.; Cannon, D.M.; Hallahan, B. Efficacy and safety of scopolamine compared to placebo in individuals with bipolar disorder who are experiencing a depressive episode (SCOPE-BD): Study protocol for a randomised double-blind placebo-controlled trial. Trials 2022, 23, 339. [Google Scholar] [CrossRef]
- Clinicaltrials.gov. NCT03386448: The Safety and Efficacy of Naltrexone and Scopolamine Utilized in the Treatment of Major Depression. Available online: https://www.clinicaltrials.gov/study/NCT03386448 (accessed on 26 June 2023).
Reference | Type of Study | N (Scopolamine vs. Control Group); % Male; Average Age [Years]; Baseline HDRS/HAMA/MADRS Score [Mean ± SD] | Scopolamine vs. Control Group |
---|---|---|---|
Khajavi et al. [43] | RCT, two-center, placebo control, double-blind, parallel-group, phase II–III | N = 40 (20 vs. 20) Male: 40% vs. 35% Average age: 37.8 vs. 36.6 Baseline HDRS: 24.5 ± 2.2 vs. 24.2 ± 2.3 | Oral scopolamine 0.5 mg twice daily + citalopram 20 mg daily for first week than 40 mg daily for 5 weeks vs. placebo + citalopram 20 mg daily for first week than 40 mg daily for 5 weeks |
Park et al. [44] | RCT, single-center, placebo control, single-blind, crossover trial | N = 23 (12 vs. 11) Male: 33% vs. 63% Average age: 40.42 vs. 32.91 Baseline HAM-A: 25.73 ± 8.33 vs. 19 ± 5.67 Baseline MADRS: 34.08 ± 4.25 vs. 31.64 ± 4.2 | Scopolamine 4 μg/kg IV /placebo vs. placebo/scopolamine 4 μg/kg IV |
Zhou et al. [45] | RCT, single-center, double-blind, parallel-group, three-arm study | N = 66 (22 vs. 22 vs. 22) Male: 27% vs. 32% vs. 45% Average age: 25.7 vs. 26.5 vs. 27.1 Baseline HDRS17 25.7 ± 4.7 vs. 25.4 ± 4.2 vs. 24.5 ± 5.0 Baseline MADRS: 32.2 ± 5.8 vs. 33.5 ± 6.4 vs. 31.0 ± 7.9 | Low-dose (scopolamine 0.3 mg IM once daily + oral escitalopram 10 mg/day + IM saline once daily) vs. high-dose (scopolamine 0.3 mg IM twice daily + oral escitalopram 10 mg/day) vs. placebo (oral escitalopram 10 mg/day + IM saline twice daily) |
Chen et al. [46] | RCT, double-blind, parallel-group, phase II–III | N = 40 (24 [all scopolamine groups] vs. 16) Male: 38% vs. 19% Average age: 33.0 vs. 37.8 Baseline MADRS: 28.3 ± 4.3 vs. 27.7 ± 4.4 | Scopolamine 4 μg/kg IV vs. scopolamine 5 μg/kg IV vs. scopolamine 6 μg/kg IV vs. glycopyrronium bromide 4 μg/kg IV |
Reference | Change in MADRS or HDRS, Mean [95% CI] | Response or Remission Rate | Safety—AEs, SAEs |
---|---|---|---|
Khajavi et al. [43] | Scopolamine oral vs. placebo (after 42 days): HDRS: −3.2 [−5.1; −1.4], p = 0.001 | Scopolamine oral vs. placebo (after 42 days): response (50% reduction in HDRS): RR = 0.495 [0.32; 0.65], p = 0.231 remission: RR = 0.34 [95% CI: 0.14; 0.83], p = 0.004 | Scopolamine oral vs. placebo (after 42 days): AEs: no information provided SAEs: 0% vs. 0% |
Park et al. [44] | Scopolamine IV vs. placebo: HAM-A and MADRS: no differences between groups | Scopolamine IV vs. placebo: response (50% reduction in MADRS): 8% vs. 0%; remission (MADRS ≤ 10): 4% vs. 0% | Scopolamine IV vs. placebo: AEs: no information provided SAEs: 0% vs. 0% |
Zhou et al. [45] | Scopolamine high dose IM vs. placebo: HDRS17: 0.2 [−1.0; 1.5] MADRS: 0.4 [−1.4; 2.2] Scopolamine low dose IM vs. placebo: HDRS17: 0.4 [−0.9; 1.7] MADRS: 0.8 [−0.9; 2.5] | Scopolamine low dose IM vs. scopolamine high dose IM vs. placebo: response (50% reduction in HDRS17) for all groups (cumulative): 72.7% remission (HDRS17 ≤ 7) for all groups (cumulative): 47.0% | Scopolamine low dose IM vs. scopolamine high dose IM vs. placebo: AEs: 100% vs. 90.9% vs. 70%, p = 0.0024 SAEs: no information provided |
Chen et al. [46] | Scopolamine IV vs. glycopyrronium (placebo): MADRS: no differences between groups | Scopolamine IV vs. glycopyrronium (placebo): response (50% reduction in MADRS at 1 or 3 day): OR = 1.8 [95% CI: 0.6; 5.5] remission: no information provided | Scopolamine IV vs. glycopyrronium (placebo): AEs: no information provided SAEs: 0% vs. 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moćko, P.; Śladowska, K.; Kawalec, P.; Babii, Y.; Pilc, A. The Potential of Scopolamine as an Antidepressant in Major Depressive Disorder: A Systematic Review of Randomized Controlled Trials. Biomedicines 2023, 11, 2636. https://doi.org/10.3390/biomedicines11102636
Moćko P, Śladowska K, Kawalec P, Babii Y, Pilc A. The Potential of Scopolamine as an Antidepressant in Major Depressive Disorder: A Systematic Review of Randomized Controlled Trials. Biomedicines. 2023; 11(10):2636. https://doi.org/10.3390/biomedicines11102636
Chicago/Turabian StyleMoćko, Paweł, Katarzyna Śladowska, Paweł Kawalec, Yana Babii, and Andrzej Pilc. 2023. "The Potential of Scopolamine as an Antidepressant in Major Depressive Disorder: A Systematic Review of Randomized Controlled Trials" Biomedicines 11, no. 10: 2636. https://doi.org/10.3390/biomedicines11102636
APA StyleMoćko, P., Śladowska, K., Kawalec, P., Babii, Y., & Pilc, A. (2023). The Potential of Scopolamine as an Antidepressant in Major Depressive Disorder: A Systematic Review of Randomized Controlled Trials. Biomedicines, 11(10), 2636. https://doi.org/10.3390/biomedicines11102636