Bioactive Steroids Bearing Oxirane Ring
Abstract
:1. Introduction
2. Steroids Bearing a 4,5-Epoxy Group
3. Steroids Bearing a 5,6-Epoxy Group
4. Steroids Bearing 7,8- and 8,9-Epoxy Groups
5. Steroids Bearing 8,14-, 9,11- and 11,12-Epoxy Groups
6. Steroids Bearing a 17,20-Epoxy Group
7. Steroids Bearing a 22,23-Epoxy Group
8. Miscellaneous Steroids with α,β-Epoxy Group Derived from Different Sources
9. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Walsh, A.D. The structures of ethylene oxide, cyclopropane, and related molecules. Trans. Faraday Soc. 1949, 45, 179–190. [Google Scholar] [CrossRef]
- Fahy, E.; Cotter, D.; Sud, M.; Subramaniam, S. Lipid classification, structures, and tools. Biochim. Biophys. Acta 2011, 1811, 637–647. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.; Taddeo, F.; Aguilera, A.F.; Cai, X.; Russo, V.; Tolvanen, P.; Leveneur, S. The lord of the chemical rings: Catalytic synthesis of important industrial epoxide compounds. Catalysts 2021, 11, 765. [Google Scholar] [CrossRef]
- Huisgen, R. Electrocyclic ring opening reactions of ethylene oxides. Angew. Chem. Int. Ed. 1977, 16, 572–585. [Google Scholar] [CrossRef]
- Moser, B.R.; Cermak, S.C.; Doll, K.M.; Kenar, J.A.; Sharma, B.K. A review of fatty epoxide ring-opening reactions: Chemistry, recent advances, and applications. J. Am. Oil Chem. Soc. 2022, 99, 801–842. [Google Scholar] [CrossRef]
- Meninno, S.; Lattanzi, A. Organocatalytic asymmetric reactions of epoxides: Recent progress. Chem. Eur. J. 2016, 22, 3632–3642. [Google Scholar] [CrossRef]
- Bhosale, S.V.; Bhosale, S.V. β-Cyclodextrin as a catalyst in organic synthesis. Mini-Rev. Org. Chem. 2007, 4, 143–157. [Google Scholar]
- Singh, G.S.; Mollet, K.; D’hooghe, M.; De Kimpe, N. Epihalohydrins in organic synthesis. Chem. Rev. 2013, 113, 1441–1498. [Google Scholar] [CrossRef]
- Moss, G.P. Nomenclature of steroids. Pure Appl. Chem. 1989, 61, 1783–1822. [Google Scholar] [CrossRef]
- Russel, C.A. Organic chemistry: Natural products, steroids. In Chemical History: Reviews of the Recent Literature; Russell, C.A., Roberts, G.K., Eds.; RSC Publ.: Cambridge, UK, 2005. [Google Scholar]
- Dembitsky, V.M.; Kuklev, D.V. Acetylenic epoxy fatty acids: Chemistry, synthesis, and their pharmaceutical applications. In Fatty Acids; Ahmad, M.U., Ed.; AOCS Press: Urbana, IL, USA, 2017; pp. 121–146. [Google Scholar]
- Vil, V.; Gloriozova, T.A.; Poroikov, V.V.; Savidov, N.; Dembitsky, V.M. Naturally occurring of α, β-diepoxy-containing compounds: Origin, structures, and biological activities. Appl. Microbiol. Biotech. 2019, 103, 3249–3264. [Google Scholar] [CrossRef]
- Vil, V.; Al Quntar, A.A.A.; Gloriozova, T.A.; Savidov, N.; Dembitsky, V.M. Oxetane-containing metabolites: Origin, structures, and biological activities. Appl. Microbiol. Biotechnol. 2019, 103, 2449–2467. [Google Scholar] [CrossRef]
- Kuklev, D.V.; Dembitsky, V.M. Epoxy acetylenic lipids: Their analogues and derivatives. Prog. Lipid Res. 2014, 56, 67–91. [Google Scholar] [CrossRef]
- Dembitsky, V.M.; Gloriozova, T.A.; Poroikov, V.V. Naturally occurring marine α,β-epoxy steroids: Origin and biological activities. Vietnam J. Chem. 2018, 56, 409–433. [Google Scholar] [CrossRef]
- Saikia, S.; Kolita, B.; Dutta, P.P.; Dutta, D.J.; Neipihoi, S. Marine steroids as potential anticancer drug candidates: In silico investigation in search of inhibitors of Bcl-2 and CDK-4/Cyclin D1. Steroids 2015, 102, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhao, Z.; Wang, H. Cytotoxic natural products from marine sponge-derived microorganisms. Mar. Drugs 2017, 15, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mioso, R.; Marante, F.J.T.; de Souza Bezerra, R.; Pereira Borges, F.V.; de Oliveira Santos, B.V. Cytotoxic compounds derived from marine sponges, A review (2010–2012). Molecules 2017, 22, 208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dembitsky, V.M.; Rezanka, T.; Srebnik, M. Lipid compounds of freshwater sponges: Family Spongillidae, class Demospongiae. Chem. Phys. Lipids 2003, 123, 117–155. [Google Scholar] [CrossRef]
- Dembitsky, V.M. Anticancer activity of natural and synthetic acetylenic lipids. Lipids 2006, 41, 883–924. [Google Scholar] [CrossRef]
- Garridoa, L.; Zubíaa, E.; Ortegaa, M.J.; Salvá, J. Isolation and structure elucidation of new cytotoxic steroids from the gorgonian Leptogorgia sarmentosa. Steroids 2000, 65, 85–88. [Google Scholar] [CrossRef]
- Kicha, A.A.; Ivanchina, N.V.; Kalinovsky, A.I.; Dmitrenok, P.S.; Stonik, V.A. Steroidal monoglycosides from the Far Eastern starfish Hippasteria kurilensis and hypothetic pathways of polyhydroxysteroid biosynthesis in starfish. Steroids 2000, 74, 238–244. [Google Scholar] [CrossRef]
- Lerch, M.L.; Faulkner, D.J. Unusual polyoxygenated sterols from a Philippines sponge Xestospongia sp. Tetrahedron 2001, 57, 4091–4094. [Google Scholar] [CrossRef]
- Aiello, A.; Fattorusso, E.; Menna, M. Steroids from sponges: Recent reports. Steroids 1999, 64, 687–714. [Google Scholar] [CrossRef]
- D’Auria, M.V.; Minale, L.; Riccio, R. Polyoxygenated steroids of marine origin. Chem. Rev. 1993, 93, 1839–1895. [Google Scholar] [CrossRef]
- Gottfried, H. The occurrence and biological significance of steroids in lower vertebrates. A review. Steroids 1964, 3, 219–242. [Google Scholar] [CrossRef]
- Xu, S.; Liao, X.; Du, B.; Zhou, X.; Huang, Q.; Wu, C. A series of new 5,6-epoxysterols from a Chinese sponge Ircinia aruensis. Steroids 2008, 73, 568–573. [Google Scholar] [CrossRef]
- Shen, Y.C.; Prakash, C.V.S.; Chang, Y.T. Two new polyhydroxysteroids from the gorgonian Isis hippuris. Steroids 2001, 66, 721–725. [Google Scholar] [CrossRef]
- Tanaka, J.; Trianto, A.; Musman, M.; Issa, H.H.; Ohtani, I.I.; Ichiba, T.; Higa, T.; Yoshida, W.Y.; Scheuer, P.J. New polyoxygenated steroids exhibiting reversal of multidrug resistance from the gorgonian Isis hippuris. Tetrahedron 2002, 58, 6259–6266. [Google Scholar] [CrossRef]
- Naz, S.; Kerr, R.G.; Narayanan, R. New antiproliferative epoxysecosterols from Pseudopterogorgia americana. Tetahedron Lett. 2000, 41, 6035–6040. [Google Scholar] [CrossRef]
- Morris, L.A.; Christie, E.M.; Jaspars, M.; van Ofwegen, L.P. A bioactive secosterol with an unusual A- and B-ring oxygenation pattern isolated from an Indonesian soft coral Lobophytum sp. J. Nat. Prod. 1998, 61, 538–541. [Google Scholar] [CrossRef]
- Pika, J.; Tischler, M.; Andersen, R.J. Glaciasterols A and B, 9,11-secosteroids from the marine sponge Aplysilla glacialis. Can. J. Chem. 2011, 70, 1506–1510. [Google Scholar] [CrossRef]
- Luo, X.; Li, F.; Shinde, P.B.; Hong, J.; Lee, C.-O.; Im, K.S.; Jung, J.H. 26,27-Cyclosterols and other polyoxygenated sterols from a marine sponge Topsentia sp. J. Nat. Prod. 2006, 69, 1760–1768. [Google Scholar] [CrossRef]
- Su, J.-H.; Tseng, Y.-J.; Huang, H.-H.; Ahmed, A.F.; Lu, C.-K. 9,11-Secosterols from the soft corals Sinularia lochmodes and Sinularia leptoclados. J. Nat. Prod. 2006, 69, 850–852. [Google Scholar] [CrossRef]
- Ahmed, A.F.; Hsieh, Y.-T.; Wen, Z.-H.; Wu, Y.-C.; Sheu, J.-H. Polyoxygenated sterols from the Formosan soft coral Sinularia gibberosa. J. Nat. Prod. 2006, 69, 1275–1279. [Google Scholar] [CrossRef] [PubMed]
- Duh, C.-Y.; Lo, I.-W.; Wang, S.-K.; Dai, C.-F. New cytotoxic steroids from the soft coral Clavularia viridis. Steroids 2007, 72, 573–579. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.F.; Tai, S.-H.; Wu, Y.-C.; Sheu, J.-H. Sinugrandisterols A–D, trihydroxysteroids from the soft coral Sinularia grandilobata. Steroids 2007, 72, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Dembitsky, V.M. In silico prediction of steroids and triterpenoids as potential regulators of lipid metabolism. Mar. Drugs 2021, 19, 650. [Google Scholar] [CrossRef]
- Tung, N.H.; Minh, C.V.; Ha, T.T.; Kiem, P.V.; Huong, H.T.; Dat, N.T.; Nhiem, N.X. C29 sterols with a cyclopropane ring at C-25 and 26 from the Vietnamese marine sponge Ianthella sp. and their anticancer properties. Bioorganic Med. Chem. Lett. 2009, 19, 4584–4588. [Google Scholar] [CrossRef]
- Shaaban, M.; Ghani, M.A.; Shaaban, K.A. Zahramycins A-B, Two new steroids from the Coral Sarcophyton trocheliophorum. Z. Naturforsch. 2013, 68, 939–945. [Google Scholar] [CrossRef]
- Zhang, H.J.; Yi, Y.H.; Yang, F.; Chen, W.S.; Lin, H.W. Sesterterpenes and a new sterol from the marine sponge Phyllospongia foliascens. Molecules 2010, 15, 834–841. [Google Scholar] [CrossRef]
- Watanabe, K.; Iwashim, M.; Iguchi, K. New bioactive marine steroids from the Okinawan soft coral Clavularia viridis. Steroids 1996, 61, 439–446. [Google Scholar] [CrossRef]
- Uddin, M.H.; Hanif, N.; Trianto, A.; Agarie, Y.; Higa, T.; Tanaka, J. Four new polyoxygenated gorgosterols from the gorgonian Isis hippuris. Nat. Prod. Res. 2011, 25, 585–591. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.-H.; Wang, S.-K.; Duh, C.-Y. Polyhydroxylated steroids from the octocoral Isis hippuris. Tetrahedron 2011, 67, 8116–8119. [Google Scholar] [CrossRef]
- Rodewald, W.J.; Bończa-Tomaszewski, Z. Intramolecular cyclization of 3β-acetoxy-5-oxo-7-formyl-7α,8-epoxy-5,6-secocholestane into ketal-acetals. Tetrahedron Lett. 1979, 20, 169–172. [Google Scholar] [CrossRef]
- Afiyatullov, S.S.; Kalinovsky, A.I.; Antonov, A.S.; Ponomarenko, L.P. Isolation and structures of erylosides from the Carribean sponge Erylus goffrilleri. J. Nat. Prod. 2007, 70, 1871–1877. [Google Scholar] [CrossRef]
- Lyakhova, E.G.; Kolesnikova, S.A.; Kalinovsky, A.I.; Dmitrenok, P.S. Further study on Penares sp. from Vietnamese waters: Minor lanostane and nor-lanostane triterpenes. Steroids 2015, 96, 37–43. [Google Scholar] [CrossRef]
- Shin, J.; Seo, Y.; Rho, J.-R.; Cho, K.W. Isolation Polyhydroxysteroids from the Gorgonian Acabaria undulate. J. Nat. Prod. 1996, 59, 679–682. [Google Scholar] [CrossRef]
- Thao, N.P.; Cuong, N.X.; Luyen, B.T.T.; Nam, N.H. Steroidal constituents from the starfish Astropecten polyacanthus and their anticancer effects. Chem. Pharm. Bull. 2013, 61, 1044–1051. [Google Scholar] [CrossRef] [Green Version]
- Sugo, Y.; Inouye, Y.; Nakayama, N. Structures of nine oxygenated 4-methylene sterols from Hachijo marine sponge Theonella swinhoei. Steroids 1995, 60, 738–742. [Google Scholar] [CrossRef]
- Mansoor, T.A.; Lee, Y.M.; Hong, J.; Lee, C.-O.; Im, K.S.; Jung, J.H. 5,6:8,9-Diepoxy and other cytotoxic sterols from the marine sponge Homaxinella sp. J. Nat. Prod. 2006, 69, 131–134. [Google Scholar] [CrossRef]
- Campbell, D.C. Elistanol: A Novel Marinetterol, Dissertation; Oklahoma University: Norman, OK, USA, 1974. [Google Scholar]
- Costantino, V.; Fattorusso, E.; Mangoni, A.; Aknin, M.; Gaydou, E.M. Novel 3-β-methoxysteroids from the senegalse sponge Microscleroderma spirophora. Steroids 1994, 59, 181–184. [Google Scholar] [CrossRef]
- de Almeida Leone, P.; Redburn, J.; Hooper, J.N.A.; Quinn, R.J. Polyoxygenated Dysidea sterols that inhibit the binding of [I125] IL-8 to the human recombinant IL-8 receptor type A. J. Nat. Prod. 2000, 63, 694–697. [Google Scholar] [CrossRef]
- Govindam, S.V.S.; Choi, B.-K.; Yoshioka, Y.; Kanamoto, A.; Fujiwara, T.; Okamoto, T.; Ojika, M. Novel cytotoxic polyoxygenated steroids from an Okinawan sponge Dysidea sp. Biosci. Biotechnol. Biochem. 2012, 76, 999–1002. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.; Sanduja, R.; Weinheimer, A.J. Isolation and structure of a cytotoxic epoxy sterol from the marine mollusc Planaxis Sulcatus. Steroids 1988, 52, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Migliuolo, A.; Notaro, G.; Piccialli, V.; Sica, D. Synthesis of the marine epoxy sterol 9a,11a-epoxy-5a-cholest-7-ene-3b,5,6b-triol. Steroids 1991, 56, 154–158. [Google Scholar] [CrossRef]
- Chini, M.G.; Jones, C.R.; Zampella, A.; D’Auria, M.V.; Renga, B.; Fiorucci, S.; Butts, C.P.; Bifulco, G. Quantitative NMR-derived interproton distances combined with quantum mechanical calculations of 13C chemical shifts in the stereochemical determination of conicasterol F, a nuclear receptor ligand from Theonella swinhoei. J. Org. Chem. 2012, 77, 1489–1496. [Google Scholar] [CrossRef]
- Ramesha, P.; Venkateswarlua, Y. Novel steroid constituents of the soft coral Sinularia dissecta. Steroids 1999, 64, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, T.; Sakamoto, K.; Arao, K.; Komori, T.; Higuchi, R.; Sasaki, T. Dorisenones, cytotoxic spongian diterpenoids, from the Nudibranch Chromodoris obsolete. Tetrahedron 1996, 52, 8187–8198. [Google Scholar] [CrossRef]
- Shen, L.; Li, W.S.; Yu, Y.; Sun, S.H.; Wu, J. A Water-soluble 5/14-carbobicyclic steroid with a trans-9,11-epoxy ring from the marine dinoflagellate Amphidinium gibbosum: Insights into late-stage diversification of steroids. Org. Lett. 2021, 23, 837–841. [Google Scholar] [CrossRef]
- D’Auria, M.V.; Paloma, L.G.; Minale, L.; Riccio, R.; Debitus, C.; Lévi, C. Unique 3β-O-methylsterols from the Pacific sponge Jereicopsis graphidiophora. J. Nat. Prod. 1992, 55, 311–320. [Google Scholar] [CrossRef]
- Yang, M.Y.; Yang, J.K.; Yang, J.K.; Hu, L.D. New oxygenated steroid from the marine-derived fungus Aspergillus flavus. Nat. Prod. Commun. 2018, 13, 949–951. [Google Scholar] [CrossRef] [Green Version]
- An, X.; Feng, B.-M.; Chen, G.; Chen, S.-F.; Wang, H.-F.; Pei, Y.-H. Isolation, and identification of two new compounds from marine-derived fungus Acremonium fusidioides RZ01. Chin. J. Nat. Med. 2016, 14, 934–938. [Google Scholar] [CrossRef]
- Youssef, D.T.A.; Badr, J.M.; Shaala, L.A.; Mohamed, G.A. Ehrenasterol and biemnic acid; new bioactive compounds from the Red Sea sponge Biemna ehrenbergi. Phytochem. Lett. 2015, 12, 296–301. [Google Scholar] [CrossRef]
- Elsbaey, M.; Ibrahim, M.A.A.; Hegazy, M.E.F. Versisterol, a new endophytic steroid with 3CL protease inhibitory activity from Avicennia marina (Forssk.) Vierh. RSC Adv. 2022, 12, 12583–12589. [Google Scholar] [CrossRef]
- Yaoita, Y.; Yoshihara, Y.; Kakuda, R.; Machida, K.; Kikuchi, M. New sterols from two edible mushrooms, Pleurotus eryngii and Panellus serotinus. Chem. Pharm. Bull. 2002, 50, 551–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakhshi Jouybari, H.; Bekhradnia, A.; Mirzaee, F.; Hossein Hosseinzadeh, M.; Habibi, E. Chemical composition of the lumpy bracket mushroom (Trametes gibbosa). Res. J. Pharmacog. 2022, 9, 19–27. [Google Scholar]
- Zhang, Q.; Satyanandamurty, T.; Shen, L.; Wu, J. Krishnolides A–D: New 2-ketokhayanolides from the Krishna mangrove, Xylocarpus moluccensis. Mar Drugs 2017, 15, 333. [Google Scholar] [CrossRef] [Green Version]
- Borges Coutinho Gallo, M.; Cavalcanti, B.C.; Barros, F.W.A. Chemical Constituents of Papulaspora immersa, an endophyte from Smallanthus sonchifolius (Asteraceae), and their cytotoxic activity. Chem. Biodivers. 2010, 7, 2941–2950. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Wu, Y.; Xie, S.; Sun, W.; Guo, Y.; Li, X.N.; Liu, J. Phomopsterones A and B, two functionalized ergostane-type steroids from the endophytic fungus Phomopsis sp. TJ507A. Org. Lett. 2017, 19, 258–261. [Google Scholar] [CrossRef]
- Anjaneyulu, A.S.R.; Krishna Murthy, M.V.R.; Gowri, P.M. Novel epoxy steroids from the Indian ocean soft coral Sarcophyton crassocaule. J. Nat. Prod. 2000, 63, 112–118. [Google Scholar] [CrossRef]
- Sheu, J.-H.; Chen, S.P.; Sung, P.J.; Chiang, M.Y.; Dai, C. Hippuristerone A, a novel polyoxygenated steroid from the gorgonian Isis hippuris. Tetrahedron Lett. 2000, 41, 7885–7888. [Google Scholar] [CrossRef]
- Sheu, J.-H.; Huang, L.F.; Chen, S.P.; Yang, Y.L.; Sung, P.J. Hippuristerones E−I, new polyoxygenated steroids from the gorgonian coral Isis hippuris. J. Nat. Prod. 2003, 66, 917–921. [Google Scholar] [CrossRef]
- Chen, W.-H.; Wang, S.-K.; Duh, C.-Y. Polyhydroxylated steroids from the Bamboo coral Isis hippuris. Mar. Drugs 2011, 9, 1829–1839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zubair, M.S.; Al-Footy, K.O.; Ayyad, S.E.N.; Al-Lihaibi, S.S.; Alarif, W.M. A review of steroids from Sarcophyton species. Nat. Prod. Res. 2016, 30, 869–879. [Google Scholar] [CrossRef] [PubMed]
- Ye, F.; Zhou, Y.B.; Li, J.; Gu, Y.C.; Guo, Y.W.; Li, X.W. New steroids from the South China Sea soft coral Lobophytum sp. Chem. Biodivers. 2020, 17, e2000214. [Google Scholar] [CrossRef]
- Funel, C.; Berrué, F.; Roussakis, C.; Rodriguez, R.F.; Amade, P. New cytotoxic steroids from the Indian ocean sponge Axinella cf. bidderi. J. Nat. Prod. 2004, 67, 491–494. [Google Scholar] [CrossRef]
- Sadri Said, A. An epoxysterol and other constituents of Tanzania soft corals. Int. J. Biol. Chem. Sci. 2010, 4, 748–756. [Google Scholar] [CrossRef] [Green Version]
- Tsukamoto, S.; Matsunaga, S.; Fusetani, N.; van Soest, R.W.M. Acanthosterol sulfates A−J: Ten new antifungal steroidal sulfates from a marine sponge Acanthodendrilla sp. J. Nat. Prod. 1998, 61, 1374–1378. [Google Scholar] [CrossRef] [PubMed]
- Palagiano, E.; Zollo, F.; Minale, L.; Iorizzi, M.; Bryan, P.; McClintock, J.; Hopkins, T. Isolation of 20 glycosides from the starfish Henricia downeyae, collected in the Gulf of Mexico. J. Nat. Prod. 1996, 59, 348–354. [Google Scholar] [CrossRef]
- Tang, H.-F.; Yi, Y.H.; Li, L.; Sun, P.; Zhang, S.Q.; Zhao, Y.P. Bioactive asterosaponins from the starfish Culcita novaeguineae. J. Nat. Prod. 2005, 68, 337–341. [Google Scholar] [CrossRef]
- Kicha, A.A.; Ivanchina, N.V.; Huong, T.T.; Kalinovskiĭ, A.I. Two new asterosaponins, archasterosides A and B, from the Vietnamese starfish Archaster typicus and their anticancer properties. Bioorg. Med. Chem. Lett. 2010, 20, 3826–3830. [Google Scholar] [CrossRef]
- Kicha, A.A.; Ivanchina, N.V.; Kalinovskiĭ, A.I.; Dmitrenok, P.S.; Smirnov, A.V. Two new steroid glycosides from the Far East starfish Hippasteria kurilensis. Bioorg. Khim. 2009, 35, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.; Spengler, B.; Yokota, T.; Nakayama, M.; Takatsuto, S.; Voigt, B.; Adam, G. Secasterone, the first naturally occurring 2,3-epoxybrassinosteroid from Secale cereal. Phytochemistry 1995, 38, 1095–1097. [Google Scholar] [CrossRef]
- Xiao, Q.; Wang, C.F.; Chen, J.; Lian, C.L.; Xu, Y.; Xiao, L.; Liu, J.Q. Three new withanolides from the calyces of Nicandra physaloides. Steroids 2018, 131, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Muehlbauer, A.; Henkel, T.; Liu, J.-K. Two new taccalonolides from tropic plant Tacca subflaellata. Chin. Chem. Lett. 2003, 14, 68. [Google Scholar]
- Huang, Y.; Liu, J.-K.; Muhlbauer, A.; Henkel, T. Three novel taccalonolides from the tropical plant Tacca subflaellata. Helv. Chim. Acta 2002, 85, 2553. [Google Scholar] [CrossRef]
- Ray, A.B.; Gupta, M. Withasteroids, a growing group of naturally occurring steroidal lactones. Prog. Chem. Org. Nat. Prod. 1994, 63, 1–12. [Google Scholar]
- Chen, X.; Winstead, A.; Yu, H.; Peng, J. Taccalonolides: A novel class of microtubule-stabilizing anticancer agents. Cancers 2021, 13, 920. [Google Scholar] [CrossRef]
- Shen, J.; Chen, Z.; Gao, Y. Taccalonolides from Tacca plantaginea. Phytochemistry 1996, 42, 891. [Google Scholar] [CrossRef]
- Chen, Z.-L.; Shen, J.; Gao, Y.; Wichtl, M. Five Taccalonolides from Tacca plantaginea. Planta Med. 1997, 63, 40. [Google Scholar] [CrossRef]
- Yang, J.-Y.; Zhao, R.-H.; Chen, C.-X.; Ni, W.; Teng, F.; Hao, X.-J.; Liu, H.-Y. Taccalonolides W–Y, three new pentacyclic steroids from Tacca plantaginea. Helv. Chim. Acta 2008, 91, 1077. [Google Scholar] [CrossRef]
- Muhlbauer, A.; Seip, S.; Nowak, A.; Tran, V.S. Five novel taccalonolides from the roots of the Vietnamese plant Tacca paxiana. Helv. Chim. Acta 2003, 86, 2065. [Google Scholar] [CrossRef]
- Liu, H.-Y.; Ni, W.; Xie, B.-B.; Zhou, L.-Y.; Hao, X.-J.; Wang, X.; Chen, C.-X. Five new withanolides from Tacca plantaginea. Chem. Pharm. Bull. 2006, 54, 992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahan, E.; Perveen, S.; Fatima, I.; Malik, A. Coagulansins A and B, new withanolides from Withania coagulans Dunal. Helv. Chim. Acta 2010, 93, 530. [Google Scholar] [CrossRef]
- Abdeljebbar, L.H.; Humam, M.; Christen, P.; Jeannerat, D.; Vitorge, B.; Amzazi, S.; Benjouad, A.; Hostettmann, K.; Bekkouche, K. Withanolides from Withania adpressa. Helv. Chim. Acta 2007, 90, 346. [Google Scholar] [CrossRef]
- Maurya, R.; Jayendra, A.; Singh, A.B.; Srivastava, A.K. Coagulanolide, a withanolide from Withania coagulans fruits and antihyperglycemic activity. Bioorg. Med. Chem. Lett. 2008, 18, 6534. [Google Scholar] [CrossRef]
- Nagafuji, S.; Okabe, H.; Akahane, H.; Abe, F. Trypanocidal constituents in plants 4. Withanolides from the aerial parts of Physalis angulata. Biol. Pharm. Bull. 2004, 27, 193. [Google Scholar] [PubMed] [Green Version]
- Siddiqui, B.S.; Afreen, S.; Begum, S. Two new withanolides from the aerial parts of Datura innoxia. Aust. J. Chem. 1999, 52, 905. [Google Scholar] [CrossRef]
- Siddiqui, B.S.; Hashmi, I.A.; Begum, S. Two new withanolides from the aerial parts of Datura innoxia. Heterocycles 2002, 57, 715. [Google Scholar] [CrossRef]
- Siddiqui, B.S.; Arfeen, S.; Afshan, F.; Begum, S. Withanolides from Datura innoxia. Heterocycles 2005, 65, 857. [Google Scholar] [CrossRef]
- Kikuchi, T.; Horii, Y.; Maekawa, Y.; Masumoto, Y.; In, Y. Pleurocins A and B: Unusual 11(9 → 7)-abeo-ergostanes and eringiacetal B: A 13,14-seco-13,14-epoxyergostane from fruiting bodies of Pleurotus eryngii and their inhibitory effects on nitric oxide production. J. Org. Chem. 2017, 82, 10611–10616. [Google Scholar] [CrossRef]
- Ngoc, N.T.; Huong, P.T.; Thanh, N.V.; Cuong, N.X.; Nam, N.H.; Thung, D.C.; Kiem, P.V.; Minh, C.V. Steroid constituents from the soft coral Sinularia nanolobata. Chem. Pharm. Bull. 2016, 64, 1417–1419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.P.; Cai, X.H.; Feng, T.; Li, Y.; Li, X.N.; Luo, X.D. Triterpene, and sterol derivatives from the roots of Breynia fruticose. J. Nat. Prod. 2011, 74, 1161–1168. [Google Scholar] [CrossRef] [PubMed]
- Ortega, H.E.; Torres-Mendoza, D.; Caballero, E.Z.; Cubilla-Rios, L. Structurally uncommon secondary metabolites derived from endophytic fungi. J. Fungi 2021, 7, 570. [Google Scholar] [CrossRef]
- Tuan Anh, H.H.L.; Lien, L.T.; Cuong, P.V.; Arai, M.; Ha, T.P. Sterols, and flavone from the leaves of Vernonia amygdalina growing in Thua Thien Hue. Vietnam J. Sci. Technol. 2018, 56, 681–687. [Google Scholar] [CrossRef] [Green Version]
- Dung, D.T.; Hang, D.T.T.; Nhiem, N.X. Rhabdaprovidines D–G, four new 6,6,5-tricyclic terpenoids from the Vietnamese sponge Rhabdastrella providentiae, Nat. Prod. Commun. 2018, 13, 1251–1254. [Google Scholar]
- Zeng, N.; Shen, Y.; Li, L.Z.; Jiao, W.H.; Gao, P.Y. Anti-inflammatory triterpenes from the leaves of Rosa laevigata. J. Nat. Prod. 2011, 74, 732–738. [Google Scholar] [CrossRef]
- Jamroz, M.K.; Jamroz, M.H.; Dobrowolski, J.C.; Glinski, J.A. Novel and unusual triterpene from black cohosh. Determination of structure of 9,10-seco-9,19-cyclolanostane xyloside (cimipodocarpaside) by NMR, IR, and Raman spectroscopy and DFT calculations. Spectrochim. Acta 2011, 78A, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.X.; Chen, J.C.; Sun, Y.; Yan, Y.X.; Kong, L.M.; Li, Y.; Qiu, M.H. Cytotoxic triterpenoids from Azadirachta indica. Planta Med. 2011, 77, 1844–1847. [Google Scholar] [CrossRef]
- Wong, C.P.; Shimada, M.; Nagakura, Y.; Nugroho, A.E.; Hirasawa, Y. Ceramicines E—I, new limonoids from Chisocheton ceramicus. Chem. Pharm. Bull. 2011, 59, 407–411. [Google Scholar] [CrossRef] [Green Version]
- Saeki, D.; Yamada, T.; In, Y.; Kajimoto, T.; Tanaka, R.; Iizuka, Y. Officinatrione: An unusual (17S)-17, 18-seco-lupane skeleton, and four novel lupane-type triterpenoids from the roots of Taraxacum officinale. Tetrahedron 2013, 69, 1583–1589. [Google Scholar] [CrossRef]
- Zhang, Y.-L.; Feng, W.S.; Zheng, X.K.; Cao, Y.G.; Lv, Y.Y. Three new ursane-type triterpenes from the leaves of Rehmannia glutinosa. Fitoterapia 2013, 89, 15–19. [Google Scholar] [CrossRef] [Green Version]
- Mai, Z.P.; Zhou, K.; Ge, G.B.; Wang, C.; Huo, X.K. Protostane triterpenoids from the rhizome of Alisma orientale exhibit inhibitory effects on human carboxylesterase 2. J. Nat. Prod. 2015, 78, 2372–2380. [Google Scholar] [CrossRef]
- Zhou, Q.-L.; Yang, X.-W. Four new ginsenosides from red ginseng with inhibitory activity on melanogenesis in melanoma cells. Bioorg. Med. Chem. Lett. 2015, 25, 3112–3116. [Google Scholar] [CrossRef]
- Choi, E.; Jang, E.; Lee, J.H. Pharmacological activities of Alisma orientale against nonalcoholic fatty liver disease and metabolic syndrome: Literature Review. Evid. Based Complem. Altern. Med. 2019, 2019, 2943162. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.Y.; Zhang, X.M.; Zhang, F.X.; Liu, N.; Zhao, F.; Zhou, J.; Chen, J.J. A new triterpene and anti-hepatitis B virus active compounds from Alisma orientalis. Planta Med. 2006, 72, 951–954. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Hatakeyama, S.; Tanaka, N.; Fukuda, Y.; Yamahara, J. Crude drugs from aquatic plants. I. On the constituents of Alismatis rhizoma. (1). Absolute stereostructures of alisols E 23-acetate, F, and G, three new protostane-type triterpenes from Chinese Alismatis rhizoma. Chem. Pharm. Bull. 1993, 41, 1948–1954. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Gödecke, T.; Gunn, J.; Duan, J.A.; Che, C.T. Protostane and fusidane triterpenes: A mini review. Molecules 2013, 18, 4054–4080. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Jin, Q.; Wu, W. Force iteration molecular designing strategy for the systematic characterization and discovery of new protostane triterpenoids from Alisma rhizoma by UHPLC/LTQ-Orbitrap-MS. Anal. Bioanal. Chem. 2021, 413, 1749–1764. [Google Scholar] [CrossRef]
- Sun, C.P.; Zhang, J.; Zhao, W.Y.; Yi, J.; Yan, J.K.; Wang, Y.L. Protostane-type triterpenoids as natural soluble epoxide hydrolase inhibitors: Inhibition potentials and molecular dynamics. Bioorg Chem. 2020, 96, 103637. [Google Scholar] [CrossRef]
- De Marino, S.; Ummarino, R.; D’Auria, M.; Chini, M.G. Theonellasterols and conicasterols from Theonella swinhoei. Novel marine natural ligands for human nuclear receptors. J. Med. Chem. 2011, 54, 3065–3075. [Google Scholar] [CrossRef] [PubMed]
- Leon, F.; Valencia, M.; Rivera, A.; Nieto, I.; Quintana, J.; Estevez, F.; Bermejo, J. Novel cytostatic lanostanoid triterpenes from Ganoderma australe. Helv. Chim. Acta 2003, 86, 3088–3095. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Nishimura, N.; Bando, S.; Arihara, S.; Matsumura, E.; Katayama, S. New lanostanoids, elfvingic acids A-H, from the fruit body of Elfvingia applanata. J. Nat. Prod. 2002, 65, 548–552. [Google Scholar] [CrossRef]
- Pan, C.; Chen, Y.G.; Ma, X.Y.; Jiang, J.H.; He, F.; Zhang, Y. Phytochemical constituents and pharmacological activities of plants from the genus Adiantum: A review. Trop. J. Pharm. Res. 2011, 10, 681–692. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, R.; Breitmaier, E.; Camargo Grandón, R.; Negrete Córdova, R.; Backhouse Erazo, N.; Delporte Vergara, C.; Cassels Niven, B. One- and two-dimensional NMR in the structure determination of 3B-acetoxy-17B,21B-epoxyhopane from Centaurea chilensis. J. Praktisch. Chem. 1992, 334, 719–722. [Google Scholar] [CrossRef]
- Du, L.; Zhu, T.; Fang, Y.; Gu, Q.; Zhu, W. Unusual C25 steroid isomers with bicyclo[4.4.1]A/B rings from a volcano ash-derived fungus Penicillium citrinum. J. Nat. Prod. 2008, 71, 1343–1351. [Google Scholar] [CrossRef]
- Cueto, M.; Jensen, P.R.; Fenical, W. Aspergilloxide, a novel sesterterpene epoxide from a marine-derived fungus of the genus Aspergillus. Org. Lett. 2002, 4, 1583–1585. [Google Scholar] [CrossRef]
- Hu, Z.X.; Shi, Y.M.; Wang, W.G.; Li, X.N. Kadcoccinones A–F, new biogenetically related lanostane-type triterpenoids with diverse skeletons from Kadsura coccinea. Org. Lett. 2015, 17, 4616–4619. [Google Scholar] [CrossRef] [PubMed]
- Vil, V.A.; Gloriozova, T.A.; Poroikov, V.V.; Terent’ev, A.O.; Savidov, N.; Dembitsky, V.M. Peroxy steroids derived from plant and fungi and their biological activities. Appl. Microbiol. Biotechnol. 2018, 102, 7657–7667. [Google Scholar] [CrossRef]
- Savidov, N.; Gloriozova, T.A.; Poroikov, V.V.; Dembitsky, V.M. Highly oxygenated isoprenoid lipids derived from fungi and fungal endophytes: Origin and biological activities. Steroids 2018, 140, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Vil, V.A.; Terent’ev, A.O.; Savidov, N.; Gloriozova, T.A.; Poroikov, V.V.; Pounina, T.A.; Dembitsky, V.M. Hydroperoxy steroids and triterpenoids derived from plant and fungi: Origin, structures, and biological activities. J. Steroid Biochem. Mol. Biol. 2019, 190, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Zhabinskii, V.N.; Drasar, P.; Khripach, V.A. Structure and biological activity of ergostane-type steroids from fungi. Molecules 2022, 27, 2103. [Google Scholar] [CrossRef]
- Zhabinskii, V.N.; Khripach, N.B.; Khripach, V.A. Steroid plant hormones: Effects outside plant kingdom. Steroids 2015, 97, 87–97. [Google Scholar] [CrossRef]
- Panibrat, O.V.; Zhabinskii, V.N.; Khripach, V.A. Anticancer potential of brassinosteroids. In Brassinosteroids: Plant Growth and Development; Hayat, S., Yusuf, M., Bhardwaj, R., Bajguz, A., Eds.; Springer: Singapore, 2019. [Google Scholar]
- Khripach, V.; Zhabinskii, V.; de Groot, A. Twenty years of brassinosteroids: Steroidal plant hormones warrant better crops for the XXI century. Annal. Bot. 2000, 86, 441–447. [Google Scholar] [CrossRef] [Green Version]
- Aly, A.H.; Debbab, A.; Proksch, P. Fungal endophytes: Unique plant inhabitants with great promises. Appl. Microbiol. Biotechnol. 2011, 90, 1829–1845. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, R.J.; White, J.F., Jr.; Arnold, A.E.; Redman, R.S. Fungal endophytes: Diversity and functional roles. New Phytol. 2009, 182, 314–330. [Google Scholar] [CrossRef] [PubMed]
- Suryanarayanan, T.S.; Thirunavukkarasu, N.; Govindarajulu, M.B.; Sasse, F.; Jansen, R.; Murali, T.S. Fungal endophytes and bioprospecting. Fungal Biol. Rev. 2009, 23, 9–19. [Google Scholar] [CrossRef]
- Zhao, Z.-Z.; Han, K.-Y.; Li, Z.-H.; Feng, T.; Chen, H.-P.; Liu, J.-K. Cytotoxic ergosteroids from the fungus Stereum hirsutum. Phytochem. Lett. 2019, 30, 143–149. [Google Scholar] [CrossRef]
- Li, L.-N.; Wang, L.; Guo, X.-L. Chemical constituents from the culture of the fungus Hericium alpestre. J. Asian Nat. Prod. Res. 2019, 21, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Wang, Y.; Wang, J.; Liu, P.; Li, J.; Zhu, W. Antimicrobial ergosteroids and pyrrole derivatives from halotolerant Aspergillus flocculosus PT05-1 cultured in a hypersaline medium. Extremophiles 2013, 17, 963–971. [Google Scholar] [CrossRef]
- Zhao, J.-L.; Zhang, M.; Liu, J.-M.; Tan, Z.; Chen, R.-D.; Xie, K.-B.; Dai, J.-G. Bioactive steroids and sorbicillinoids isolated from the endophytic fungus Trichoderma sp. Xy24. J. Asian Nat. Prod. Res. 2017, 19, 1028–1035. [Google Scholar] [CrossRef] [PubMed]
- Palasarn, S.; Intereya, K.; Boonpratuang, T.; Thongpanchang, C.; Isaka, M. Ergostane triterpenoids from the cultures of basidiomycete Favolaschia calocera BCC 36684 and stereochemical elucidation of favolon. Phytochem. Lett. 2022, 47, 168–173. [Google Scholar] [CrossRef]
- Gu, B.B.; Wu, W.; Jiao, F.R.; Jiao, W.H.; Li, L.; Sun, F.; Wang, S.P.; Yang, F.; Lin, H.W. Asperflotone, an 8(14->15)-abeo-ergostane from the sponge-derived fungus Aspergillus flocculosus 16D-1. J. Org. Chem. 2019, 84, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Duecker, F.L.; Franziska Reuß, F.; Heretsch, P. Rearranged ergostane-type natural products: Chemistry, biology, and medicinal aspects. Org. Biomol. Chem. 2019, 17, 1624–1633. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Wu, P.; Xu, L.; Wei, X. Penicillitone, a potent in vitro anti-inflammatory and cytotoxic rearranged sterol with an unusual tetracycle core produced by Penicillium purpurogenum. Org. Lett. 2014, 16, 1518–1521. [Google Scholar] [CrossRef]
- Wu, J.; Tokuyama, S.; Nagai, K.; Yasuda, N.; Noguchi, K.; Matsumoto, T.; Hirai, H.; Kawagishi, H. Strophasterols A to D with an unprecedented steroid skeleton: From the mushroom Stropharia rugosoannulata. Angew. Chem. Int. Ed. Engl. 2012, 51, 10820–10822. [Google Scholar] [CrossRef]
- Kikuchi, T.; Isobe, M.; Uno, S.; In, Y.; Zhang, J.; Yamada, T. Strophasterols E and F: Rearranged ergostane-type sterols from Pleurotus eryngii. Bioorg. Chem. 2019, 89, 103011. [Google Scholar] [CrossRef]
- Gao, H.; Hong, K.; Chen, G.D.; Wang, C.X.; Tang, J.S.; Yu, Y.; Jiang, M.M.; Li, M.M.; Wang, N.L.; Yao, X.S. New oxidized sterols from Aspergillus awamori and the endo-boat conformation adopted by the cyclohexene oxide system. Magn. Reson. Chem. 2010, 48, 38–43. [Google Scholar] [CrossRef]
- Wang, J.-P.; Shu, Y.; Liu, S.-X.; Hu, J.-T.; Sun, C.-T.; Zhou, H.; Gan, D.; Cai, X.-Y.; Pu, W. Expanstines A–D: Four unusual isoprenoid epoxycyclohexenones generated by Penicillium expansum YJ-15 fermentation and photopromotion. Org. Chem. Front. 2019, 6, 3839–3846. [Google Scholar] [CrossRef]
- Schmidt, L.E.; Deyrup, S.T.; Baltrusaitis, J.; Swenson, D.C.; Wicklow, D.T. Hymenopsins A and B and a macrophorin analogue from a fungicolous Hymenopsis sp. J. Nat. Prod. 2010, 73, 404–408. [Google Scholar] [CrossRef] [Green Version]
- Tian, M.; Zhao, P.; Li, G.; Zhang, K. In depth natural product discovery from the Basidiomycetes Stereum species. Microorganisms 2020, 8, 1049. [Google Scholar] [CrossRef]
- Berovic, M. Cultivation of medicinal mushroom biomass by solid-state bioprocessing in bioreactors. Adv. Biochem. Eng. Biotechnol. 2019, 169, 3–25. [Google Scholar]
- Carroll, A.R.; Brent, R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2020, 37, 175–223. [Google Scholar] [CrossRef] [PubMed]
- Vaquero, M.E.; Barriuso, J.; Martínez, M.J. Properties, structure, and applications of microbial sterol esterases. Appl. Microbiol. Biotechnol. 2016, 100, 2047–2061. [Google Scholar] [CrossRef] [PubMed]
- Moussa, A.Y.; Xu, B. A narrative review on inhibitory effects of edible mushrooms against malaria and tuberculosis-the world’s deadliest diseases. Food Sci. Human Wellness 2023, 12, 942–958. [Google Scholar] [CrossRef]
- Yurchenko, A.N.; Girich, E.V.; Yurchenko, E.A. Metabolites of marine sediment-derived fungi: Actual trends of biological activity studies. Mar. Drugs 2021, 19, 88. [Google Scholar] [CrossRef]
- Wang, Z.; Hui, C. Contemporary advancements in the semi-synthesis of bioactive terpenoids and steroids. Org. Biomol. Chem. 2021, 19, 3791–3812. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, C.A.; Kinghorn, A.D.; Rakotondraibe, H.L. Bioactive and unusual steroids from Penicillium fungi. Phytochemistry 2023, 209, 113638. [Google Scholar] [CrossRef]
- Huang, L.; He, C.; Si, C.; Shi, H.; Duan, J. Nutritional, Bioactive, and Flavor Components of Giant Stropharia (Stropharia rugoso-annulata): A Review. J. Fungi 2023, 9, 792. [Google Scholar] [CrossRef]
- Aung, H.T.; Porta, A.; Clericuzio, M.; Takaya, Y.; Vidari, G. Two new ergosterol derivatives from the basidiomycete Cortinarius glaucopus. Chem. Biodivers. 2017, 14, e1600421. [Google Scholar] [CrossRef]
- Li, W.; Zhou, W.; Song, S.B.; Shim, S.H.; Kim, Y.H. Sterol fatty acid esters from the mushroom Hericium erinaceum and their ppar transactivational effects. J. Nat. Prod. 2014, 77, 2611–2618. [Google Scholar] [CrossRef]
- Elissawy, A.M.; El-Shazly, M.; Ebada, S.S.; Singa, A.N.; Proksch, P. Bioactive terpenes from marine-derived fungi. Mar. Drugs 2015, 13, 1966–1992. [Google Scholar] [CrossRef] [Green Version]
- Lagrouh, F.; Dakka, N.; Bakri, Y. The antifungal activity of Moroccan plants and the mechanism of action of secondary metabolites from plants. J. Mycol. Méd. 2017, 27, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Noinart, J.; Buttachon, S.; Dethoup, T.; Gales, L.; Pereira, J.A.; Urbatzka, R. A new ergosterol analog, a new bis-anthraquinone and anti-obesity activity of anthraquinones from the marine sponge-associated fungus Talaromyces stipitatus KUFA 0207. Mar. Drugs 2017, 15, 139. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.H.; Tang, X.Z.; Miao, F.P.; Ji, N.Y. A new pyrrolidine derivative and steroids from an algicolous Gibberella zeae strain. Nat. Prod. Commun. 2011, 6, 1243–1246. [Google Scholar]
- Simon, A.; Tóth, G.; Liktor-Busa, E.; Kele, Z.; Takács, M.; Gergely, A.; Báthori, M. Three new steroids from the roots of Serratula wolffii. Steroids 2007, 72, 751–755. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Song, T.; Shi, R.; He, M.; Wang, R.; Lv, J.; Jiang, M. Triterpenoids from Alisma species: Phytochemistry, structure modification, and bioactivities. Front. Chem. 2020, 8, 363. [Google Scholar]
- Bailly, C. Pharmacological properties and molecular targets of alisol triterpenoids from Alismatis Rhizoma. Biomedicines 2022, 10, 1945. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.Q.; Shi, Y.M.; Luo, R.H.; Li, X.Y.; Gao, Z.H.; Li, X.N. Kadcoccitones A and B, two new 6/6/5/5-fused tetracyclic triterpenoids from Kadsura coccinea. Org Lett. 2012, 14, 6362–6365. [Google Scholar] [CrossRef]
- Chen, J.C.; Liu, W.Q.; Lu, L.; Qiu, M.H.; Zheng, Y.T.; Yang, L.M.; Zhang, X.M.; Zhou, L.; Li, Z.R. Kuguacins F-S, cucurbitane triterpenoids from Momordica charantia. Phytochem. 2009, 70, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.F.; Morris-Natschke, S.L.; Xu, X.D. Recent advances in natural anti-HIV triterpenoids and analogs. Med. Res. Rev. 2020, 40, 2339–2385. [Google Scholar] [CrossRef]
- Gutiérrez-Nicolás, F.; Gordillo-Román, B.; Oberti, J.C.; Estévez-Braun, A.; Ravelo, Á.G.; Joseph-Nathan, P. Synthesis and anti-HIV activity of lupane and olean-18-ene derivatives. Absolute configuration of 19,20-epoxylupanes by VCD. J. Nat. Prod. 2012, 75, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.-F.; Sy, M.-L.; Lai, J.-S. A new pentacyclic triterpene from Ecdysanthera rosea. J. Chin. Chem. Soc. 1990, 37, 187–189. [Google Scholar] [CrossRef]
- Liu, F.; Wang, Y.N.; Li, Y. Triterpenoids from the twigs and leaves of Rhododendron latoucheae by HPLC-MSSPE-NMR. Tetrahedron 2019, 75, 296–307. [Google Scholar] [CrossRef]
- Liang, C.Q.; Luo, R.H.; Yan, J.M. Structure and bioactivity of triterpenoids from the stems of Schisandra sphenanthera. Arch. Pharm. Res. 2014, 37, 168–174. [Google Scholar] [CrossRef]
- Song, Q.Y.; Jiang, K.; Zhao, Q.Q. Eleven new highly oxygenated triterpenoids from the leaves and stems of Schisandra chinensis. Org. Biomol. Chem. 2013, 11, 1251–1258. [Google Scholar]
- Polturak, G.; Dippe, M.; Stephenson, M.J.; Chandra Misra, R.; Owen, C.; Ramirez-Gonzalez, R.H.; Haidoulis, J.F.; Schoonbeek, H.-J.; Chartrain, L.; Borrill, P.; et al. Pathogen-induced biosynthetic pathways encode defense-related molecules in bread wheat. Proc. Natl. Acad. Sci. USA 2022, 119, e2123299119. [Google Scholar] [CrossRef]
- Graziani, E.I.; Allen, T.M.; Andersen, R.J. Lovenone, a cytotoxic degraded triterpenoid isolated from skin extracts of the North Sea dorid nudibranch Adalaria loveni. Tetrahedron Lett. 1995, 36, 1763–1766. [Google Scholar]
- Su, H.G.; Liang, H.F.; Hu, G.L.; Zhou, L.; Peng, X.P.; Bi, H.C.; Qiu, M.H. Applanoids A—E as the first examples of C-15/C-20 michael adducts in Ganoderma triterpenoids and their PXR agonistic activity. Chin. J. Chem. 2022, 40, 2633–2641. [Google Scholar] [CrossRef]
- Amagata, T.; Doi, M.; Ohta, T.; Minoura, K.; Numata, A. Absolute stereostructures of novel cytotoxic metabolites, gymnastatins A-E, from a Gymnascella species separated from a Halichondria sponge. J. Chem. Soc. Perkin Trans. 1 1998, 21, 3585–3600. [Google Scholar] [CrossRef]
- Amagata, T.; Minoura, K.; Numata, A. Gymnasterones, novel cytotoxic metabolite produced by a fungal strain from sponge. Tetrahedron Lett. 1998, 39, 3773–3774. [Google Scholar] [CrossRef]
- Amagata, T.; Minoura, K.; Numata, A. Gymnastatins F-H, cytostatic metabolites from the sponge-derived fungus Gymnascella dankaliensis. J. Nat. Prod. 2006, 69, 1384–1388. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, R.; Bellavita, R.; Falanga, A. The outstanding chemodiversity of marine-derived Talaromyces. Biomolecules 2023, 13, 1021. [Google Scholar] [CrossRef] [PubMed]
- Harneti, D.; Supriadin, A.; Ulfah, M.; Safari, A.; Supratman, U.; Awang, K.; Hayashi, H. Cytotoxic constituents from the bark of Aglaia eximia (Meliaceae). Phytochem. Lett. 2014, 8, 28–31. [Google Scholar] [CrossRef]
No. | Dominated Biological Activity (Pa) * | Additional Predicted Activities (Pa) * |
---|---|---|
1 | Apoptosis agonist (0.931) Antineoplastic (0.926) Antineoplastic (liver cancer) (0.743) Prostate cancer treatment (0.626) Antineoplastic (lymphocytic leukemia) (0.614) | Anti-hypercholesterolemic (0.852) Immunosuppressant (0.835) Hepatic disorders treatment (0.822) Anti-eczematic (0.791) Anti-psoriatic (0.777) |
2 | Antineoplastic (0.873) Apoptosis agonist (0.860) Antimetastatic (0.774) Antineoplastic (lymphocytic leukemia) (0.715) | Respiratory analeptic (0.885) Antifungal (0.812) Immunosuppressant (0.811) Anti-inflammatory (0.737) |
3 | Antineoplastic (0.855) Angiogenesis inhibitor (0.707) Apoptosis agonist (0.698) | Hepatic disorders treatment (0.851) Antifungal (0.792) Immunosuppressant (0.788) |
4 | Antineoplastic (0.900) Proliferative diseases treatment (0.784) Apoptosis agonist (0.664) | Respiratory analeptic (0.880) Immunosuppressant (0.866) Antifungal (0.817) |
5 | Antineoplastic (0.896) Apoptosis agonist (0.886) | Antifungal (0.730) Anti-inflammatory (0.705) |
No. | Dominated Biological Activity (Pa) * | Additional Predicted Activities (Pa) * |
---|---|---|
6 | Respiratory analeptic (0.911) Hypolipemic (0.779) | Apoptosis agonist (0.867) Antineoplastic (0.851) |
7 | Apoptosis agonist (0.954) Antineoplastic (0.895) | Anti-osteoporotic (0.789) Anti-psoriatic (0.774) |
8 | Apoptosis agonist (0.950) Antineoplastic (0.886) | Anti-hypercholesterolemic (0.931) Atherosclerosis treatment (0.712) |
9 | Apoptosis agonist (0.890) Antineoplastic (0.853) | Anti-hypercholesterolemic (0.872) Atherosclerosis treatment (0.746) |
10 | Antifungal (0.738) | Anti-inflammatory (0.733) |
11 | Apoptosis agonist (0.782) | Anti-inflammatory (0.756) |
12 | Antibacterial (0.704) | Antifungal (0.633) |
13 | Antibacterial (0.691) | Antifungal (0.577) |
14 | Apoptosis agonist (0.907) Antineoplastic (0.860) | Anti-eczematic (0.732) Anti-psoriatic (0.659) |
15 | Apoptosis agonist (0.844) Antineoplastic (0.796) | Anesthetic (0.689) Antipruritic, allergic (0.632) |
16 | Apoptosis agonist (0.900) Antineoplastic (0.866) | Respiratory analeptic (0.819) Anti-hypercholesterolemic (0.803) |
17 | Apoptosis agonist (0.866) Antineoplastic (0.863) | Respiratory analeptic (0.835) Hypolipemic (0.820) |
18 | Apoptosis agonist (0.954) Antineoplastic (0.914) | Anti-hypercholesterolemic (0.906) Atherosclerosis treatment (0.741) |
19 | Antineoplastic (0.798) Apoptosis agonist (0.751) | Immunosuppressant (0.759) Respiratory analeptic (0.679) |
20 | Respiratory analeptic (0.953) | Anti-hypercholesterolemic (0.874) |
No. | Dominated Biological Activity (Pa) * | Additional Predicted Activities (Pa) * |
---|---|---|
21 | Antineoplastic (0.797) | Antibacterial (0.788) |
22 | Respiratory analeptic (0.934) | Anti-hypercholesterolemic (0.874) |
23 | Antineoplastic (0.798) Apoptosis agonist (0.751) | Immunosuppressant (0.759) Hypolipemic (0.732) |
24 | Respiratory analeptic (0.979) Immunosuppressant (0.832) | Antineoplastic (0.872) Apoptosis agonist (0.861) |
25 | Apoptosis agonist (0.913) Antineoplastic (0.907) | Anti-eczematic (0.844) Anti-psoriatic (0.813) |
26 | Apoptosis agonist (0.950) Antineoplastic (0.886) | Anti-hypercholesterolemic (0.931) Atherosclerosis treatment (0.712) |
27 | Respiratory analeptic (0.973) Immunosuppressant (0.795) | Apoptosis agonist (0.896) Antineoplastic (0.880) |
28 | Respiratory analeptic (0.974) Immunosuppressant (0.788) | Antineoplastic (0.874) Apoptosis agonist (0.868) |
29 | Anti-hypercholesterolemic (0.934) Hypolipemic (0.864) | Apoptosis agonist (0.929) Antineoplastic (0.861) |
30 | Respiratory analeptic (0.948) Immunosuppressant (0.828) | Apoptosis agonist (0.941) Antineoplastic (0.924) |
31 | Antineoplastic (0.791) Apoptosis agonist (0.731) | Immunosuppressant (0.747) |
32 | Antineoplastic (0.816) Apoptosis agonist (0.732) | Antifungal (0.784) Anti-inflammatory (0.735) |
33 | Antineoplastic (0.796) Apoptosis agonist (0.729) | Antifungal (0.738) Anti-inflammatory (0.733) |
34 | Anti-inflammatory (0.817) Antifungal (0.770) | Antineoplastic (0.800) Apoptosis agonist (0.749) |
No. | Dominated Biological Activity (Pa) * | Additional Predicted Activities (Pa) * |
---|---|---|
35 | Apoptosis agonist (0.906) Antineoplastic (0.879) | Respiratory analeptic (0.796) Immunosuppressant (0.769) |
36 | Apoptosis agonist (0.945) Antineoplastic (0.918) | Anti-eczematic (0.852) Anti-psoriatic (0.772) |
37 | Hepatoprotectant (0.994) Anti-hypercholesterolemic (0.897) Immunosuppressant (0.836) | Respiratory analeptic (0.990) Antithrombotic (0.883) Antidiabetic (0.720) |
38 | Antineoplastic (0.874) Apoptosis agonist (0.753) Prostate disorders treatment (0.549) | Anti-eczematic (0.841) Anti-inflammatory (0.648) Anti-psoriatic (0.629) |
39 | Respiratory analeptic (0.961) Immunosuppressant (0.780) | Apoptosis agonist (0.856) Antineoplastic (0.812) |
40 | Respiratory analeptic (0.961) Antiviral (Influenza) (0.667) | Apoptosis agonist (0.856) Antineoplastic (0.812) |
41 | Respiratory analeptic (0.955) Anti-inflammatory (0.870) | Antineoplastic (0.843) Apoptosis agonist (0.752) |
42 | Respiratory analeptic (0.937) Anti-inflammatory (0.747) Anesthetic (0.711) | Apoptosis agonist (0.812) Antineoplastic (0.812) Antithrombotic (0.681) |
43 | Apoptosis agonist (0.872) Antineoplastic (0.848) | Anti-osteoporotic (0.656) Proliferative diseases treatment (0.601) |
44 | Respiratory analeptic (0.910) Immunosuppressant (0.797) Anti-hypercholesterolemic (0.612) | Apoptosis agonist (0.859) Antineoplastic (0.847) Proliferative diseases treatment (0.650) |
45 | Respiratory analeptic (0.897) Immunosuppressant (0.792) Cardiotonic (0.626) | Apoptosis agonist (0.859) Antineoplastic (0.806) Proliferative diseases treatment (0.633) |
46 | Anti-inflammatory (0.880) Respiratory analeptic (0.849) Septic shock treatment (0.681) | Antineoplastic (0.842) Anti-hypercholesterolemic (0.739) Apoptosis agonist (0.712) |
47 | Respiratory analeptic (0.978) Immunosuppressant (0.792) Proliferative diseases treatment (0.679) | Anti-eczematic (0.952) Antineoplastic (0.912) Apoptosis agonist (0.911) |
48 | Apoptosis agonist (0.901) Proliferative diseases treatment (0.702) | Anti-eczematic (0.870) Anti-psoriatic (0.753) |
49 | Apoptosis agonist (0.894) Atherosclerosis treatment (0.745) | Anti-eczematic (0.825) Anti-psoriatic (0.738) |
50 | Antineoplastic (0.867) Apoptosis agonist (0.754) | Anti-eczematic (0.797) Anti-psoriatic (0.706) |
51 | Chemopreventive (0.900) Antineoplastic (0.848) Apoptosis agonist (0.811) | Anti-hypercholesterolemic (0.852) Respiratory analeptic (0.827) Hypolipemic (0.760) |
No. | Dominated Biological Activity (Pa) * | Additional Predicted Activities (Pa) * |
---|---|---|
52 | Respiratory analeptic (0.961) Immunosuppressant (0.800) | Apoptosis agonist (0.914) Proliferative diseases treatment (0.693) |
53 | Respiratory analeptic (0.950) Immunosuppressant (0.795) | Antineoplastic (0.910) Apoptosis agonist (0.908) |
54 | Apoptosis agonist (0.920) Proliferative diseases treatment (0.708) | Respiratory analeptic (0.843) Hypolipemic (0.679) |
55 | Antineoplastic (0.908) Apoptosis agonist (0.906) Proliferative diseases treatment (0.656) | Respiratory analeptic (0.872) Anti-hypercholesterolemic (0.786) Cholesterol synthesis inhibitor (0.647) |
56 | Respiratory analeptic (0.909) Immunosuppressant (0.779) | Antineoplastic (0.882) Apoptosis agonist (0.843) |
57 | Respiratory analeptic (0.961) Immunosuppressant (0.800) | Antineoplastic (0.916) Apoptosis agonist (0.914) |
58 | Respiratory analeptic (0.909) Immunosuppressant (0.779) | Antineoplastic (0.882) Apoptosis agonist (0.843) |
59 | Respiratory analeptic (0.922) Immunosuppressant (0.799) | Antineoplastic (0.908) Apoptosis agonist (0.874) |
60 | Antineoplastic (0.908) Apoptosis agonist (0.896) | Respiratory analeptic (0.881) Immunosuppressant (0.788) |
61 | Antineoplastic (0.890) Apoptosis agonist (0.683) | Anti-hypercholesterolemic (0.791) Cholesterol synthesis inhibitor (0.712) |
62 | Antineoplastic (0.890) Apoptosis agonist (0.743) | Anti-hypercholesterolemic (0.793) Atherosclerosis treatment (0.738) |
63 | Antineoplastic (0.927) Apoptosis agonist (0.692) | Respiratory analeptic (0.587) Cardiovascular analeptic (0.556) |
64 | Inhibitor rheumatoid arthritis (0.928) Inhibitor pregnane x receptor (0.729) | Alzheimer’s disease treatment (0.676) Anti-nephrotoxic (0.637) |
65 | Chemopreventive (0.890) Antineoplastic (0.850) Apoptosis agonist (0.781) | Anti-hypercholesterolemic (0.816) Atherosclerosis treatment (0.722) Biliary tract disorders treatment (0.667) |
66 | Antifungal (0.887) Antibacterial (0.804) | Antileukemic (0.756) Prostate disorders treatment (0.735) |
67 | Antifungal (0.845) Antibacterial (0.794) | Antileukemic (0.730) Prostate disorders treatment (0.717) |
68 | Antifungal (0.845) Antibacterial (0.794) | Antileukemic (0.730) Prostate disorders treatment (0.717) |
69 | Antiprotozoal (0.944) Genital warts treatment (0.811) | Antineoplastic (0.766) Antimetastatic (0.642) |
70 | Antifungal (0.911) Antibacterial (0.822) | Antileukemic (0.714) Prostate disorders treatment (0.696) |
71 | Antiviral (0.912) Antiviral (Influenza) (0.901) | Respiratory analeptic (0.855) Immunosuppressant (0.721) |
72 | Anti-inflammatory (0.893) Antiviral (Influenza) (0.787) | Antifungal (0.865) Antibacterial (0.814) |
No. | Dominated Biological Activity (Pa) * | Additional Predicted Activities (Pa) * |
---|---|---|
73 | Anesthetic general (0.928) Angiogenesis inhibitor (0.918) Respiratory analeptic (0.916) | Antineoplastic (0.914) Anti-hypercholesterolemic (0.857) Immunosuppressant (0.762) |
74 | Angiogenesis inhibitor (0.910) Anesthetic general (0.774) | Respiratory analeptic (0.848) Anti-hypercholesterolemic (0.841) |
75 | Anesthetic general (0.928) Angiogenesis inhibitor (0.892) | Respiratory analeptic (0.916) Antineoplastic (0.903) |
76 | Angiogenesis inhibitor (0.890) Analeptic (0.872) | Anti-hypercholesterolemic (0.813) |
77 | Angiogenesis inhibitor (0.916) Analeptic (0.834) | Anti-hypercholesterolemic (0.785) Anti-inflammatory (0.705) |
78 | Angiogenesis inhibitor (0.825) Anesthetic general (0.666) | Anti-osteoporotic (0.820) Antiallergic (0.710) |
79 | Angiogenesis inhibitor (0.869) Immunosuppressant (0.716) | Antineoplastic (0.858) Apoptosis agonist (0.651) |
80 | Angiogenesis inhibitor (0.920) Anesthetic general (0.783) | Respiratory analeptic (0.855) Anti-hypercholesterolemic (0.823) |
81 | Angiogenesis inhibitor (0.877) Immunosuppressant (0.744) | Antineoplastic (0.889) Apoptosis agonist (0.687) |
82 | Angiogenesis inhibitor (0.891) Immunosuppressant (0.733) | Antineoplastic (0.836) Apoptosis agonist (0.677) |
83 | Angiogenesis inhibitor (0.897) Analeptic (0.837) | Anti-hypercholesterolemic (0.765) Anti-inflammatory (0.765) |
84 | Angiogenesis inhibitor (0.902) Analeptic (0.866) | Anti-hypercholesterolemic (0.777) Anti-inflammatory (0.754) |
85 | Anesthetic general (0.931) Angiogenesis inhibitor (0.922) Respiratory analeptic (0.921) | Antineoplastic (0.923) Anti-hypercholesterolemic (0.862) Immunosuppressant (0.774) |
86 | Angiogenesis inhibitor (0.878) Immunosuppressant (0.736) | Antineoplastic (0.828) Apoptosis agonist (0.633) |
87 | Antiprotozoal (0.944) Antiprotozoal (Plasmodium) (0.937) | Genital warts treatment (0.767) Antineoplastic (0.722) |
No. | Dominated Biological Activity (Pa) * | Additional Predicted Activities (Pa) * |
---|---|---|
88 | Anti-hypercholesterolemic (0.901) Lipid metabolism regulator (0.833) Antiallergic (0.723) | Respiratory analeptic (0.889) Ovulation inhibitor (0.884) Anesthetic general (0.843) |
89 | Anti-hypercholesterolemic (0.924) Lipid metabolism regulator (0.820) | Respiratory analeptic (0.927) Ovulation inhibitor (0.858) |
90 | Angiogenesis inhibitor (0.943) Antidiabetic symptomatic (0.835) Autoimmune disorders treatment (0.794) | Antineoplastic (0.924) Respiratory analeptic (0.877) Lipid metabolism regulator (0.790) |
91 | Hepatic disorders treatment (0.917) Immunosuppressant (0.774) | Antineoplastic (0.836) Angiogenesis inhibitor (0.828) |
92 | Hepatic disorders treatment (0.878) Cholesterol synthesis inhibitor (0.704) | Antineoplastic (0.844) Angiogenesis inhibitor (0.788) |
93 | Hepatic disorders treatment (0.903) Cholesterol synthesis inhibitor (0.641) | Antineoplastic (0.824) Angiogenesis inhibitor (0.765) |
94 | Hepatic disorders treatment (0.878) Cholesterol synthesis inhibitor (0.704) | Antineoplastic (0.844) Angiogenesis inhibitor (0.788) |
95 | Hepatic disorders treatment (0.883) Cholesterol synthesis inhibitor (0.737) | Antineoplastic (0.841) Angiogenesis inhibitor (0.809) |
96 | Hepatic disorders treatment (0.908) Cholesterol synthesis inhibitor (0.683) | Antineoplastic (0.820) Angiogenesis inhibitor (0.793) |
97 | Hepatic disorders treatment (0.883) Cholesterol synthesis inhibitor (0.737) | Antineoplastic (0.841) Angiogenesis inhibitor (0.809) |
98 | Hepatic disorders treatment (0.883) Cholesterol synthesis inhibitor (0.737) | Antineoplastic (0.841) Angiogenesis inhibitor (0.809) |
99 | Hepatic disorders treatment (0.908) Cholesterol synthesis inhibitor (0.683) | Angiogenesis inhibitor (0.793) Biliary tract disorders treatment (0.621) |
100 | Hepatic disorders treatment (0.883) Cholesterol synthesis inhibitor (0.737) | Angiogenesis inhibitor (0.809) Biliary tract disorders treatment (0.611) |
101 | Hepatic disorders treatment (0.919) Immunosuppressant (0.768) | Antineoplastic (0.811) Angiogenesis inhibitor (0.782) |
102 | Hepatic disorders treatment (0.905) Immunosuppressant (0.772) | Antineoplastic (0.800) Angiogenesis inhibitor (0.709) |
103 | Hepatic disorders treatment (0.905) Immunosuppressant (0.772) | Antineoplastic (0.800) Angiogenesis inhibitor (0.709) |
104 | Hepatic disorders treatment (0.880) Immunosuppressant (0.786) | Antifungal (0.829) Antibacterial (0.737) |
105 | Hepatic disorders treatment (0.880) Immunosuppressant (0.786) | Antifungal (0.829) Antibacterial (0.737) |
106 | Hepatic disorders treatment (0.880) Immunosuppressant (0.786) | Antifungal (0.829) Antibacterial (0.737) |
107 | Hepatic disorders treatment (0.910) Immunosuppressant (0.758) | Antifungal (0.803) Antineoplastic (0.797) |
108 | Hepatic disorders treatment (0.910) Immunosuppressant (0.758) | Antifungal (0.803) Antineoplastic (0.797) |
No. | Dominated Biological Activity (Pa) * | Additional Predicted Activities (Pa) * |
---|---|---|
109 | Hepatic disorders treatment (0.890) Immunosuppressant (0.785) | Antineoplastic (0.813) Angiogenesis inhibitor (0.751) |
110 | Hepatic disorders treatment (0.886) Immunosuppressant (0.795) | Antineoplastic (0.816) Angiogenesis inhibitor (0.728) |
111 | Hepatic disorders treatment (0.886) Immunosuppressant (0.795) | Antineoplastic (0.816) Angiogenesis inhibitor (0.728) |
112 | Hepatic disorders treatment (0.886) Immunosuppressant (0.795) | Antineoplastic (0.816) Angiogenesis inhibitor (0.728) |
113 | Hepatic disorders treatment (0.886) Immunosuppressant (0.795) | Antineoplastic (0.816) Angiogenesis inhibitor (0.728) |
114 | Antifungal (0.860) Antibacterial (0.803) | Acute neurologic disorders treatment (0.819) Biliary tract disorders treatment (0.783) |
115 | Antifungal (0.890) Antibacterial (0.875) | Antineoplastic (0.857) Acute neurologic disorders treatment (0.681) |
116 | Antifungal (0.902) Antibacterial (0.886) | Antineoplastic (0.858) Acute neurologic disorders treatment (0.727) |
117 | Antifungal (0.863) Antibacterial (0.803) | Acute neurologic disorders treatment (0.822) Biliary tract disorders treatment (0.783) |
118 | Antibacterial (0.906) Antifungal (0.902) | Antineoplastic (0.849) Acute neurologic disorders treatment (0.667) |
119 | Antifungal (0.885) Antibacterial (0.873) | Antineoplastic (0.849) Acute neurologic disorders treatment (0.692) |
120 | Antifungal (0.893) Antibacterial (0.895) | Antineoplastic (0.863) Acute neurologic disorders treatment (0.712) |
No. | Dominated Biological Activity (Pa) * | Additional Predicted Activities (Pa) * |
---|---|---|
121 | Anti-hypercholesterolemic (0.886) Antineoplastic (0.846) Anesthetic general (0.690) | Antifungal (0.727) Angiogenesis inhibitor (0.680) Antibacterial (0.666) |
122 | Antineoplastic (0.938) Apoptosis agonist (0.923) Antileukemic (0.785) | Anti-eczematic (0.921) Anti-psoriatic (0.771) Hypolipemic (0.669) |
123 | Antineoplastic (0.918) Apoptosis agonist (0.908) | Anti-eczematic (0.889) Anti-psoriatic (0.732) |
124 | Anti-hypercholesterolemic (0.891) Antineoplastic (0.833) | Antifungal (0.739) Antibacterial (0.658) |
125 | Antineoplastic (0.918) Apoptosis agonist (0.793) Prostate cancer treatment (0.679) | Cachexia treatment (0.749) Anti-osteoporotic (0.672) Menopausal disorders treatment (0.582) |
126 | Antineoplastic (0.919) Apoptosis agonist (0.798) Prostate cancer treatment (0.688) | Cachexia treatment (0.773) Anti-osteoporotic (0.689) Menopausal disorders treatment (0.613) |
127 | Apoptosis agonist (0.954) Antineoplastic (0.888) | Genital warts treatment (0.914) Anesthetic general (0.730) |
128 | Apoptosis agonist (0.933) Antineoplastic (0.867) | Genital warts treatment (0.897) Anesthetic general (0.713) |
129 | Apoptosis agonist (0.924) Antineoplastic (0.839) | Genital warts treatment (0.902) Anesthetic general (0.722) |
130 | Apoptosis agonist (0.917) Antineoplastic (0.831) | Genital warts treatment (0.899) Anesthetic general (0.741) |
131 | Chemopreventive (0.892) Apoptosis agonist (0.854) Antineoplastic (0.790) | Hypolipemic (0.852) Anti-hypercholesterolemic (0.718) Cholesterol synthesis inhibitor (0.543) |
132 | Apoptosis agonist (0.844) Antineoplastic (0.771) | Antifungal (0.813) Antibacterial (0.712) |
133 | Antineoplastic (0.767) Apoptosis agonist (0.722) | Antifungal (0.723) Antibacterial (0.698) |
134 | Chemopreventive (0.934) Apoptosis agonist (0.914) Antineoplastic (0.881) | Hypolipemic (0.902) Anti-hypercholesterolemic (0.887) Cholesterol synthesis inhibitor (0.841) |
135 | Chemopreventive (0.928) Apoptosis agonist (0.922) Antineoplastic (0.916) | Hypolipemic (0.911) Anti-hypercholesterolemic (0.866) Cholesterol synthesis inhibitor (0.812) |
136 | Chemopreventive (0.933) Antineoplastic (0.923) | Anti-hypercholesterolemic (0.899) Cholesterol synthesis inhibitor (0.878) |
137 | Antineoplastic (0.865) Apoptosis agonist (0.834) | Anti-hypercholesterolemic (0.812) Cholesterol synthesis inhibitor (0.722) |
138 | Antineoplastic (0.947) Chemopreventive (0.922) | Anti-hypercholesterolemic (0.911) Cholesterol synthesis inhibitor (0.892) |
139 | Antineoplastic (0.887) Apoptosis agonist (0.851) | Anti-hypercholesterolemic (0.843) Cholesterol synthesis inhibitor (0.752) |
No. | Dominated Biological Activity (Pa) * | Additional Predicted Activities (Pa) * |
---|---|---|
140 | Chemopreventive (0.893) Apoptosis agonist (0.841) | Antifungal (0.815) Anti-inflammatory (0.793) |
141 | Nitric oxide production inhibitor (0.922) Anti-hypercholesterolemic (0.818) | Cholesterol synthesis inhibitor (0.743) Antibacterial (0.652) |
142 | Antineoplastic (0.980) Chemopreventive (0.942) Apoptosis agonist (0.913) | Antibacterial (0.882) Antifungal (0.819) Anti-inflammatory (0.803) |
143 | Antineoplastic (0.902) Apoptosis agonist (0.862) | Anti-hypercholesterolemic (0.733) Cholesterol synthesis inhibitor (0.644) |
144 | Anti-inflammatory (0.903) Antibacterial (0.876) Antifungal (0.833) | Anti-hypercholesterolemic (0.784) Cholesterol synthesis inhibitor (0.721) Hypolipemic (0.652) |
145 | Anesthetic general (0.937) Angiogenesis inhibitor (0.922) | Antineoplastic (0.910) Anti-hypercholesterolemic (0.844) |
146 | Antineoplastic (0.912) Cytostatic (0.878) Apoptosis agonist (0.845) | Antibacterial (0.854) Antifungal (0.799) Anti-inflammatory (0.769) |
147 | Antineoplastic (0.944) Apoptosis agonist (0.921) | Anti-hypercholesterolemic (0.815) Cholesterol synthesis inhibitor (0.766) |
148 | Anesthetic general (0.883) Angiogenesis inhibitor (0.821) | Antineoplastic (0.856) Anti-hypercholesterolemic (0.811) |
149 | Anesthetic general (0.897) Angiogenesis inhibitor (0.832) | Antineoplastic (0.871) Anti-hypercholesterolemic (0.835) |
150 | Anesthetic general (0.959) Angiogenesis inhibitor (0.932) | Antineoplastic (0.911) Anti-hypercholesterolemic (0.832) |
151 | Antineoplastic (0.989) Apoptosis agonist (0.931) | Anti-hypercholesterolemic (0.792) Cholesterol synthesis inhibitor (0.758) |
152 | Cytostatic (0.922) Apoptosis agonist (0.911) | Antifungal (0.799) Antibacterial (0.854) |
153 | Cytostatic (0.911) Apoptosis agonist (0.903) | Antifungal (0.832) Antibacterial (0.807) |
154 | Cytostatic (0.916) Apoptosis agonist (0.892) | Antifungal (0.856) Antibacterial (0.832) |
155 | Cytostatic (0.938) Apoptosis agonist (0.923) | Antifungal (0.878) Antibacterial (0.859) |
156 | Anesthetic general (0.907) Angiogenesis inhibitor (0.883) | Antineoplastic (0.882) Anti-hypercholesterolemic (0.821) |
157 | Anesthetic general (0.916) Angiogenesis inhibitor (0.891) | Antineoplastic (0.899) Anti-hypercholesterolemic (0.837) |
158 | Anesthetic general (0.956) Angiogenesis inhibitor (0.932) | Antineoplastic (0.909) Anti-hypercholesterolemic (0.788) |
159 | Anesthetic general (0.956) Angiogenesis inhibitor (0.932) | Antineoplastic (0.909) Anti-hypercholesterolemic (0.788) |
No. | Dominated Biological Activity (Pa) * | Additional Predicted Activities (Pa) * |
---|---|---|
160 | Carboxylesterase inhibitor (0.922) Anti-hypercholesterolemic (0.822) Cholesterol synthesis inhibitor (0.741) | Antifungal (0.831) Antibacterial (0.820) Anti-inflammatory (0.734) |
161 | Carboxylesterase inhibitor (0.829) Anti-hypercholesterolemic (0.812) Cholesterol synthesis inhibitor (0.806) | Antifungal (0.745) Antibacterial (0.743) Anti-inflammatory (0.712) |
162 | Carboxylesterase inhibitor (0.900) Anti-hypercholesterolemic (0.821) Cholesterol synthesis inhibitor (0.808) | Antifungal (0.811) Antibacterial (0.806) Anti-inflammatory (0.698) |
163 | Carboxylesterase inhibitor (0.943) Anti-hypercholesterolemic (0.928) Cholesterol synthesis inhibitor (0.843) | Antifungal (0.853) Antibacterial (0.824) Anti-inflammatory (0.792) |
164 | Carboxylesterase inhibitor (0.949) Anti-hypercholesterolemic (0.929) Cholesterol synthesis inhibitor (0.867) | Antifungal (0.858) Antibacterial (0.829) Anti-inflammatory (0.803) |
165 | Carboxylesterase inhibitor (0.941) Cholesterol synthesis inhibitor (0.855) | Antifungal (0.858) Antibacterial (0.829) |
166 | Antineoplastic (0.955) Cytostatic (0.927) Apoptosis agonist (0.918) | Antileukemic (0.910) Antimetastatic (0.901) Antineoplastic (0.899) |
167 | Antineoplastic (0.897) Apoptosis agonist (0.818) | Antimetastatic (0.821) Antineoplastic (0.802) |
168 | Antineoplastic (0.948) Apoptosis agonist (0.914) | Respiratory analeptic (0.895) Anti-inflammatory (0.834) |
169 | Apoptosis agonist (0.939) Antineoplastic (0.922) | Antimetastatic (0.914) Antileukemic (0.898) |
170 | Apoptosis agonist (0.926) Antineoplastic (0.911) | Antimetastatic (0.900) Antileukemic (0.876) |
171 | Anti-inflammatory (0.923) Antiviral (0.856) | Antineoplastic (0.845) Apoptosis agonist (0.807) |
172 | Anti-inflammatory (0.911) Antiviral (0.872) | Antineoplastic (0.866) Apoptosis agonist (0.822) |
173 | Anti-inflammatory (0.931) Antiviral (0.902) | Antineoplastic (0.852) Apoptosis agonist (0.812) |
174 | Antineoplastic (0.956) Apoptosis agonist (0.804) | Angiogenesis inhibitor (0.893) Lipid metabolism regulator (0.680) |
175 | Apoptosis agonist (0.889) Antineoplastic (0.875) | Anti-eczematic (0.717) Anti-psoriatic (0.668) |
176 | Anti-hypercholesterolemic (0.952) Carboxylesterase inhibitor (0.931) | Lipid metabolism regulator (0.880) Cholesterol synthesis inhibitor (0.823) |
No. | Dominated Biological Activity (Pa) * | Additional Predicted Activities (Pa) * |
---|---|---|
177 | Antineoplastic (0.933) Apoptosis agonist (0.841) | Antifungal (0.802) Antibacterial (0.754) |
178 | Antineoplastic (0.924) Apoptosis agonist (0.855) | Antifungal (0.786) Antibacterial (0.733) |
179 | Antineoplastic (0.924) | Antiviral (arbovirus) (0.772) |
180 | A nitric oxide production inhibitor (0.944) Acetylcholinesterase inhibitor (0.933) | Antibacterial (0.743) Antifungal (0.697) |
181 | Antifungal (0.921) Antibacterial (0.718) | Antiparasitic (0.728) Antiviral (0.712) |
182 | Antifungal (0.917) Antibacterial (0.722) | Antiparasitic (0.728) Antiviral (0.744) |
183 | Cytotoxic (0.896) | Antineoplastic (0.824) |
184 | Acetylcholinesterase inhibitor (0.908) A nitric oxide production inhibitor (0.858) | Antineoplastic (0.715) Antiviral (0.753) |
185 | Acetylcholinesterase inhibitor (0.914) Cytotoxic (0.896) | Antineoplastic (0.821) Antiviral (0.744) |
186 | Cytotoxic (0.922) Acetylcholinesterase inhibitor (0.914) A nitric oxide production inhibitor (0.881) | Antineoplastic (0.832) Apoptosis agonist (0.811) Antifungal (0.657) |
187 | Antineoplastic (0.876) Apoptosis agonist (0.812) | Antifungal (0.726) Antibacterial (0.711) |
188 | Antineoplastic (0.882) Apoptosis agonist (0.833) | Antifungal (0.726) Antibacterial (0.702) |
189 | Antineoplastic (0.811) Apoptosis agonist (0.718) | Antifungal (0.704) Antibacterial (0.674) |
190 | Cytotoxic (0.857) Apoptosis agonist (0.778) | Antimutagenic (0.710) Anti-asthmatic (0.587) |
191 | Cytotoxic (0.865) Apoptosis agonist (0.719) | Antimutagenic (0.722) Antiviral (0.711) |
192 | Cytotoxic (0.881) Apoptosis agonist (0.734) | Antimutagenic (0.721) Antiviral (0.689) |
193 | Cytotoxic (0.903) | Antineoplastic (0.823) |
194 | Angiogenesis stimulant (0.872) Apoptosis agonist (0.713) | Lipid metabolism regulator (0.728) Anti-hypercholesterolemic (0.701) |
195 | Angiogenesis stimulant (0.872) Apoptosis agonist (0.713) | Lipid metabolism regulator (0.728) Anti-hypercholesterolemic (0.701) |
196 | Angiogenesis stimulant (0.887) Apoptosis agonist (0.767) | Lipid metabolism regulator (0.713) Anti-hypercholesterolemic (0.698) |
197 | Angiogenesis stimulant (0.902) Apoptosis agonist (0.775) | Lipid metabolism regulator (0.802) Anti-hypercholesterolemic (0.678) |
198 | Antineoplastic (0.884) Prostate disorders treatment (0.649) | Anti-eczematic (0.852) Anti-psoriatic (0.678) |
199 | Antineoplastic (0.855) Prostate disorders treatment (0.688) | Anti-eczematic (0.712) Anti-psoriatic (0.614) |
200 | Apoptosis agonist (0.881) Proliferative diseases treatment (0.711) | Respiratory analeptic (0.817) Hypolipemic (0.655) |
201 | Apoptosis agonist (0.880) Proliferative diseases treatment (0.721) | Respiratory analeptic (0.821) Hypolipemic (0.638) |
202 | Antineoplastic (0.877) Apoptosis agonist (0.766) | Lipid metabolism regulator (0.781) Anti-hypercholesterolemic (0.652) |
203 | Antineoplastic (0.873) | Proliferative diseases treatment (0.814) |
204 | Antineoplastic (0.793) | Proliferative diseases treatment (0.785) |
No. | Dominated Biological Activity (Pa) * | Additional Predicted Activities (Pa) * |
---|---|---|
205 | Antiviral (HIV) 0.876 Antiviral (arbovirus) (0.712) | Antifungal (0.742) Antibacterial (0.656) |
206 | Antiviral (HIV) 0.938 Antiviral (influenza A) (0.894) Antiviral (arbovirus) (0.783) | Antifungal (0.722) Antibacterial (0.632) Antiparasitic (0.618) |
207 | Antiviral (HIV) 0.951 Antiviral (influenza A) (0.849) Antiviral (arbovirus) (0.754) | Antifungal (0.768) Antibacterial (0.692) Antiparasitic (0.610) |
208 | Antiviral (HIV) 0.845 Antiviral (arbovirus) (0.699) | Antifungal (0.731) Antibacterial (0.655) |
209 | Antiviral (HIV) 0.866 | Antibacterial (0.699) |
210 | Antiviral (arbovirus) (0.823) Antiviral (0.769) | Antifungal (0.788) Antibacterial (0.642) |
211 | Antiviral (HSV-1) (0.971) Antiviral (HIV) (0.958) Antiviral (influenza A) (0.878) | Antifungal (0.792) Antibacterial (0.654) Antiparasitic (0.647) |
212 | Antiviral (HSV-1) (0.936) Antiviral (HIV) (0.922) | Antifungal (0.722) Antibacterial (0.633) |
213 | Antiviral (HSV-2) (0.984) Antiviral (HIV) (0.939) | Antifungal (0.792) Antibacterial (0.677) |
214 | Cytotoxic (0.912) Antineoplastic (0.886) | Lipid metabolism regulator (0.823) Anti-hypercholesterolemic (0.732) |
215 | Cytotoxic (0.932) Antineoplastic (0.893) | Lipid metabolism regulator (0.842) Anti-hypercholesterolemic (0.752) |
216 | PXR agonistic (0.933) Antiviral (arbovirus) (0.719) | Antineoplastic (0.811) Apoptosis agonist (0.729) |
217 | Antineoplastic (0.879) Apoptosis agonist (0.743) | Antimutagenic (0.755) Antileukemic (0.726) |
218 | Antineoplastic (0.863) Apoptosis agonist (0.712) | Antimutagenic (0.764) Antileukemic (0.721) |
219 | Antineoplastic (0.922) Apoptosis agonist (0.705) | Antileukemic (0.766) Antimutagenic (0.733) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dembitsky, V.M. Bioactive Steroids Bearing Oxirane Ring. Biomedicines 2023, 11, 2237. https://doi.org/10.3390/biomedicines11082237
Dembitsky VM. Bioactive Steroids Bearing Oxirane Ring. Biomedicines. 2023; 11(8):2237. https://doi.org/10.3390/biomedicines11082237
Chicago/Turabian StyleDembitsky, Valery M. 2023. "Bioactive Steroids Bearing Oxirane Ring" Biomedicines 11, no. 8: 2237. https://doi.org/10.3390/biomedicines11082237
APA StyleDembitsky, V. M. (2023). Bioactive Steroids Bearing Oxirane Ring. Biomedicines, 11(8), 2237. https://doi.org/10.3390/biomedicines11082237