Surface Hydrophobic Modification of Biochar by Silane Coupling Agent KH-570
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of Biochar
2.3. Surface Modification of Biochar with KH-570
2.4. Hydrophobic Modification Mechanism of KH-570
2.5. Characterization Analysis
2.6. Waterproofing Experiment
3. Results and Discussion
3.1. Effect of Mass Fraction of KH-570 on Surface Hydrophobic Properties of Modified Biochar
3.2. Effect of Biochar Addition on Surface Hydrophobic Properties
3.3. Effect of Reaction Temperature on Surface Hydrophobicity of Modified Biochar
3.4. FT-IR and TGA Analysis
3.5. XRD Analysis
3.6. SEM Analysis
3.7. Waterproof Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sadasivam, B.Y.; Reddy, K.R. Landfill methane oxidation in soil and bio-based cover systems: A review. Rev. Environ. Sci. Bio/Technol. 2014, 13, 79–107. [Google Scholar] [CrossRef]
- Huang, D.; Xu, W.; Wang, Q.; Xu, Q. Impact of hydrogen sulfide on biochar in stimulating the methane oxidation capacity and microbial communities of landfill cover soil. Chemosphere 2022, 286, 131650. [Google Scholar] [CrossRef] [PubMed]
- Parsaeifard, N.; Sattler, M.; Nasirian, B.; Chen, V.C.P. Enhancing anaerobic oxidation of methane in municipal solid waste landfill cover soil. Waste Manag. 2020, 106, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Bukh, P.G.; Charlotte, S.; Peter, K. Availability and properties of materials for the Fakse Landfill biocover. Waste Manag. 2011, 31, 884–894. [Google Scholar] [CrossRef]
- Charlotte, S.; Alessio, P.; Bukh, P.G.; Peter, K. Evaluation of respiration in compost landfill biocovers intended for methane oxidation. Waste Manag. 2011, 31, 895–902. [Google Scholar] [CrossRef]
- Huang, D.; Yang, L.; Xu, W.; Chen, Q.; Ko, J.H.; Xu, Q. Enhancement of the methane removal efficiency via aeration for biochar-amended landfill soil cover. Environ. Pollut. 2020, 263, 114413. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Jia, B.; Wang, W.; Zhu, W.; Huang, T.; Kong, X. Landfill CH4 oxidation by mineralized refuse: Effects of NH4+-N incubation, water content and temperature. Sci. Total Environ. 2012, 426, 406–413. [Google Scholar] [CrossRef]
- He, J.; Feng, X.Y.; Zhou, L.R.; Zhang, L. The effect of leachate seepage on the mechanical properties and microstructure of solidified sludge when used as a landfill temporary cover material. Waste Manag. 2021, 130, 127–135. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, C.; Wang, Y.; He, L.; Lu, H.; Yang, S. Vermiculite modification increases carbon retention and stability of rice straw biochar at different carbonization temperatures. J. Clean. Prod. 2020, 254, 120111. [Google Scholar] [CrossRef]
- Yargicoglu, E.N.; Reddy, K.R. Biochar-Amended Soil Cover for Microbial Methane Oxidation: Effect of Biochar Amendment Ratio and Cover Profile. J. Geotech. Geoenviron. Eng. 2017, 144, 1845. [Google Scholar] [CrossRef]
- Gopinath, P.; Vo, D.; Gnana Prakash, D.; Adithya Joseph, A.; Viswanathan, S.; Arun, J. Environmental applications of carbon-based materials: A review. Environ. Chem. Lett. 2021, 19, 557–582. [Google Scholar] [CrossRef]
- Srivatsav, P.; Bhargav, S.; Shanmugasundaram, V.; Arun, J.; Gopinath, P.; Bhatnagar, A. Biochar as an Eco-Friendly and Economical Adsorbent for the Removal of Colorants (Dyes) from Aqueous Environment: A Review. Water 2020, 12, 3561. [Google Scholar] [CrossRef]
- Reddy, K.R.; Yargicoglu, E.N.; Yue, D.; Yaghoubi, P. Enhanced Microbial Methane Oxidation in Landfill Cover Soil Amended with Biochar. J. Geotech. Geoenviron. Eng. 2014, 140, 1148. [Google Scholar] [CrossRef]
- Zhang, X.; Xia, J.; Pu, J.; Cai, C.; Tyson, G.W.; Yuan, Z.; Hu, S. Biochar-Mediated Anaerobic Oxidation of Methane. Environ. Sci. Technol. 2019, 53, 6660–6668. [Google Scholar] [CrossRef]
- Wu, B.; Xi, B.; He, X.; Sun, X.; Li, Q.; Ouche, Q.; Zhang, H.; Xue, C. Methane Emission Reduction Enhanced by Hydrophobic Biochar-Modified Soil Cover. Processes 2020, 8, 162. [Google Scholar] [CrossRef] [Green Version]
- Poupak, Y. Development of Biochar-amended Landfill Cover for Landfill Gas Mitigation, Chicago: University of Illinois at Chicago; United States of America: Chicago, IL, USA, 2011. [Google Scholar]
- Scheutz, C.; Kjeldsen, P.; Bogner, J.E.; De Visscher, A.; Gebert, J.; Hilger, H.A.; Huber-Humer, M.; Spokas, K. Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Manag. Res. 2009, 27, 409–455. [Google Scholar] [CrossRef]
- Majdinasab, A.; Yuan, Q. Performance of the biotic systems for reducing methane emissions from landfill sites: A review. Ecol. Eng. 2017, 104, 116–130. [Google Scholar] [CrossRef]
- Sadasivam, B.Y.; Reddy, K.R. Adsorption and transport of methane in landfill cover soil amended with waste-wood biochars. J. Environ. Manag. 2015, 158, 11–23. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Qin, Y.; Wu, B.; Li, J.; Xue, C. Optimization of hydrophobic properties of biochar modified by silane coupling agent. Environ. Sci. Technol. 2019, 42, 68–73. (In Chinese) [Google Scholar]
- Chen, K.; Li, P.; Li, X.; Liao, C.; Li, X.; Zuo, Y. Effect of silane coupling agent on compatibility interface and properties of wheat straw/polylactic acid composites. Int. J. Biol. Macromol. 2021, 182, 2108–2116. [Google Scholar] [CrossRef]
- Fatemeh, A.; Navarchian, A.H. Recent advances in chemical surface modification of metal oxide nanoparticles with silane coupling agents: A review. Adv. Colloid Interface Sci. 2020, 286, 102298. [Google Scholar] [CrossRef]
- Li, G.; Yue, J.; Guo, C.; Ji, Y. Influences of modified nanoparticles on hydrophobicity of concrete with organic film coating. Constr. Build. Mater. 2018, 169, 1–7. [Google Scholar] [CrossRef]
- Jiang, H.; Ye, Y.; Lu, P.; Zhao, M.; Xu, G.; Chen, D.; Song, T. Effects of torrefaction conditions on the hygroscopicity of biochars. J. Energy Inst. 2021, 96, 260–268. [Google Scholar] [CrossRef]
- He, L.H.; Li, L.; Zhou, C.; Li, W.H. Hydrophobic surface modification of diatomit with silane coupling agent KH-570. Mod. Chem. Ind. 2014, 34, 93–97. (In Chinese) [Google Scholar]
- Yang, Q.; Sun, Y.; Sun, W.; Qin, Z.; Liu, H.; Ma, Y.; Wang, X. Cellulose derived biochar: Preparation, characterization, and Benzo[a]pyrene adsorption capacity. Grain Oil Sci. Technol. 2021, 4, 182–190. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, S.; Wu, S.; Long, Y.; Li, L.; Zheng, Z.; Hei, Y.; Zhou, L.; Luo, L.; Jiang, F. Controlling wettability of AgI/BiVO4 composite photocatalyst and its effect on photocatalytic performance. J. Alloys Compd. 2020, 835, 155367. [Google Scholar] [CrossRef]
- Manfrin, J.; Gonçalves, A.C., Jr.; Schwantes, D.; Conradi, E., Jr.; Zimmermann, J.; Ziemer, G.L. Development of biochar and activated carbon from cigarettes wastes and their applications in Pb2+ adsorption. Environ. Chem. Eng. 2021, 9, 104980. [Google Scholar] [CrossRef]
- Tran, H.N.; Tomul, F.; Thi Hoang Ha, N.; Nguyen, D.T.; Lima, E.C.; Le, G.T.; Chang, C.-T.; Masindi, V.; Woo, S.H. Innovative spherical biochar for pharmaceutical removal from water: Insight into adsorption mechanism. J. Hazard. Mater. 2020, 394, 122255. [Google Scholar] [CrossRef]
- Stylianou, M.; Christou, A.; Dalias, P.; Polycarpou, P.; Michael, C.; Agapiou, A.; Papanastasiou, P.; Fatta-Kassinos, D. Physicochemical and structural characterization of biochar derived from the pyrolysis of biosolids, cattle manure and spent coffee grounds. J. Energy Inst. 2020, 93, 2063–2073. [Google Scholar] [CrossRef]
- Khoshnood Motlagh, E.; Asasian-Kolur, N.; Sharifian, S.; Ebrahimian Pirbazari, A. Sustainable rice straw conversion into activated carbon and nano-silica using carbonization-extraction process. Biomass Bioenergy 2021, 144, 105917. [Google Scholar] [CrossRef]
- Chen, R.; Zhao, X.; Jiao, J.; Li, Y.; Wei, M. Surface-Modified Biochar with Polydentate Binding Sites for the Removal of Cadmium. Int. J. Mol. Sci. 2019, 20, 1775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clurman, A.M.; Rodríguez-Narvaez, O.M.; Jayarathne, A.; Silva, G.D.; Ranasinghe, M.I.; Goonetilleke, A.; Bandala, E.R. Influence of surface hydrophobicity/hydrophilicity of biochar on the removal of emerging contaminants. Chem. Eng. J. 2020, 402, 126277. [Google Scholar] [CrossRef]
- Hong, N.; Cheng, Q.; Goonetilleke, A.; Bandala, E.R.; Liu, A. Assessing the effect of surface hydrophobicity/hydrophilicity on pollutant leaching potential of biochar in water treatment. J. Ind. Eng. Chem. 2020, 89, 222–232. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Zhu, H.; Xi, B.; Tian, Y.; Sun, X.; Zhang, H.; Wu, B. Surface Hydrophobic Modification of Biochar by Silane Coupling Agent KH-570. Processes 2022, 10, 301. https://doi.org/10.3390/pr10020301
Zhang M, Zhu H, Xi B, Tian Y, Sun X, Zhang H, Wu B. Surface Hydrophobic Modification of Biochar by Silane Coupling Agent KH-570. Processes. 2022; 10(2):301. https://doi.org/10.3390/pr10020301
Chicago/Turabian StyleZhang, Muxi, Hongxiang Zhu, Beidou Xi, Yuxin Tian, Xiaojie Sun, Hongxia Zhang, and Beibei Wu. 2022. "Surface Hydrophobic Modification of Biochar by Silane Coupling Agent KH-570" Processes 10, no. 2: 301. https://doi.org/10.3390/pr10020301
APA StyleZhang, M., Zhu, H., Xi, B., Tian, Y., Sun, X., Zhang, H., & Wu, B. (2022). Surface Hydrophobic Modification of Biochar by Silane Coupling Agent KH-570. Processes, 10(2), 301. https://doi.org/10.3390/pr10020301