Microwave-Assisted Reductive Amination under Heterogeneous Catalysis for the Synthesis of β-Adrenergic Agonist and Related Structures
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Name | Retention Time | Area | % Area | Specification |
---|---|---|---|---|
Ractopamine RS,SR | 21.177 | 1,497,290 | 47.00 | RS,SR 45–49% |
Ractopamine SS,RR | 22.275 | 1,688,481 | 53.00 |
Name | Retention Time | Area | % Area | Specification |
---|---|---|---|---|
Ractopamine RS,SR | 21.218 | 1,085,144 | 47.06 | RS,SR 45–49% |
Ractopamine SS,RR | 22.318 | 1,220,961 | 52.94 |
References
- Sukhorukov, A.Y. Catalytic Reductive Amination of Aldehydes and Ketones with Nitro Compounds: New Light on an Old Reaction. Front. Chem. 2020, 8, 215. [Google Scholar] [CrossRef] [PubMed]
- Afanasyev, O.I.; Kuchuk, E.; Usanov, D.L.; Chusov, D. Reductive Amination in the Synthesis of Pharmaceuticals. Chem. Rev. 2019, 119, 11857–11911. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, B.; Qin, Y.; Tao, Q.; Chen, L. MOF-Derived Ni@NC Catalyst: Synthesis, Characterization, and Application in One-Pot Hydrogenation and Reductive Amination. Catal. Sci. Technol. 2019, 9, 3726–3734. [Google Scholar] [CrossRef]
- Tian, Y.; Hu, L.; Wang, Y.Z.; Zhang, X.; Yin, Q. Recent Advances on Transition-Metal-Catalysed Asymmetric Reductive Amination. Org. Chem. Front. 2021, 8, 2328–2342. [Google Scholar] [CrossRef]
- Irrgang, T.; Kempe, R. Transition-Metal-Catalyzed Reductive Amination Employing Hydrogen. Chem. Rev. 2020, 120, 9583–9674. [Google Scholar] [CrossRef] [PubMed]
- Murugesan, K.; Senthamarai, T.; Chandrashekhar, V.G.; Natte, K.; Kamer, P.C.J.; Beller, M.; Jagadeesh, R.V. Catalytic Reductive Aminations Using Molecular Hydrogen for Synthesis of Different Kinds of Amines. Chem. Soc. Rev. 2020, 49, 6273–6328. [Google Scholar] [CrossRef]
- Alinezhad, H.; Yavari, H.; Salehian, F. Recent Advances in Reductive Amination Catalysis and Its Applications. Curr. Org. Chem. 2015, 19, 1021–1049. [Google Scholar] [CrossRef]
- Bucciol, F.; Gaudino, E.C.; Villa, A.; Valsania, M.C.; Cravotto, G.; Manzoli, M. Microwave-Assisted Reductive Amination of Aldehydes and Ketones Over Rhodium-Based Heterogeneous Catalysts. Chempluschem 2023, 88, e202300017. [Google Scholar] [CrossRef] [PubMed]
- Pérez Alonso, A.; Pham Minh, D.; Pla, D.; Gómez, M. A Cooperative Rh/Co-Catalyzed Hydroaminomethylation Reaction for the Synthesis of Terpene Amines. ChemCatChem 2023, 15, e202300501. [Google Scholar] [CrossRef]
- Ortega, M.; Manrique, R.; Jiménez, R.; Parreño, M.; Domine, M.E.; Arteaga-Pérez, L.E. Secondary Amines from Catalytic Amination of Bio-Derived Phenolics over Pd/C and Rh/C: Effect of Operation Parameters. Catalysts 2023, 13, 654. [Google Scholar] [CrossRef]
- Migliorini, F.; Monciatti, E.; Romagnoli, G.; Parisi, M.L.; Taubert, J.; Vogt, M.; Langer, R.; Petricci, E. Switching Mechanistic Pathways by Micellar Catalysis: A Highly Selective Rhodium Catalyst for the Hydroaminomethylation of Olefins with Anilines in Water. ACS Catal. 2023, 13, 2702–2714. [Google Scholar] [CrossRef]
- Chatterjee, M.; Ishizaka, T.; Kawanami, H. Reductive Amination of Furfural to Furfurylamine Using Aqueous Ammonia Solution and Molecular Hydrogen: An Environmentally Friendly Approach. Green Chem. 2016, 18, 487–496. [Google Scholar] [CrossRef]
- Fiore, A.M.; Romanazzi, G.; Dell’Anna, M.M.; Latronico, M.; Leonelli, C.; Mali, M.; Rizzuti, A.; Mastrorilli, P. Mild and Efficient Synthesis of Secondary Aromatic Amines by One-Pot Stepwise Reductive Amination of Arylaldehydes with Nitroarenes Promoted by Reusable Nickel Nanoparticles. Mol. Catal. 2019, 476, 110507. [Google Scholar] [CrossRef]
- Pedrajas, E.; Sorribes, I.; Junge, K.; Beller, M.; Llusar, R. Selective Reductive Amination of Aldehydes from Nitro Compounds Catalyzed by Molybdenum Sulfide Clusters. Green Chem. 2017, 19, 3764–3768. [Google Scholar] [CrossRef]
- Cravotto, G.; Carnaroglio, D. Microwave Chemistry, 1st ed.; De Gruyter: Berlin, Germany, 2017. [Google Scholar]
- Schanche, J.S. Microwave Synthesis Solutions from Personal Chemistry. Mol. Divers. 2003, 7, 293–300. [Google Scholar] [CrossRef]
- Bogdal, D.; Lukasiewicz, M.; Pielichowski, J.; Miciak, A.; Bednarz, S. Microwave-Assisted Oxidation of Alcohols Using MagtrieveTM. Tetrahedron 2003, 59, 649–653. [Google Scholar] [CrossRef]
- Ricciardi, L.; Verboom, W.; Lange, J.P.; Huskens, J. Reactive Extraction Enhanced by Synergic Microwave Heating: Furfural Yield Boost in Biphasic Systems. ChemSusChem 2020, 13, 3589–3593. [Google Scholar] [CrossRef] [PubMed]
- Bories, G.; Brantom, P.; Brufau De Barberà, J.; Chesson, A.; Cocconcelli, P.S.; Debski, B.; Dierick, N.; Gropp, J.; Halle, I.; Hogstrand, C.; et al. Safety Evaluation of Ractopamine. EFSA J. 2009, 7, 1041. [Google Scholar]
- Menegat, M.B.; Goodband, R.D.; DeRouchey, J.M.; Tokach, M.D.; Woodworth, J.C.; Dritz, S.S. Feed Additives in Swine Diets; Kansas State University: Manhattan, KS, USA, 2019; pp. 1–14. [Google Scholar]
- Rikard-Bell, C.; Curtis, M.A.; van Barneveld, R.J.; Mullan, B.P.; Edwards, A.C.; Gannon, N.J.; Henman, D.J.; Hughes, P.E.; Dunshea, F.R. Ractopamine Hydrochloride Improves Growth Performance and Carcass Composition in Immunocastrated Boars, Intact Boars, and Gilts. J. Anim. Sci. 2009, 87, 3536–3543. [Google Scholar] [CrossRef]
- Anderson, D.B.; Schmiegel, K.K.; Veenhuizen, E.L. Animal Feed Compositions Containing Phenethanolamines. GB2133986A, 11 February 1984. [Google Scholar]
- Dai Mo, C.; Aiquiao, M.; Yaozhong, J.; Yuliang, W. Novel Process for Preparing Ractopamine from p-Hydroxyacetophenone and Raspberry Ketone. CN1557804A, 30 January 2004. [Google Scholar]
- Nadikuduru, S.K.; Patil, B.S.; Ghan, J.B. A “Improved Process for Manufacture of Ractopamine Hydrochloride”. IN2012MU02355, 13 August 2012. [Google Scholar]
- Liu, J.; Song, Y.; Ma, L. Earth-Abundant Metal-Catalyzed Reductive Amination: Recent Advances and Prospect for Future Catalysis. In Chemistry—An Asian Journal; John Wiley and Sons Ltd.: Hoboken, NJ, USA, 2021; pp. 2371–2391. [Google Scholar]
- Reshi, N.U.D.; Saptal, V.B.; Beller, M.; Bera, J.K. Recent Progress in Transition-Metal-Catalyzed Asymmetric Reductive Amination. ACS Catal. 2021, 11, 13809–13837. [Google Scholar] [CrossRef]
- Touchy, A.S.; Hakim Siddiki, S.M.A.; Kon, K.; Shimizu, K.I. Heterogeneous Pt Catalysts for Reductive Amination of Levulinic Acid to Pyrrolidones. ACS Catal. 2014, 4, 3045–3050. [Google Scholar] [CrossRef]
- Li, X.; Le, S.D.; Nishimura, S. Reductive Amination of 5-Hydroxymethyl-2-Furaldehyde Over Beta Zeolite-Supported Ruthenium Catalyst. Catal. Letters 2021, 152, 2860–2868. [Google Scholar] [CrossRef]
- Yamada, T.; Park, K.; Furugen, C.; Jiang, J.; Shimizu, E.; Ito, N.; Sajiki, H. Highly Selective Hydrogenative Conversion of Nitriles into Tertiary, Secondary, and Primary Amines under Flow Reaction Conditions. ChemSusChem 2022, 15, e202102138. [Google Scholar] [CrossRef] [PubMed]
- Mahato, S.; Rawal, P.; Devadkar, A.K.; Joshi, M.; Roy Choudhury, A.; Biswas, B.; Gupta, P.; Panda, T.K. Hydroboration and Reductive Amination of Ketones and Aldehydes with HBpin by a Bench Stable Pd(Ii)-Catalyst. Org. Biomol. Chem. 2022, 20, 1103–1111. [Google Scholar] [CrossRef]
- Arteaga-Pérez, L.E.; Manrique, R.; Castillo-Puchi, F.; Ortega, M.; Bertiola, C.; Pérez, A.; Jiménez, R. One-Pot Amination of Cyclohexanone-to-Secondary Amines over Carbon-Supported Pd: Unraveling the Reaction Mechanism and Kinetics. Chem. Eng. J. 2021, 417, 129236. [Google Scholar] [CrossRef]
- Avanthi, S.; Putta, V.; Nomula, A. Process for the Preparation of Ractopamine Hydrochloride via Novel Intermediates. WO/2020/229935, 19 November 2020. [Google Scholar]
- EFSA. Scientific Opinion of the Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) on a request from the European Commission on the safety evaluation of Ractopamine. EFSA J. 2009, 1041, 1–52. [Google Scholar]
Entry | T (°C) | H2 (bar) | Conversion (%) | Selectivity (%) | Yield (%) |
---|---|---|---|---|---|
1 | 50 | 5 | 10.0 | 63.2 | 6.3 |
2 | 80 | 5 | 87.2 | 47.0 | 41.0 |
3 | 50 | 10 | 91.6 | 94.5 | 86.6 |
Entry | Catalyst | H2 (bar) | Conversion (%) | Selectivity (%) | Yield (%) |
---|---|---|---|---|---|
1 | Pt/C | 10 | 91.6 | 94.5 | 86.6 |
2 | Rh/C | 10 | 81.0 | 91.9 | 74.4 |
3 | Ru/C | 10 | 73.0 | n.d. | - |
4 | Rh/C | 5 | 47.0 | 80.4 | 37.8 |
Entry | Catalyst | Substrate | H2 (Bar) | Conversion (%) | Selectivity (%) | Yield (%) |
---|---|---|---|---|---|---|
1 | Pt/C | Acetophenone | 5 | n.d. | n.d. | - |
2 | 10 | 89.6 | 29.2 | 26.2 | ||
3 | Cyclohexanone | 5 | >99 | >99 | >99 | |
4 | 10 | >99 | >99 | >99 | ||
5 | 2-Butanone | 5 | >99 | 80.2 | 80.2 | |
6 | 10 | >99 | 96.3 | 96.3 | ||
7 | Rh/C | Acetophenone | 5 | >99 | 8.2 | 8.2 |
8 | 10 | >99 | 8.0 | 8.0 | ||
9 | Cyclohexanone | 5 | >99 | 82.7 | 82.7 | |
10 | 10 | >99 | 22.1 | 22.1 | ||
11 | 2-Butanone | 5 | >99 | 92.4 | 92.4 | |
12 | 10 | >99 | 50.2 | 50.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bucciol, F.; Colia, M.; Canova, E.; Grillo, G.; Calcio Gaudino, E.; Cravotto, G. Microwave-Assisted Reductive Amination under Heterogeneous Catalysis for the Synthesis of β-Adrenergic Agonist and Related Structures. Processes 2023, 11, 2602. https://doi.org/10.3390/pr11092602
Bucciol F, Colia M, Canova E, Grillo G, Calcio Gaudino E, Cravotto G. Microwave-Assisted Reductive Amination under Heterogeneous Catalysis for the Synthesis of β-Adrenergic Agonist and Related Structures. Processes. 2023; 11(9):2602. https://doi.org/10.3390/pr11092602
Chicago/Turabian StyleBucciol, Fabio, Mariachiara Colia, Erica Canova, Giorgio Grillo, Emanuela Calcio Gaudino, and Giancarlo Cravotto. 2023. "Microwave-Assisted Reductive Amination under Heterogeneous Catalysis for the Synthesis of β-Adrenergic Agonist and Related Structures" Processes 11, no. 9: 2602. https://doi.org/10.3390/pr11092602
APA StyleBucciol, F., Colia, M., Canova, E., Grillo, G., Calcio Gaudino, E., & Cravotto, G. (2023). Microwave-Assisted Reductive Amination under Heterogeneous Catalysis for the Synthesis of β-Adrenergic Agonist and Related Structures. Processes, 11(9), 2602. https://doi.org/10.3390/pr11092602