Research on the Formulation Design of Nano-Oil Displacement Agents Suitable for Xinjiang Jimusaer Shale Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Reagent
2.2. Experimental Method
- (1)
- Determination method of interfacial tension
- (2)
- Determination method of emulsification performance
- (3)
- Wettability
- (4)
- Static oil washing test
- (5)
- Experimental method of nano-lotion flooding
2.3. Analysis Method
3. Results
3.1. Interfacial Tension
3.2. Emulsification Performance
3.3. Static Oil Washing Test
3.4. Wettability
3.5. Long-Term Stability Test
3.6. Dynamic Oil Displacement
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheraghian, G.; Rostami, S.; Afrand, M. Nanotechnology in Enhanced Oil Recovery. Processes 2020, 8, 811. [Google Scholar]
- Ehsan, J.; Akbar, M.; Behnam, R. A review on applications of nanoparticles in the enhanced oil recovery in carbonate reservoirs. Pet. Sci. Technol. 2022, 40, 1811–1828. [Google Scholar]
- Wu, P.; Nikolov, A.D.; Wasan, D.T. Nanofluid Structural Forces Alter Solid Wetting, Enhancing Oil Recovery. Colloids Interfaces 2022, 6, 33. [Google Scholar]
- Afekare, D.; Garno, J.; Rao, D. Enhancing oil recovery using silica nanoparticles: Nanoscale wettability alteration effects and implications for shale oil recovery. J. Pet. Sci. Eng. 2021, 203, 108897. [Google Scholar]
- Adil, M.; Onaizi, S.A. Pickering nanoemulsions and their mechanisms in enhancing oil recovery: A comprehensive review. Fuel 2022, 319, 123667. [Google Scholar]
- Soleimani, H.; Baig, M.K.; Yahya, N.; Khodapanah, L.; Sabet, M.; Demiral, B.M. Synthesis of ZnO nanoparticles for oil–water interfacial tension reduction in enhanced oil recovery. Appl. Phys. A 2018, 124, 1–13. [Google Scholar]
- Hassan, Y.M.; Guan, B.H.; Chuan, L.K.; Hamza, M.F.; Khandaker, M.U.; Sikiru, S. The influence of ZnO/SiO2 nanocomposite concentration on rheology, interfacial tension, and wettability for enhanced oil recovery. Chem. Eng. Res. Des. 2022, 179, 452–461. [Google Scholar]
- Akbar, I.; Nashaat, N.; Zhou, H.; Liu, W.; Tahir, M.U.; Memon, A.; Ansari, U. Experimental Investigation of Chemical Flooding Using Nanoparticles and Polymer on Displacement of Crude Oil for Enhanced Oil Recovery. Int. J. Chem. Eng. 2020, 2020, 1806282. [Google Scholar]
- Hashemi, R.; Nassar, N.N.; Almao, P.P. Nanoparticle technology for heavy oil in-situ upgrading and recovery enhancement: Opportunities and challenges. Appl. Energy 2014, 133, 374–387. [Google Scholar]
- Yu, Q.; Liu, Y.; Liang, S.; Tan, S.; Chen, C.; Sun, Z.; Yu, Y. Characteristics of increasing displacement efficiency by surface-active polymer flooding for enhancing oil recovery. J. Pet. Explor. Prod. 2021, 11, 1403–1414. [Google Scholar]
- Cardona, L.; Medina, O.E.; Céspedes, S.; Lopera, S.H.; Cortés, F.B.; Franco, C.A. Effect of Steam Quality on ExtraHeavy Crude Oil Upgrading and Oil Recovery Assisted with PdO and NiO-Functionalized Al2O3 Nanoparticles. Processes 2021, 9, 1009. [Google Scholar]
- AlYaari, A.; Ching, D.L.; Sakidin, H.; Muthuvalu, M.S.; Zafar, M. Optimum Volume Fraction and Inlet Temperature of an Ideal Nanoparticle for Enhanced Oil Recovery by Nanofluid Flooding in a Porous Medium. Processes 2023, 11, 401. [Google Scholar]
- Saman, B.; Bagherpour, S.; Rashidi, A.; Mousavi, S.H.; Izadi, N.; Hamidpour, E. Experimental Investigation of Carbox-ylate-Alumoxane Nanoparticles for the Enhanced Oil Recovery Performance. Colloids Surf. A Physicochem. Eng. Asp. 2019, 563, 37–49. [Google Scholar]
- Nanjun, L.; Tang, L.; Jia, N.; Qiao, D.; Chen, J.; Wang, Y.; Zhao, X. Feasibility Study of Applying Modified Nano-SiO2 Hyper-branched Copolymers for Enhanced Oil Recovery in Low-Mid Permeability Reservoirs. Polymers 2019, 11, 1483. [Google Scholar]
- Sarmah, S.; Gogoi, S.B. Design and application of an alkaline-surfactant-polymer (ASP) slug for enhanced oil recovery: A case study for a de-pleted oil field reservoir. Pet. Sci. Technol. 2022, 40, 2213–2237. [Google Scholar]
- Ngouangna, E.N.; Zaidi, J.M.; Norddin, M.; Agi, A.; Oseh, J.O.; Mamah, S. Surface modification of nanoparticles to improve oil recovery Mechanisms: A critical review of the methods, influencing Parameters, advances and prospects. J. Mol. Liq. 2022, 360, 119502. [Google Scholar]
- He, Y.F.; Liao, K.L.; Bai, J.M.; Fu, L.P.; Ma, Q.L.; Zhang, X.; Ren, Z.K.; Wang, W.Y. Study on a Nonionic Surfactant/Nanoparticle Composite Flooding System for Enhanced Oil Recovery. ACS Omega 2021, 6, 11068–11076. [Google Scholar]
- Cheraghian, G. Effects of nanoparticles on wettability: A review on applications of nanotechnology in the enhanced oil recovery. Int. J. Nano Dimens. 2015, 6, 443–452. [Google Scholar]
- Roustaei, A.; Bagherzadeh, H. Experimental investigation of SiO2 nanoparticles on enhanced oil recovery of carbonate reservoirs. J. Pet. Explor. Prod. Technol. 2015, 5, 27–33. [Google Scholar]
- Roustaei, A.; Saffarzadeh, S.; Mohammadi, M. An evaluation of modified silica nanoparticles’ effciency in enhancing oil recovery of light and intermediate oil reservoirs. Egypt. J. Pet. 2013, 22, 427–433. [Google Scholar]
- Joonaki, E.; Ghanaatian, S. The Application of Nanofluids for Enhanced Oil Recovery: Effects on Interfacial Tension and Coreflooding Process. Pet. Sci. Technol. 2014, 32, 2599–2607. [Google Scholar] [CrossRef]
- Khormali, A. Effect of water cut on the performance of an asphaltene inhibitor package: Experimental and modeling analysis. Pet. Sci. Technol. 2022, 40, 2890–2906. [Google Scholar] [CrossRef]
Name | pH | CO32− mg/L | HCO3− Mg/L | OH− mg/L | Cl− mg/L | Ca2+ mg/L | SO42− mg/L | K+/Na+ mg/L | TDS Mg/L | ρ g/cm3 |
---|---|---|---|---|---|---|---|---|---|---|
Ji 19 | 7.1 | 0 | 16.89 | 0 | 6604 | 893.6 | 1514 | 3951 | 13,001 | 1.008 |
Name | Type | Manufacturer | Place of Origin |
---|---|---|---|
Rheometer | MCR301 | Antonpa | Austria |
Constant temperature water bath | HH-601A | Kanglu | China |
Microscope | AXIOSKOP 40 | Carl Zeiss Optics | Germany |
Zeta potentiometer | Nano | Malvern | England |
Interface tensiometer | TX-500C | Kono Industries Co., Ltd. | America |
Oil Displacement System | Interfacial Tension (mN∙m−1) | 0.25 h Water Evolution Rate (%) | Contact Angle (°) | Enhanced Oil Recovery (%) |
---|---|---|---|---|
Nano No. 1 | 5.62 | 70 | 70.66 | 3.98 |
Nano No. 2 | 3.11 | 26.7 | 17.06 | 4.51 |
Nano No. 3 | 1.72 | 96.7 | 29.62 | 5.70 |
Nano No. 4 | 0.231 | 83 | 49.63 | 7.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Yang, X.; Wang, J.; Peng, M.; Ma, L.; Xu, M.; Hou, J. Research on the Formulation Design of Nano-Oil Displacement Agents Suitable for Xinjiang Jimusaer Shale Oil. Processes 2023, 11, 2610. https://doi.org/10.3390/pr11092610
Wang W, Yang X, Wang J, Peng M, Ma L, Xu M, Hou J. Research on the Formulation Design of Nano-Oil Displacement Agents Suitable for Xinjiang Jimusaer Shale Oil. Processes. 2023; 11(9):2610. https://doi.org/10.3390/pr11092610
Chicago/Turabian StyleWang, Wei, Xianglu Yang, Jian Wang, Mengjiao Peng, Liqiang Ma, Mengxiao Xu, and Junwei Hou. 2023. "Research on the Formulation Design of Nano-Oil Displacement Agents Suitable for Xinjiang Jimusaer Shale Oil" Processes 11, no. 9: 2610. https://doi.org/10.3390/pr11092610
APA StyleWang, W., Yang, X., Wang, J., Peng, M., Ma, L., Xu, M., & Hou, J. (2023). Research on the Formulation Design of Nano-Oil Displacement Agents Suitable for Xinjiang Jimusaer Shale Oil. Processes, 11(9), 2610. https://doi.org/10.3390/pr11092610