Extraction of Soybean Oil with Pressurized Ethanol: Prospects for a New Processing Approach with an Analysis of the Physical Properties of Crude Oil and Implementation Costs through Scale-Up in an Intermittent Process
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Extraction of Soybean Oil by Pressurized Liquid Extraction
2.3. Characterization of the Soybean Oil
2.3.1. Density and Viscosity
2.3.2. Differential Scanning Calorimetry (DSC)
2.3.3. Oxidative Stability by the Enhanced Electrical Conductivity Method
2.3.4. Antioxidant Activity by the ABTS Method
2.4. Scale-Up and Economic Viability of Implementation
2.4.1. Pressurized Liquid Extraction in Pilot-Scale Equipment Using Ethanol as Solvent
2.4.2. Economic Analysis and Cost of Industrial-Scale Implementation/Production
3. Results and Discussion
3.1. Characterization of the Soybean Oil
3.1.1. Density and Viscosity
3.1.2. Differential Scanning Calorimetry (DSC)
3.1.3. Oxidative Stability Determined via the Enhanced Electrical Conductivity Method
3.1.4. Antioxidant Activity Determined via the ABTS Method
3.2. Scale-Up and Economic Viability of Implementation
3.2.1. Pressurized Liquid Extraction in Pilot-Scale Equipment Using Ethanol as the Solvent
3.2.2. Economic Analysis and Industrial-Scale Implementation/Production Costs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Carabias-Martínez, R.; Rodríguez-Gonzalo, E.; Revilla-Ruiz, P.; Hernández-Méndez, J. Pressurized Liquid Extraction in the Analysis of Food and Biological Samples. J. Chromatogr. A 2005, 1089, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Richter, B.E.; Jones, B.A.; Ezzell, J.L.; Porter, N.L.; Avdalovic, N.; Pohl, C. Accelerated Solvent Extraction: A Technique for Sample Preparation. Anal. Chem. 1996, 68, 1033–1039. [Google Scholar] [CrossRef]
- Pallaroni, L.; Von Holst, C. Development of an Extraction Method for the Determination of Zearalenone in Corn Using Less Organic Solvents. J. Chromatogr. A 2004, 1055, 247–249. [Google Scholar] [CrossRef]
- Khan, Z.; Kamble, N.; Bhongale, A.; Girme, M.; Bahadur Chauhan, V.; Banerjee, K. Analysis of Pesticide Residues in Tuber Crops Using Pressurised Liquid Extraction and Gas Chromatography-Tandem Mass Spectrometry. Food Chem. 2018, 241, 250–257. [Google Scholar] [CrossRef]
- Putra, N.R.; Yustisia, Y.; Heryanto, R.B.; Asmaliyah, A.; Miswarti, M.; Rizkiyah, D.N.; Yunus, M.A.C.; Irianto, I.; Qomariyah, L.; Rohman, G.A.N. Advancements and Challenges in Green Extraction Techniques for Indonesian Natural Products: A Review, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2023; Volume 46. [Google Scholar]
- Putnik, P.; Barba, F.J.; Španić, I.; Zorić, Z.; Dragović-Uzelac, V.; Bursać Kovačević, D. Green Extraction Approach for the Recovery of Polyphenols from Croatian Olive Leaves (Olea europea). Food Bioprod. Process. 2017, 106, 19–28. [Google Scholar] [CrossRef]
- Ramos, P.R.; Vicentini-Polette, C.M.; Mazalli, M.R.; de Lima Caneppele, F.; de Oliveira, A.L. Pressurized Liquid Extraction of Soybean Oil Using Intermittent Process with Ethanol and Hexane as Solvent: Extraction Yield and Physicochemical Parameters Comparison. J. Food Process Eng. 2024, 47, e14562. [Google Scholar] [CrossRef]
- Bittencourt, G.M.; Firmiano, D.M.; Fachini, R.P.; Lacaz-Ruiz, R.; Fernandes, A.M.; Oliveira, A.L. Application of Green Technology for the Acquisition of Extracts of Araçá (Psidium grandifolium Mart. Ex DC.) Using Supercritical CO2 and Pressurized Ethanol: Characterization and Analysis of Activity. J. Food Sci. 2019, 84, 1297–1307. [Google Scholar] [CrossRef]
- Bittencourt, G.M.; dos Reis Simprônio, M.; Mothé, I.R.; Ferreira, G.R.; de Oliveira, A.L. Globe Artichoke Leaf Extracts and Production of Phytotherapeutic Solid Lipid Particles Using High Pressure Technologies. J. Supercrit. Fluids 2023, 201, 106028. [Google Scholar] [CrossRef]
- Okiyama, D.C.G.; Soares, I.D.; Cuevas, M.S.; Crevelin, E.J.; Moraes, L.A.B.; Melo, M.P.; Oliveira, A.L.; Rodrigues, C.E.C. Pressurized Liquid Extraction of Flavanols and Alkaloids from Cocoa Bean Shell Using Ethanol as Solvent. Food Res. Int. 2018, 114, 20–29. [Google Scholar] [CrossRef]
- Viganó, J.; Brumer, I.Z.; de Campos Braga, P.A.; da Silva, J.K.; Maróstica Júnior, M.R.; Reyes Reyes, F.G.; Martínez, J. Pressurized Liquids Extraction as an Alternative Process to Readily Obtain Bioactive Compounds from Passion Fruit Rinds. Food Bioprod. Process. 2016, 100, 382–390. [Google Scholar] [CrossRef]
- de Jesus, S.S.; Filho, R.M. Recent Advances in Lipid Extraction Using Green Solvents. Renew. Sustain. Energy Rev. 2020, 133, 110289. [Google Scholar] [CrossRef]
- Cornelio-Santiago, H.P.; Mazalli, M.R.; Rodrigues, C.E.C.; de Oliveira, A.L. Extraction of Brazil Nut Kernel Oil Using Green Solvents: Effects of the Process Variables in the Oil Yield and Composition. J. Food Process Eng. 2019, 42, e13271. [Google Scholar] [CrossRef]
- de Oliveira, N.A.; Cornelio-Santiago, H.P.; Fukumasu, H.; de Oliveira, A.L. Green Coffee Extracts Rich in Diterpenes—Process Optimization of Pressurized Liquid Extraction Using Ethanol as Solvent. J. Food Eng. 2018, 224, 148–155. [Google Scholar] [CrossRef]
- Santos, K.A.; de Aguiar, C.M.; da Silva, E.A.; da Silva, C. Evaluation of Favela Seed Oil Extraction with Alternative Solvents and Pressurized-Liquid Ethanol. J. Supercrit. Fluids 2021, 169, 105125. [Google Scholar] [CrossRef]
- Ferro, D.M.; Mayer, D.A.; Oliveira Müller, C.M.; Ferreira, S.R.S. Scale-up Simulation of PLE Process Applied to Recover Bio-Based Materials from Sida Rhombifolia Leaves. J. Supercrit. Fluids 2020, 166, 105033. [Google Scholar] [CrossRef]
- Ferreira, W.S.; Viganó, J.; Veggi, P.C. Economic Assessment of Emerging Extraction Techniques: Hybridization of High-Pressure Extraction and Low-Frequency Ultrasound to Produce Piceatannol-Rich Extract from Passion Fruit Bagasse. Chem. Eng. Process.—Process Intensif. 2022, 174, 108850. [Google Scholar] [CrossRef]
- Colivet, J.; Oliveira, A.L.; Carvalho, R.A. Influence of the Bed Height on the Kinetics of Watermelon Seed Oil Extraction with Pressurized Ethanol. Sep. Purif. Technol. 2016, 169, 187–195. [Google Scholar] [CrossRef]
- Prado, J.M.; Dalmolin, I.; Carareto, N.D.D.; Basso, R.C.; Meirelles, A.J.A.; Oliveira, J.V.; Batista, E.A.C.; Meireles, M.A.A. Supercritical Fluid Extraction of Grape Seed: Process Scale-up, Extract Chemical Composition and Economic Evaluation. J. Food Eng. 2012, 109, 249–257. [Google Scholar] [CrossRef]
- Rosa, P.T.V.; Meireles, M.A.A. Rapid Estimation of the Manufacturing Cost of Extracts Obtained by Supercritical Fluid Extraction. J. Food Eng. 2005, 67, 235–240. [Google Scholar] [CrossRef]
- Varona, E.; Tres, A.; Rafecas, M.; Vichi, S.; Barroeta, A.C.; Guardiola, F. Methods to Determine the Quality of Acid Oils and Fatty Acid Distillates Used in Animal Feeding. MethodsX 2021, 8, 101334. [Google Scholar] [CrossRef]
- Maldonade, I.R.; Lozada, M.I.O.; de Oliveira, L.d.L.; Amaro, G.B. Estabilidade Oxidativa de Óleos de Sementes de Cucurbitáceas; Boletim de Pesquisa e Desenvolvimento, 185; EMBRAPA: Brasília, Brasil, 2019. [Google Scholar]
- Magalhães, L.M.; Segundo, M.A.; Reis, S.; Lima, J.L.F.C. Methodological Aspects about in Vitro Evaluation of Antioxidant Properties. Anal. Chim. Acta 2008, 613, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Abdo, E.M.; Shaltout, O.E.; Mansour, H.M.M. Natural Antioxidants from Agro-Wastes Enhanced the Oxidative Stability of Soybean Oil during Deep-Frying. LWT 2023, 173, 114321. [Google Scholar] [CrossRef]
- Flieger, J.; Flieger, W.; Baj, J. Antioxidants: Classification, Natural Sources, Activity/Capacity. Materials 2021, 14, 4135. [Google Scholar] [CrossRef] [PubMed]
- do Socorro Moura Rufino, M.; Alves, R.E.; de Brito, E.S.; de Morais, S.M.; de Goes Sampaio, C.; Pérez-Jiménez, J.; Saura-Calixto, F. Metodologia Científica: Determinação da Atividade Antioxidante Total em Frutas pela Captura do Radical Livre DPPH; EMBRAPA: Brasília, Brazil, 2007. [Google Scholar]
- Confortin, T.C.; Todero, I.; Luft, L.; Ugalde, G.A.; Mazutti, M.A.; Oliveira, Z.B.; Bottega, E.L.; Knies, A.E.; Zabot, G.L.; Tres, M.V. Oil Yields, Protein Contents, and Cost of Manufacturing of Oil Obtained from Different Hybrids and Sowing Dates of Canola. J. Environ. Chem. Eng. 2019, 7, 102972. [Google Scholar] [CrossRef]
- Turton, R.; Bailie, R.; Whiting, W.B.; Shaeiwitz, J.A.; Bhattacharyya, D. Analysis, Synthesis, and Design of Chemical Processes, 4th ed.; Prentice Hall: Hoboken, NJ, USA, 2013; Volume 1, ISBN 9788578110796. [Google Scholar]
- Buarque, C. Avaliação Econômica de Projetos; Elsevier: Amsterdam, The Netherlands, 1994. [Google Scholar]
- Osorio-Tobón, J.F.; Carvalho, P.I.N.; Rostagno, M.A.; Meireles, M.A.A. Process Integration for Turmeric Products Extraction Using Supercritical Fluids and Pressurized Liquids: Economic Evaluation. Food Bioprod. Process. 2016, 98, 227–235. [Google Scholar] [CrossRef]
- Carvalho, P.I.N.; Osorio-Tobón, J.F.; Zabot, G.L.; Meireles, M.A.A. Spatial and Temporal Temperature Distributions in Fixed Beds Undergoing Supercritical Fluid Extraction. Innov. Food Sci. Emerg. Technol. 2018, 47, 504–516. [Google Scholar] [CrossRef]
- Peters, M.S.; Timmerhaus, K.D. Plant Design and Economics for Chemical Engineers, 4th ed.; McGraw-Hill: New York, NY, USA, 1991. [Google Scholar]
- Shahidi, F. (Ed.) Bailey’s Industrial Oil and Fat Products, 6th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Ibrahim, S.; Gad, M.; Abed, K.; Mustafa, H. Design, Manufacturing and Testing of Hydraulic Press to Produce the Oil from Egyptian Jatropha Seeds. J. Int. Soc. Sci. Eng. 2019, 2, 8–15. [Google Scholar] [CrossRef]
- Brock, J.; Nogueira, M.R.; Zakrzevski, C.; De Castilhos Corazza, F.; Corazza, M.L.; De Oliveira, J.V. Determinação Experimental Da Viscosidade e Condutividade Térmica de Óleos Vegetais. Cienc. Tecnol. Aliment. 2008, 28, 564–570. [Google Scholar] [CrossRef]
- Wang, S.; Gao, Z.; Qi, X.; Li, C.; He, L.; Bi, J.; Liu, Z. Superhydrophobic Carbon Black-Loaded Polyurethane Sponge for Efficient Oil-Water Separation and Solar-Driven Cleanup of High-Viscosity Crude Oil. J. Water Process Eng. 2023, 53, 103812. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Shylaja, M.H.; Manjunath, M.S.; Sankar, U. Rheology of Lecithin Dispersions. J. Am. Oil Chem. Soc. 1998, 75, 871–874. [Google Scholar] [CrossRef]
- Jia, D.; Zhang, Y.; Li, C.; Yang, M.; Gao, T.; Said, Z.; Sharma, S. Lubrication-Enhanced Mechanisms of Titanium Alloy Grinding Using Lecithin Biolubricant. Tribol. Int. 2022, 169, 107461. [Google Scholar] [CrossRef]
- Subroto, E. Characteristics, Purification, and the Recent Applications of Soybean Oil in Fat-Based Food Products: A Review. Int. J. Emerg. Trends Eng. Res. 2020, 8, 3003–3011. [Google Scholar] [CrossRef]
- Nassu, R.T.; Gonçalves, L.A.G. Determination of Melting Point of Vegetable Oils and Fats by Differential Scanning Calorimetry (DSC) Technique. Grasas Aceites 1999, 50, 16–22. [Google Scholar] [CrossRef]
- Litwinienko, G.; Kasprzycka-Guttman, T. Study on the Autoxidation Kinetics of Fat Components by Differential Scanning Calorimetry. 2. Unsaturated Fatty Acids and Their Esters. Ind. Eng. Chem. Res. 2000, 39, 13–17. [Google Scholar] [CrossRef]
- Aktas, A.B.; Dastan, T.; Katin, K.P.; Kaya, S. Determination of Oxidative Stability of Different Vegetable Oils by Means of Middle Infrared Spectroscopy and DFT Calculations. Microchem. J. 2023, 194, 109232. [Google Scholar] [CrossRef]
- Maszewska, M.; Florowska, A.; Dłuzewska, E.; Wroniak, M.; Marciniak-Lukasiak, K.; Zbikowska, A. Oxidative Stability of Selected Edible Oils. Molecules 2018, 23, 1746. [Google Scholar] [CrossRef]
- Velasco, J.; Dobarganes, C. Oxidative Stability of Virgin Olive Oil. Eur. J. Lipid Sci. Technol. 2002, 104, 661–676. [Google Scholar] [CrossRef]
- Kehili, M.; Choura, S.; Zammel, A.; Allouche, N.; Sayadi, S. Oxidative Stability of Refined Olive and Sunflower Oils Supplemented with Lycopene-Rich Oleoresin from Tomato Peels Industrial by-Product, during Accelerated Shelf-Life Storage. Food Chem. 2018, 246, 295–304. [Google Scholar] [CrossRef]
- Farhoosh, R. Shelf-Life Prediction of Edible Fats and Oils Using Rancimat. Lipid Technol. 2007, 19, 232–234. [Google Scholar] [CrossRef]
- Dunn, R.O. Oxidative Stability of Soybean Oil Fatty Acid Methyl Esters by Oil Stability Index (OSI). J. Am. Oil Chem. Soc. 2005, 82, 381–387. [Google Scholar] [CrossRef]
- Medeiros Vicentini-Polette, C.; Rodolfo Ramos, P.; Bernardo Gonçalves, C.; De Oliveira, A.L. Determination of Free Fatty Acids in Crude Vegetable Oil Samples Obtained by High-Pressure Processes. Food Chem. X 2021, 12, 100166. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, M.J.; Lee, J. Effects of Deuterium Oxide on the Oxidative Stability and Change of Headspace Volatiles of Corn Oil. J. Am. Oil Chem. Soc. 2014, 91, 623–628. [Google Scholar] [CrossRef]
- Silva, F.A.M.; Borges, M.F.M.; Ferreira, M.A. Métodos para Avaliação do Grau de Oxidação Lipídica e Da Capacidade Antioxidante. Quim. Nova 1999, 22, 94–103. [Google Scholar] [CrossRef]
- Musakhanian, J.; Rodier, J.D.; Dave, M. Oxidative Stability in Lipid Formulations: A Review of the Mechanisms, Drivers, and Inhibitors of Oxidation. AAPS PharmSciTech 2022, 23, 151. [Google Scholar] [CrossRef]
- Pardauil, J.J.R.; Souza, L.K.C.; Molfetta, F.A.; Zamian, J.R.; Rocha Filho, G.N.; Da Costa, C.E.F. Determination of the Oxidative Stability by DSC of Vegetable Oils from the Amazonian Area. Bioresour. Technol. 2011, 102, 5873–5877. [Google Scholar] [CrossRef]
- Freitas, I.R.; Cattelan, M.G.; Rodrigues, M.L.; Luzia, D.M.M.; Jorge, N. Effect of Grape Seed Extract (Vitis labrusca L.) on Soybean Oil under Thermal Oxidation. Nutr. Food Sci. 2017, 47, 610–622. [Google Scholar] [CrossRef]
Component | Amount | Price (USD) | Total (USD) |
---|---|---|---|
Model LC-20AP high-pressure pump, flow range 0.01 to 150.0 mL/min | 1 | 17,780.78 | 17,780.78 |
Pressure control valve | 1 | 1967.46 | 1967.46 |
Glass bottle | 5 | 398.98 | 1994.90 |
Pipes and fittings | 1 | 764.52 | 764.52 |
Retention valve | 2 | 123.28 | 246.56 |
Needle valve | 4 | 71.36 | 285.43 |
Coated and insulated stainless steel extractor (2 L) | 1 | 3780.12 | 3780.12 |
Heating bath (20 L) | 1 | 1732.72 | 1732.72 |
Aluminum support | 1 | 1634.65 | 1634.65 |
Safety valve | 1 | 28.94 | 28.94 |
Manometer | 1 | 81.73 | 81.73 |
Technical drawing and installation | 1 | 1083.97 | 1083.97 |
Block valve | 4 | 316.71 | 1266.84 |
Return valve | 2 | 192.07 | 384.14 |
Total PLE value | 32,732.79 |
Economic Parameters | |
---|---|
PLE on a Pilot Scale—Total Cost of Construction | USD 32,732.79 |
Cost depending on installation | |
Rate of depreciation | 10% |
Rate of maintenance | 6% |
Miscellaneous costs (taxes, insurance, etc.) | 8% |
Cost of operational labor | |
Labor (base rate—BR) | USD 2.95/h |
Benefits factor | 0.8*BR |
Supplier operational factor | 0.1*BR |
Supervision factor | 0.2*BR |
Administration factor | 0.6*BR |
Cost of raw material | |
Soybean | USD 0.43/kg |
Nitrogen | USD 0.40/kg |
Ethanol (for laboratory/lower scales) | USD 3.92/L |
Ethanol (for larger scales) | USD 0.78/L |
Public utility services (cost of services) | |
Electricity | USD 0.1087/kWh |
Sales prices | |
Soybean oil | USD 1.00/L |
Soybean bran | USD 0.50/kg |
Scenario | Extractor | Equip. Cost (USD) | Op. per Shift | Shift */day | Recycling | Input Price | Sales |
---|---|---|---|---|---|---|---|
1 | 2 × 2 L | 32,732.79 | 2 | 1 | No | Ethanol: USD 3.92/L; soybean: USD 0.43/kg | Oil: USD 1.00/L; bran: USD 0.50/kg |
2 | 2 × 10 L | 85,973.58 | 2 | 1 | No | Ethanol: USD 3.92/L; soybean: USD 0.43/kg | Oil: USD 1.00/L; bran: USD 0.50/kg |
3 | 2 × 50 L | 225,812.01 | 4 | 1.5 | Yes | Ethanol: USD 3.92/L; soybean: USD 0.43/kg | Oil: USD 1.00/L; bran: USD 0.50/kg |
4 | 2 × 500 L | 898,973.79 | 4 | 1.5 | Yes | Ethanol: USD 0.78/L; soybean: USD 0.43/kg | Oil: USD 1.00/L; bran: USD 0.50/kg |
5 | 2 × 1000 L | 1,362,589.47 | 4 | 1.5 | Yes | Ethanol: USD 0.78/L; soybean: USD 0.43/kg | Oil: USD 1.00/L; bran: USD 0.50/kg |
6 | 2 × 5000 L | 3,578,879.12 | 4 | 1.5 | Yes | Ethanol: USD 0.78/L; soybean: USD 0.43/kg | Oil: USD 1.00/L; bran: USD 0.50/kg |
7 | 2 × 5000 L | 3,578,879.12 | 4 | 1.5 | Yes | Ethanol: USD 0.78/L; soybean: USD 0.43/kg | Oil: USD 1.10/L; bran: USD 0.55/kg |
8 | 2 × 5000 L | 3,578,879.12 | 4 | 1.5 | Yes | Ethanol: USD 0.78/L; soybean: USD 0.43/kg | Oil: USD 1.25/L; bran: USD 0.62/kg |
9 | 2 × 5000 L | 3,578,879.12 | 4 | 1.5 | Yes | Ethanol: USD 1.96/L; soybean: USD 0.39/kg | Oil: USD 1.25/L; bran: USD 0.62/kg |
10 | 2 × 5000 L | 3,578,879.12 | 4 | 1.5 | Yes | Ethanol: USD 1.96/L; soybean: USD 0.32/kg | Oil: USD 1.25/L; bran: USD 0.62/kg |
11 | 2 × 5000 L | 3,578,879.12 | 4 | 1.5 | Yes | Ethanol: USD 1.96/L; soybean: USD 0.32/kg | Oil: USD 1.10/L; bran: USD 0.55/kg |
12 | 2 × 5000 L | 3,578,879.12 | 4 | 1.5 | Yes | Ethanol: USD 1.96/L; soybean: USD 0.32/kg | Oil: USD 1.00/L; bran: USD 0.50/kg |
13 | 2 × 5000 L | 3,578,879.12 | 4 | 1.5 | Yes | Ethanol: USD 1.96/L; soybean: USD 0.39/kg | Oil: USD 1.10/L; bran: USD 0.55/kg |
14 | 2 × 5000 L | 3,578,879.12 | 4 | 1.5 | Yes | Ethanol: USD 0.78/L; soybean: USD 0.43/kg | Oil: USD 0.90/L; bran: USD 0.45/kg |
15 | 2 × 5000 L | 3,578,879.12 | 4 | 1.5 | Yes | Ethanol: USD 0.78/L; soybean: USD 0.39/kg | Oil: USD 0.90/L; bran: USD 0.45/kg |
16 | 2 × 5000 L | 3,578,879.12 | 4 | 3 | Yes | Ethanol: USD 0.78/L; soybean: USD 0.43/kg | Oil: USD 1.00/L; bran: USD 0.50/kg |
Density (25 °C) | Viscosity (25 °C) | Density (40 °C) | Viscosity (40 °C) | ||
---|---|---|---|---|---|
Soybean Oil | (g/cm3) | mPa·s | (g/cm3) | mPa·s | |
Hexane | 0.9174 ± 0.0003 b | 47.8 ± 0.0 a | 0.9072 ± 0.0002 b | 27.3 ± 0.0 a | |
Ethanol | 0.9193 ± 0.0015 c | 53.7 ± 1.5 c | 0.9092 ± 0.0015 c | 30.4 ± 0.8 c | |
Commercial | 0.9155 ± 0.0001 a | 49.5 ± 0.0 b | 0.9059 ± 0.0005 a | 28.4 ± 0.1 b | |
To (°C) | Tm (°C) | Tf (°C) | ΔT (°C) | ΔHfus (J/g) | |
Soybean oil | |||||
Hexane | −43.2 | −21.95 | 6.1 | 49.3 | 54.4 |
Ethanol | −36.1 | −26.50 | 2.5 | 38.6 | 53.7 |
Commercial | −34.2 | −26.54 | 6.8 | 40.9 | 66.7 |
Soybean Oil | Induction Period (IP) (h) | Conductivity (μS/cm) | Activation Energy (Ea) (J) | Activity (μM of Trolox Equivalent/g) |
---|---|---|---|---|
Hexane | 8.38 ± 0.73 | 48.5 | 6008.27 | 617.8 ± 3.9 c |
Ethanol | 0.21 ±0.01 | 9.0 | 11,862.66 | 618.9 ± 10.2 c |
Soxhlet | 3.03 * | 16.0 | 9597.87 | 507.8 ± 1.9 a |
Commercial | 5.66 ± 0.85 | 33.0 | 8273.06 | 548.9 ± 5.1 b |
Scenario | TCI (×103) (USD) | OC (×103) (USD/year) | TR (×103) (USD/year) | PO (×103) (L/year) | PB (×103) (kg/year) | COM Oil (USD/L) | COM Bran (USD/L) | GM (%) | ROI (%) | PT (year) | NPV (×103) (USD) | CRM (%) | COL (%) | FCI (%) | CUT (%) | GP (×103) (USD/year) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 66 | 103 | 42 | 0.89 | 4.0 | 113.5 | 0.50 | −141.9 | −68.6 | NA | −760 | 40.1 | 48.1 | 5.7 | 6.1 | −61 |
2 | 159 | 301 | 212 | 4.4 | 20.2 | 66.1 | 0.50 | −41.7 | −36.9 | NA | −735 | 68.6 | 16.4 | 4.6 | 10.4 | −89 |
3 | 292 | 368 | 115 | 33.2 | 151.1 | 8.81 | 0.50 | −219.8 | −399.5 | NA | −3220 | 53.7 | 40.2 | 5.4 | 0.7 | −253 |
4 | 1223 | 1215 | 1151 | 332.5 | 1510.7 | 1.38 | 0.50 | −5.6 | −31.1 | NA | −1017 | 79.3 | 12.2 | 6.5 | 2.0 | −65 |
5 | 1730 | 2244 | 2301 | 665.1 | 3021.4 | 1.10 | 0.50 | 2.5 | 9.0 | 11.1 | 192 | 85.9 | 6.6 | 5.3 | 2.2 | 58 |
6 | 5001 | 10,341 | 11,507 | 3325.3 | 15,106.9 | 0.84 | 0.50 | 10.1 | 38.4 | 2.6 | 7729 | 93.2 | 1.5 | 3.0 | 2.3 | 1166 |
7 | 5001 | 10,341 | 12,663 | 3325.3 | 15,106.9 | 0.61 | 0.55 | 18.3 | 76.4 | 1.3 | 16,380 | 93.2 | 1.5 | 3.0 | 2.3 | 2323 |
8 | 5001 | 10,341 | 14,398 | 3325.3 | 15,106.9 | 0.27 | 0.62 | 28.2 | 133.5 | 0.7 | 29,355 | 93.2 | 1.5 | 3.0 | 2.3 | 4057 |
9 | 5001 | 13,449 | 14,398 | 3325.3 | 15,106.9 | 1.21 | 0.62 | 6.6 | 23.8 | 4.2 | 5793 | 94.8 | 1.2 | 2.3 | 1.7 | 949 |
10 | 5001 | 12,596 | 14,398 | 3325.3 | 15,106.9 | 0.95 | 0.62 | 12.5 | 48.4 | 2.1 | 12,523 | 94.3 | 1.3 | 2.5 | 1.9 | 1801 |
11 | 5001 | 12,596 | 12,663 | 3325.3 | 15,106.9 | 1.29 | 0.55 | 0.5 | 1.8 | 55.7 | −1498 | 94.3 | 1.3 | 2.5 | 1.9 | 67 |
12 | 5001 | 12,596 | 11,507 | 3325.3 | 15,106.9 | 1.52 | 0.50 | −9.5 | −48.8 | NA | −15,915 | 94.3 | 1.3 | 2.5 | 1.9 | −1090 |
13 | 5001 | 13,449 | 12,718 | 3325.3 | 15,106.9 | 1.55 | 0.55 | −5.7 | −30.6 | NA | −11,598 | 94.8 | 1.2 | 2.3 | 1.7 | −731 |
14 | 5001 | 10,341 | 10,384 | 3325.3 | 15,106.9 | 1.07 | 0.45 | 0.4 | 1.4 | 70.2 | −1363 | 93.2 | 1.5 | 3.0 | 2.3 | 43 |
15 | 5001 | 9566 | 10,384 | 3325.3 | 15,106.9 | 0.83 | 0.45 | 7.9 | 29.2 | 3.4 | 5199 | 92.7 | 1.6 | 3.3 | 2.4 | 818 |
16 | 5001 | 20,366 | 23,014 | 6650.7 | 30,213.8 | 0.79 | 0.50 | 11.5 | 87.1 | 1.2 | 18,812 | 94.6 | 1.5 | 1.6 | 2.3 | 2648 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos, P.R.; Rodrigues, L.d.C.; Zabot, G.L.; Oliveira, A.L.d. Extraction of Soybean Oil with Pressurized Ethanol: Prospects for a New Processing Approach with an Analysis of the Physical Properties of Crude Oil and Implementation Costs through Scale-Up in an Intermittent Process. Processes 2024, 12, 2224. https://doi.org/10.3390/pr12102224
Ramos PR, Rodrigues LdC, Zabot GL, Oliveira ALd. Extraction of Soybean Oil with Pressurized Ethanol: Prospects for a New Processing Approach with an Analysis of the Physical Properties of Crude Oil and Implementation Costs through Scale-Up in an Intermittent Process. Processes. 2024; 12(10):2224. https://doi.org/10.3390/pr12102224
Chicago/Turabian StyleRamos, Paulo Rodolfo, Larissa da Cunha Rodrigues, Giovani Leone Zabot, and Alessandra Lopes de Oliveira. 2024. "Extraction of Soybean Oil with Pressurized Ethanol: Prospects for a New Processing Approach with an Analysis of the Physical Properties of Crude Oil and Implementation Costs through Scale-Up in an Intermittent Process" Processes 12, no. 10: 2224. https://doi.org/10.3390/pr12102224
APA StyleRamos, P. R., Rodrigues, L. d. C., Zabot, G. L., & Oliveira, A. L. d. (2024). Extraction of Soybean Oil with Pressurized Ethanol: Prospects for a New Processing Approach with an Analysis of the Physical Properties of Crude Oil and Implementation Costs through Scale-Up in an Intermittent Process. Processes, 12(10), 2224. https://doi.org/10.3390/pr12102224