A Real-Time Resource Dispatch Approach for Edge Computing Devices in Digital Distribution Networks Considering Burst Tasks
Abstract
:1. Introduction
- (1)
- Real-time dispatch constraints for burst tasks and the edge computing device are analyzed in detail particularly. Distribution network applications such as fault identification, emergency control, self-healing control, and data requests from the cloud are taken into consideration in the actual operation of digital distribution networks, considered as real-time burst tasks from the point of computation task. Real-time dispatch constraints for burst tasks and the edge computing device consist determination of real-time dispatch duration, task real-time dispatch model, real-time dispatch constraints of task computation process, and resource limitation constraints in real-time dispatch to describe the real-time dispatch processing.
- (2)
- A real-time resource dispatch approach for edge computing devices in digital distribution networks considering burst tasks is proposed. The spatial and temporal transfer capability of transferable tasks in original planned tasks are utilized by scheduling resources and configuring tasks appropriately. The real-time resource dispatch approach enables a quick response to computational demands of burst tasks. Meanwhile, original planned tasks are successfully completed with minimum impact. The normal, efficient, and reliable operation of digital distribution networks is guaranteed by the proposed real-time resource dispatch approach.
2. Real-Time Dispatch Constraints for Burst Tasks and the Device
2.1. Presentation of System Operation Scenarios
2.2. Determination of Real-Time Dispatch Duration
2.3. Task Real-Time Dispatch Model
- (1)
- Modeling of burst tasks
- (2)
- Modeling of original planned tasks
2.4. Real-Time Dispatch Constraints of Task Computation Process
- (1)
- Transferable computation task real-time allocation constraints
- (2)
- Computation status update constraints
- (3)
- Task computation property constraints
2.5. Resource Limitation Constraints in Real-Time Dispatch
3. Formulation of Real-Time Resource Dispatch Problem for Burst Task
3.1. Objective Function
3.2. Constraints
3.3. Solving Process for the Real-Time Resource Dispatch Problem
4. Case Studies and Analysis
4.1. Scenario Configuration
4.2. Result Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xie, Y.; Wang, X.; Shen, Z.; Sheng, Y.; Wu, G. A Two-Stage Estimation of Distribution Algorithm with Heuristics for Energy-Aware Cloud Workflow Scheduling. IEEE Trans. Serv. Comput. 2023, 16, 4183–4197. [Google Scholar] [CrossRef]
- Zhong, J.; Liu, B.; Yu, X.; Wong, P.; Wang, Z.; Xu, C.; Zhou, X. Enhancing Voltage Compliance in Distribution Network under Cloud and Edge Computing Framework. IEEE Trans. Cloud Comput. 2023, 11, 1217–1229. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Z.; Yu, H.; Ji, H.; Li, P.; Xi, W.; Yan, J.; Wang, C. Cloud-Edge Collaboration-Based Local Voltage Control for DGs with Privacy Preservation. IEEE Trans. Ind. Inform. 2023, 19, 98–108. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, S.; Li, P.; Ji, H.; Xi, W.; Yu, H.; Wu, J.; Wang, C. Distributed State Estimation in Digital Distribution Networks Based on Proximal Atomic Coordination. IEEE Trans. Instrum. Meas. 2022, 71, 9005311. [Google Scholar] [CrossRef]
- Yang, J.; Sun, F.; Wang, H. Distributed Collaborative Optimal Economic Dispatch of Integrated Energy System Based on Edge Computing. Energy 2023, 284, 129194. [Google Scholar] [CrossRef]
- Liu, L.; Chen, L.; Xu, S.; Xu, Y.; Shi, C. Design and Implementation of Intelligent Monitoring Terminal for Distribution Room Based on Edge Computing. Energy Rep. 2021, 7, 1131–1138. [Google Scholar] [CrossRef]
- Sun, G.; Xu, Z.; Yu, H.; Chang, V. Dynamic Network Function Provisioning to Enable Network in Box for Industrial Applications. IEEE Trans. Ind. Inform. 2021, 17, 7155–7164. [Google Scholar] [CrossRef]
- Cen, B.; Hu, C.; Cai, Z.; Wu, Z.; Zhang, Y.; Liu, J.; Su, Z. A Configuration Method of Computing Resources for Microservice-Based Edge Computing Apparatus in Smart Distribution Transformer Area. Int. J. Electr. Power Energy Syst. 2022, 138, 107935. [Google Scholar] [CrossRef]
- Mugerwa, G.; Megahed, T.; Elsabrouty, M.; Abdelkader, S. Data-Driven Consumer-Phase Identification in Low-Voltage Distribution Networks Considering Prosumers. Front. Energy 2024, in press. [Google Scholar] [CrossRef]
- Wei, H.; Wang, W.; Fang, C.; Liu, Y.; Zhang, N.; Kang, C. Online Distribution System Topology Monitoring with Limited Smart Meter Communication. IEEE Trans. Power Syst. 2023, 38, 5714–5725. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, N.; Zhang, Y.; Liao, J.; Tan, S.; Liu, X.; Guo, C.; Wang, Q. Linearized Power Flow Calculation of Bipolar DC Distribution Network with Multiple Flexible Equipment. Int. J. Electr. Power Energy Syst. 2024, 155, 109568. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, T.; Chen, J.; Liao, Z.; Shu, J. Cluster Voltage Control Method for “Whole County” Distributed Photovoltaics Based on Improved Differential Evolution Algorithm. Front. Energy 2023, 17, 782–795. [Google Scholar] [CrossRef]
- Mishra, S.K.; Gupta, V.K.; Kumar, R.; Swain, S.K.; Mohanta, D.K. Multi-Objective Optimization of Economic Emission Load Dispatch Incorporating Load Forecasting and Solar Photovoltaic Sources for Carbon Neutrality. Electr. Power Syst. Res. 2023, 223, 109700. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Yan, Y.; He, G.; Fang, J.; Li, K.; Jiang, X. Identification Method for Single-line-to-ground Faults with Line Break Based on Phasor Measurement in Distribution Networks. J. Mod. Power Syst. Clean Energy 2023, 11, 907–916. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, G.; Hu, W.; Huang, Q.; Chen, Z.; Blaabjerg, F. Meta-Learning Based Voltage Control Strategy for Emergency Faults of Active Distribution Networks. Appl. Energy 2023, 349, 121399. [Google Scholar] [CrossRef]
- Hao, L.; Xue, Y.; Li, Z.; Wang, H.; Xu, Q. Decision Support System for Adaptive Restoration Control of Distribution System. J. Mod. Power Syst. Clean Energy 2022, 10, 1256–1273. [Google Scholar] [CrossRef]
- Jian, J.; Zhao, J.; Ji, H.; Bai, L.; Xu, J.; Li, P.; Wu, J.; Wang, C. Supply Restoration of Data Centers in Flexible Distribution Networks with Spatial-Temporal Regulation. IEEE Trans. Smart Grid 2024, 15, 340–354. [Google Scholar] [CrossRef]
- Gao, H.; Ma, W.; He, S.; Wang, L.; Liu, J. Time-Segmented Multi-Level Reconfiguration in Distribution Network: A Novel Cloud-Edge Collaboration Framework. IEEE Trans. Smart Grid 2022, 13, 3319–3322. [Google Scholar] [CrossRef]
- Tang, Q.; Xie, R.; Yu, F.; Chen, T.; Zhang, R.; Huang, T.; Liu, Y. Distributed Task Scheduling in Serverless Edge Computing Networks for the Internet of Things: A Learning Approach. IEEE Internet Things J. 2022, 9, 19634–19648. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Z.; Zhang, Y.; Zhang, Y.; Wu, Y.; Chen, X.; Zhao, L. Deep Reinforcement Learning-Based Dynamic Resource Management for Mobile Edge Computing in Industrial Internet of Things. IEEE Trans. Ind. Inform. 2021, 17, 4925–4934. [Google Scholar] [CrossRef]
- Huang, X.; Ji, G.; Zhang, B.; Li, C. Platform Profit Maximization in D2D Collaboration Based Multi-Access Edge Computing. IEEE Trans. Wirel. Commun. 2023, 22, 4282–4295. [Google Scholar] [CrossRef]
- Gao, J.; Kuang, Z.; Gao, J.; Zhao, L. Joint Offloading Scheduling and Resource Allocation in Vehicular Edge Computing: A Two Layer Solution. IEEE Trans. Veh. Technol. 2023, 72, 3999–4009. [Google Scholar] [CrossRef]
- Yang, X.; Luo, H.; Sun, Y.; Zou, J.; Guizani, M. Coalitional Game-Based Cooperative Computation Offloading in MEC for Reusable Tasks. IEEE Internet Things J. 2021, 8, 12968–12982. [Google Scholar] [CrossRef]
- Jiang, H.; Dai, X.; Xiao, Z.; Iyengar, A. Joint Task Offloading and Resource Allocation for Energy-Constrained Mobile Edge Computing. IEEE Trans. Mob. Comput. 2023, 7, 4000–4015. [Google Scholar] [CrossRef]
- Dai, X.; Xiao, Z.; Jiang, H.; Lui, J. UAV-Assisted Task Offloading in Vehicular Edge Computing Networks. IEEE Trans. Mob. Comput. 2024, 23, 2520–2534. [Google Scholar] [CrossRef]
- Masoudi, M.; Cavdar, C. Device vs Edge Computing for Mobile Services: Delay-Aware Decision Making to Minimize Power Consumption. IEEE Trans. Mob. Comput. 2021, 20, 3324–3337. [Google Scholar] [CrossRef]
- Fan, W.; Zhao, L.; Su, Y.; Wu, F.; Liu, Y. Collaborative Service Placement, Task Scheduling, and Resource Allocation for Task Offloading with Edge-Cloud Cooperation. IEEE Trans. Mob. Comput. 2024, 1, 238–256. [Google Scholar] [CrossRef]
- Xu, J.; Ai, B.; Chen, L.; Cui, Y.; Wang, N. Deep Reinforcement Learning for Computation and Communication Resource Allocation in Multiaccess MEC Assisted Railway IoT Networks. IEEE Trans. Intell. Transp. Syst. 2022, 12, 23797–23808. [Google Scholar] [CrossRef]
- Wen, W.; Zhang, Y.; Chen, C.; Jia, Y.; Luo, L.; Tang, L. Quality- and Availability-Based Device Scheduling and Resource Allocation for Federated Edge Learning. IEEE Commun. Lett. 2022, 26, 2626–2630. [Google Scholar] [CrossRef]
- Zhao, Y.; Calheiros, R.; Gange, G.; Bailey, J.; Sinnott, R. SLA-Based Profit Optimization Resource Scheduling for Big Data Analytics-as-a-Service Platforms in Cloud Computing Environments. IEEE Trans. Cloud Comput. 2021, 9, 1236–1253. [Google Scholar] [CrossRef]
- Seah, W.; Lee, C.; Lin, Y.; Lai, Y. Combined Communication and Computing Resource Scheduling in Sliced 5G Multi-Access Edge Computing Systems. IEEE Trans. Veh. Technol. 2022, 3, 3144–3154. [Google Scholar] [CrossRef]
- Marahatta, A.; Pirbhulal, S.; Zhang, F.; Parizi, R.; Choo, K.; Liu, Z. Classification-Based and Energy-Efficient Dynamic Task Scheduling Scheme for Virtualized Cloud Data Center. IEEE Trans. Cloud Comput. 2021, 9, 1376–1390. [Google Scholar] [CrossRef]
- Cang, Y.; Chen, M.; Pan, Y.; Yang, Z.; Hu, Y.; Sun, H.; Chen, M. Joint User Scheduling and Computing Resource Allocation Optimization in Asynchronous Mobile Edge Computing Networks. IEEE Trans. Commun. 2024, 72, 3378–3392. [Google Scholar] [CrossRef]
- Deng, X.; Yin, J.; Guan, P.; Xiong, E.; Zhang, L.; Mumtaz, S. Intelligent Delay-Aware Partial Computing Task Offloading for Multiuser Industrial Internet of Things Through Edge Computing. IEEE Internet Things J. 2023, 10, 2954–2966. [Google Scholar] [CrossRef]
- Li, Q.; Wang, S.; Zhou, A.; Ma, X.; Yang, C.; Liu, A. QoS Driven Task Offloading with Statistical Guarantee in Mobile Edge Computing. IEEE Trans. Mob. Comput. 2022, 21, 278–290. [Google Scholar] [CrossRef]
- Yu, H.; Huang, C.; Song, G.; Ji, H.; Zheng, Z.; Cui, W. Optimal resource scheduling of multi-functional edge computing devices in digital distribution networks. Ain Shams Eng. J. 2024, 102884. [Google Scholar] [CrossRef]
- Sharif, Z.; Jung, L.; Razzak, I.; Alazab, M. Adaptive and Priority-Based Resource Allocation for Efficient Resources Utilization in Mobile-Edge Computing. IEEE Internet Things J. 2023, 10, 3079–3093. [Google Scholar] [CrossRef]
References | Optimization Objectives | Scheduling Approach | |||
---|---|---|---|---|---|
Delay | Energy Consumption | Costs | Static | Dynamic | |
[19] | ✓ | ✓ | |||
[20] | ✓ | ✓ | |||
[23] | ✓ | ✓ | |||
[24] | ✓ | ✓ | ✓ | ||
[26] | ✓ | ✓ | |||
[27] | ✓ | ✓ | |||
[28] | ✓ | ✓ | ✓ | ||
[29] | ✓ | ✓ | ✓ | ||
[30] | ✓ | ✓ | ✓ | ||
[31] | ✓ | ✓ | |||
[32] | ✓ | ✓ | ✓ | ||
[33] | ✓ | ✓ |
Task Number | Core Assignment | Deadline | Completion Time | ||
---|---|---|---|---|---|
Real-Time Dispatch | Pre-Scheduled Plan | Real-Time Dispatch | Pre-Scheduled Plan | ||
1 | 1 | 1 | 15 | 15 | 15 |
2 | 2 | 2 | 15 | 14 | 14 |
8 | 2 | 3 | 12 | 11 | 12 |
9 | 3 | 3 | 14 | 10 | 10 |
12 | 3 | 3 | 15 | 15 | 15 |
14 | 1 | 1 | 15 | 15 | 15 |
18 | 3 | 3 | 15 | 13 | 13 |
21 | 2 | 3 | 12 | 10 | 11 |
22 | 3 | 2 | 14 | 12 | 13 |
23 | / | 2 | / | / | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Li, J.; Zhang, L.; Huang, C.; Yu, H.; Ji, H. A Real-Time Resource Dispatch Approach for Edge Computing Devices in Digital Distribution Networks Considering Burst Tasks. Processes 2024, 12, 1328. https://doi.org/10.3390/pr12071328
Xu J, Li J, Zhang L, Huang C, Yu H, Ji H. A Real-Time Resource Dispatch Approach for Edge Computing Devices in Digital Distribution Networks Considering Burst Tasks. Processes. 2024; 12(7):1328. https://doi.org/10.3390/pr12071328
Chicago/Turabian StyleXu, Jing, Juan Li, Liang Zhang, Chaoming Huang, Hao Yu, and Haoran Ji. 2024. "A Real-Time Resource Dispatch Approach for Edge Computing Devices in Digital Distribution Networks Considering Burst Tasks" Processes 12, no. 7: 1328. https://doi.org/10.3390/pr12071328
APA StyleXu, J., Li, J., Zhang, L., Huang, C., Yu, H., & Ji, H. (2024). A Real-Time Resource Dispatch Approach for Edge Computing Devices in Digital Distribution Networks Considering Burst Tasks. Processes, 12(7), 1328. https://doi.org/10.3390/pr12071328