Metal-Based Nanoparticles as Nanopesticides: Opportunities and Challenges for Sustainable Crop Protection
Abstract
:1. Introduction
2. Nanopesticide Definition
3. Efficacy of Metal-Based Nanoparticles as Nanopesticides
3.1. Solubility
3.2. Stability
3.3. Controlled Release
3.4. Target Specificity
3.5. Efficiency
4. MNPs as Nanoinsecticides
5. MNPs as Nanobactericides
Type of NPs | Synthesis Method | Size (nm) | Concentration | Plant Disease | Causal Organism | Host Plant | Application Condition | References |
---|---|---|---|---|---|---|---|---|
AgNPs | GS (Bacillus cereus) | 18–39 | 100 mg mL−1 | Bacterial leaf blight | Xanthomonas oryzae | Oryza sativa L. | In vitro and in vivo | [67] |
AgNPs | GS | 24.5 | 10 μg mL−1 | Bacterial wilt | Ralstonia solanacearum | - | In vitro | [68] |
AgNPs | GS (Zea mays) | 25 | 100 ppm | Bacterial wilt | Ralstonia solanacearum | - | In vitro | [69] |
AgNPs | GS | 11.12 | 1.2 μg mL−1 | Tobacco wildfire | Pseudomonas syringae | Nicotiana benthamiana | In vitro and in vivo | [70] |
AgNPs | GS (F. oxysporum) | 16–27 | 100 ppm | Soft rot | Pectobacterium carotovorum | Beta vulgaris L. | In vivo | [71] |
AgNPs | CS | 2, 22, 29 | 6.25 μg mL−1 | Black rot | Xanthomonas campestris | Brassica oleracea | In vitro | [72] |
CuNPs | CS | 5–10 | 300 ppm | Bacterial leaf spot | Xanthomonas campestris | Solanum lycopersicum | In vitro and in vivo | [73] |
CuNPs | CS | 18–33 | ≥2 μg mL−1 | Bacterial leaf blight | Xanthomonas oryzae | Oryza sativa | In vitro | [74] |
CuNPs | GS (Shewanella sp.) | 30–190 | 42 ppm | Wilt disease | Ralstonia solanacearum | - | In vitro | [75] |
ZnONPs | Commercial | ≤40 | 0.1 mg mL–1 | Bacterial leaf spot Bacterial blight | Xanthomonas axonopodis Pseudomonas syringae | Lens culinaris Medik. | In vivo | [76] |
MgONPs | Commercial | 20–200 | 0.05–0.1% | Bacterial wilt | Ralstonia solanacearum | Solanum lycopersicum | In vitro and in vivo | [77] |
MgONPs | Commercial | 50–100 | 250 µg mL−1 | Tobacco bacterial wilt | Ralstonia solanacearum | Nicotiana tabacum L. | In vitro and in vivo | [78] |
MgONPs | Commercial | 20 | 200 µg mL−1 | Bacterial spot | Xanthomonas perforans | Solanum lycopersicum | In vitro and in vivo | [79] |
Fe2O3NPs | GS (Skimma laureola) | 56–350 | 6 mg mL−1 | Bacterial wilt | Ralstonia solanacearum | Tomato | In vitro and in vivo | [80] |
6. MNPs as Nanofungicides
7. MNPs as Nanonematicides
8. MNPs as Nanoviricides
9. Action Mechanism of Nanopesticides
9.1. Physical Disruption
9.2. Chemical Interaction by Reactive Oxygen Species (ROS) Generation
9.3. Biological Mechanism
10. Mechanism of Nanopesticide Inside the Pest Cell
10.1. Membrane Damage
10.2. DNA Damage
10.3. Mitochondrial Disruption
10.4. Protein Denaturation
11. Toxicity of Metal Nanoparticles to Plants
12. Potential Concerns and Challenges
12.1. Regulatory Challenges
12.2. Environmental Impact
13. Conclusions and Future Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
FAO | Food and Agriculture Organization |
NPs | Nanoparticles |
MNPs | Metal-based Nanoparticles |
AgNPs | Silver Nanoparticles |
CuONPs | Copper oxide Nanoparticles |
ZnNPs | Zinc Nanoparticles |
FeNPs | Iron Nanoparticles |
AuNPs | Gold Nanoparticles |
NiNPs | Nickel Nanoparticles |
TiO2NPs | Titanium dioxide Nanoparticles |
MgONPs | Magnesium oxide Nanoparticles |
References
- IPPC Secretariat. International Plant Health Conference—Report, London, 21–23 September 2022; FAO: Rome, Italy, 2023. [Google Scholar] [CrossRef]
- FAO; WHO. Guidance on Good Labelling Practice for Pesticides (Second Revision)—International Code of Conduct on Pesticide Management; FAO: Rome, Italy; WHO: Rome, Italy, 2022. [Google Scholar]
- Jan, S.S.; Bilal, S.; Asaf, S.; Khan, A.L.; Shahzad, R.; AL-Harrasi, A. Chemically Engineered Nanoparticles and Their Role in Agriculture. In Revolutionizing Agriculture: A Comprehensive Exploration of Agri-Nanotechnology; Shahzad, R., Fiaz, S., Qayuum, A., Islam, M.U., Lee, I.-J., Eds.; Springer: Cham, Switzerland, 2024; pp. 379–393. [Google Scholar] [CrossRef]
- Chaud, M.; Souto, E.B.; Zielinska, A.; Severino, P.; Batain, F.; Oliveira-Junior, J.; Alves, T. Nanopesticides in Agriculture: Benefits and Challenge in Agricultural Productivity, Toxicological Risks to Human Health and Environment. Toxics 2021, 9, 131. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, S.; Mailapalli, D.R. Nanopesticides for Pest Control. In Sustainable Agriculture Reviews 40; Lichtfouse, E., Ed.; Springer Nature: Cham, Switzerland, 2020; pp. 43–74. [Google Scholar] [CrossRef]
- Sánchez-López, E.; Gomes, D.; Esteruelas, G.; Bonilla, L.; Lopez-Machado, A.L.; Galindo, R.; Cano, A.; Espina, M.; Ettcheto, M.; Camins, A.; et al. Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. Nanomaterials 2020, 10, 292. [Google Scholar] [CrossRef]
- Ashitha, A.; Mathew, J. Characteristics and Types of Slow/Controlled Release of Pesticides. In Controlled Release of Pesticides for Sustainable Agriculture; Rakhimol, K.R., Thomas, S., Volova, T., Jayachandran, K., Eds.; Springer: Cham, Switzerland, 2020; pp. 141–153. [Google Scholar] [CrossRef]
- Vivekanandhan, P.; Krutmuang, P.; Prasad, R.; Krishnan, J. Nanoinsecticide: An Introduction. In Nano-Insecticide; Vivekanandhan, P., Krutmuang, P., Prasad, R., Krishnan, J., Eds.; Springer: Cham, Switzerland, 2024; pp. 1–23. [Google Scholar] [CrossRef]
- Brandelli, A.; Ritter, A.C.; Veras, F.F. Antimicrobial Activities of Metal Nanoparticles. In Metal Nanoparticles in Pharma; Rai, M., Shegokar, R., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 337–363. [Google Scholar] [CrossRef]
- Saritha, G.N.G.; Anju, T.; Kumar, A. Nanotechnology—Big Impact: How Nanotechnology Is Changing the Future of Agriculture? J. Agric. Food Res. 2022, 10, 100457. [Google Scholar] [CrossRef]
- Deka, B.; Babu, A.; Baruah, C.; Barthakur, M. Nanopesticides: A Systematic Review of Their Prospects with Special Reference to Tea Pest Management. Front. Nutr. 2021, 8, 686131. [Google Scholar] [CrossRef] [PubMed]
- Sarkodie, B.; Tawiah, B.; Fei, B. Nanotechnology and the Environment: Opportunities and Challenges. In Nanotechnology in Societal Development; George, S.C., Tawiah, B., Eds.; Advanced Technologies and Societal Change; Springer Nature: Singapore, 2024; pp. 191–228. [Google Scholar] [CrossRef]
- Qureshi, A.; Blaisi, N.I.; Abbas, A.A.O.; Khan, N.A.; Rehman, S. Prospectus and Development of Microbes Mediated Synthesis of Nanoparticles. In Microbial Nanotechnology: Green Synthesis and Applications; Ansari, M.A., Rehman, S., Eds.; Springer Nature: Singapore, 2021; pp. 1–15. [Google Scholar] [CrossRef]
- Wasule, D.L.; Shingote, P.R.; Saxena, S. Exploitation of Functionalized Green Nanomaterials for Plant Disease Management. Discov. Nano 2024, 19, 118. [Google Scholar] [CrossRef]
- Iavicoli, I.; Leso, V.; Beezhold, D.H.; Shvedova, A.A. Nanotechnology in Agriculture: Opportunities, Toxicological Implications, and Occupational Risks. Toxicol. Appl. Pharmacol. 2017, 329, 96–111. [Google Scholar] [CrossRef]
- Haris, M.; Hussain, T.; Mohamed, H.I.; Khan, A.; Ansari, M.S.; Tauseef, A.; Khan, A.A.; Akhtar, N. Nanotechnology—A New Frontier of Nano-Farming in Agricultural and Food Production and Its Development. Sci. Total Environ. 2023, 857, 159639. [Google Scholar] [CrossRef]
- European Food Safety Authority. Pesticides: Definitions and Regulations; European Food Safety Authority: Parma, Italy, 2023; p. e211009. [Google Scholar]
- Abdollahdokht, D.; Gao, Y.; Faramarz, S.; Poustforoosh, A.; Abbasi, M.; Asadikaram, G.; Nematollahi, M.H. Conventional Agrochemicals towards Nano-Biopesticides: An Overview on Recent Advances. Chem. Biol. Technol. Agric. 2022, 9, 13. [Google Scholar] [CrossRef]
- Ramezani, M.; Ramezani, F.; Gerami, M. Nanoparticles in Pest Incidences and Plant Disease Control. In Nanotechnology for Agriculture: Crop Production & Protection; Panpatte, D.G., Jhala, Y.K., Eds.; Springer Nature: Singapore, 2019; pp. 233–272. [Google Scholar] [CrossRef]
- Kapinder; Dangi, K.; Verma, A.K. Efficient & Eco-Friendly Smart Nano-Pesticides: Emerging Prospects for Agriculture. Mater. Today Proc. 2020, 45, 3819–3824. [Google Scholar] [CrossRef]
- Kookana, R.S.; Boxall, A.B.A.; Reeves, P.T.; Ashauer, R.; Beulke, S.; Chaudhry, Q.; Cornelis, G.; Fernandes, T.F.; Gan, J.; Kah, M.; et al. Nanopesticides: Guiding Principles for Regulatory Evaluation of Environmental Risks. J. Agric. Food Chem. 2014, 62, 4227–4240. [Google Scholar] [CrossRef]
- El-Kalliny, A.S.; Abdel-Wahed, M.S.; El-Zahhar, A.A.; Hamza, I.A.; Gad-Allah, T.A. Nanomaterials: A Review of Emerging Contaminants with Potential Health or Environmental Impact. Discov. Nano 2023, 18, 68. [Google Scholar] [CrossRef] [PubMed]
- Anand, R.; Bhagat, M. Silver Nanoparticles (AgNPs): As Nanopesticides and Nanofertilizers. MOJ Biol. Med. 2019, 4, 19–20. [Google Scholar] [CrossRef]
- Bapat, M.S.; Singh, H.; Shukla, S.K.; Singh, P.P.; Vo, D.V.N.; Yadav, A.; Goyal, A.; Sharma, A.; Kumar, D. Evaluating Green Silver Nanoparticles as Prospective Biopesticides: An Environmental Standpoint. Chemosphere 2022, 286, 131761. [Google Scholar] [CrossRef] [PubMed]
- Feigl, G. The Impact of Copper Oxide Nanoparticles on Plant Growth: A Comprehensive Review. J. Plant Interact. 2023, 18, 2243098. [Google Scholar] [CrossRef]
- Ahmed, A.I.S.; Yadav, D.R.; Lee, Y.S. In Vitro Evaluation of Nickel Nanoparticles against Various Pathogenic Fusarium Species. Int. J. Chemtech. Res. 2016, 9, 174–183. [Google Scholar]
- Miri, A.H.; Shakib, E.S.; Ebrahimi, O.; Sharifi-Rad, J. Impacts of Nickel Nanoparticles on Grow Characteristics, Photosynthetic Pigment Content and Antioxidant Activity of Coriandrum sativum L. Orient. J. Chem. 2017, 33, 1297–1303. [Google Scholar] [CrossRef]
- St. Warne, M.; Reichelt-Brushett, A. Pesticides and Biocides. In Marine Pollution-Monitoring, Management and Mitigation; Reichelt-Brushett, A., Ed.; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Khattak, W.A.; Ullah, M.W.; Manan, S.; Islam, S.U.; Khattak, W.A.; Ul-Islam, M. Emerging Applications and Future Trends of Agri-Nanotechnology. In Revolutionizing Agriculture: A Comprehensive Exploration of Agri-Nanotechnology; Shahzad, R., Fiaz, S., Qayyum, A., Islam, M.U., Lee, I.-J., Eds.; Springer: Cham, Switzerland, 2024; pp. 429–458. [Google Scholar] [CrossRef]
- Jaison, J.; Kannan, S. Biogenic Nanoinsecticides as New Directions for Insect Pest Control. In Nano-Insecticide; Nanotechnology in the Life Sciences; Vivekanandhan, P., Krutmuang, P., Prasad, R., Krishnan, J., Eds.; Springer: Cham, Switzerland, 2024; pp. 257–278. [Google Scholar]
- Yin, J.; Su, X.; Yan, S.; Shen, J. Multifunctional Nanoparticles and Nanopesticides in Agricultural Application. Nanomaterials 2023, 13, 1255. [Google Scholar] [CrossRef]
- Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nanomicro Lett. 2015, 7, 219–242. [Google Scholar] [CrossRef]
- Peretyazhko, T.S.; Zhang, Q.; Colvin, V.L. Size-Controlled Dissolution of Silver Nanoparticles at Neutral and Acidic PH Conditions: Kinetics and Size Changes. Environ. Sci. Technol. 2014, 48, 11954–11961. [Google Scholar] [CrossRef]
- Phan, H.T.; Haes, A.J. What Does Nanoparticle Stability Mean? J. Phys. Chem. C 2019, 123, 16495–16507. [Google Scholar] [CrossRef]
- Kapeleka, J.A.; Mwema, M.F. State of Nano Pesticides Application in Smallholder Agriculture Production Systems: Human and Environmental Exposure Risk Perspectives. Heliyon 2024, 10, e39225. [Google Scholar] [CrossRef] [PubMed]
- Fernando, I.; Zhou, Y. Impact of PH on the Stability, Dissolution and Aggregation Kinetics of Silver Nanoparticles. Chemosphere 2019, 216, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Basavegowda, N.; Baek, K.H. Multimetallic Nanoparticles as Alternative Antimicrobial Agents: Challenges and Perspectives. Molecules 2021, 26, 912. [Google Scholar] [CrossRef]
- Demirbas, A.; Büyükbezirci, K.; Celik, C.; Kislakci, E.; Karaagac, Z.; Gokturk, E.; Kati, A.; Cimen, B.; Yilmaz, V.; Ocsoy, I. Synthesis of Long-Term Stable Gold Nanoparticles Benefiting from Red Raspberry (Rubus idaeus), Strawberry (Fragaria ananassa), and Blackberry (Rubus fruticosus) Extracts-Gold Ion Complexation and Investigation of Reaction Conditions. ACS Omega 2019, 4, 18637–18644. [Google Scholar] [CrossRef]
- Manna, S.; Roy, S.; Dolai, A.; Ravula, A.R.; Perumal, V.; Das, A. Current and Future Prospects of “All-Organic” Nanoinsecticides for Agricultural Insect Pest Management. Front. Nanotechnol. 2023, 4, 1082128. [Google Scholar] [CrossRef]
- Wang, D.; Saleh, N.B.; Byro, A.; Zepp, R.; Sahle-Demessie, E.; Luxton, T.P.; Ho, K.T.; Burgess, R.M.; Flury, M.; White, J.C.; et al. Nano-Enabled Pesticides for Sustainable Agriculture and Global Food Security. Nat. Nanotechnol. 2022, 17, 347–360. [Google Scholar] [CrossRef]
- Liu, P.; Yang, M.; Hermanowicz, S.W.; Huang, Y. Efficacy-Associated Cost Analysis of Copper-Based Nanopesticides for Tomato Disease Control. ACS Agric. Sci. Technol. 2022, 2, 796–804. [Google Scholar] [CrossRef]
- Amutha, V.; Deepak, P.; Tamilselvan, C.; Selvaraj, R.; Latha, T.; Nathiya, T.; Prasannakumar, C. Successful Examples of Nanopesticides against Major Insect Pests in Agriculture. In Nano-Insecticide; Nanotechnology in the life science; Vivekanandhan, P., Krutmuang, P., Prasad, R., Krishnan, J., Eds.; Springer: Cham, Switzerland, 2024; pp. 221–240. [Google Scholar] [CrossRef]
- Jameel, M.; Shoeb, M.; Khan, M.T.; Ullah, R.; Mobin, M.; Farooqi, M.K.; Adnan, S.M. Enhanced Insecticidal Activity of Thiamethoxam by Zinc Oxide Nanoparticles: A Novel Nanotechnology Approach for Pest Control. ACS Omega 2020, 5, 1607–1615. [Google Scholar] [CrossRef]
- Suresh, U.; Murugan, K.; Panneerselvam, C.; Rajaganesh, R.; Roni, M.; Aziz, A.T.; Naji Al-Aoh, H.A.; Trivedi, S.; Rehman, H.; Kumar, S.; et al. Suaeda Maritima-Based Herbal Coils and Green Nanoparticles as Potential Biopesticides against the Dengue Vector Aedes aegypti and the Tobacco Cutworm Spodoptera litura. Physiol. Mol. Plant Pathol. 2018, 101, 225–235. [Google Scholar] [CrossRef]
- Abou El-Enain, I.M.; Elqady, E.M.; El-said, E.; Salem, H.H.A.; Badr, N.F.; Abd-Allah, G.E.; Rezk, M.M. Biosynthesized Silver Nanoparticles (Ag NPs) from Isolated Actinomycetes Strains and Their Impact on the Black Cutworm, Agrotis ipsilon. Pestic. Biochem. Physiol. 2023, 194, 105492. [Google Scholar] [CrossRef]
- Yasur, J.; Usha Rani, P. Lepidopteran Insect Susceptibility to Silver Nanoparticles and Measurement of Changes in Their Growth, Development and Physiology. Chemosphere 2015, 124, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, N.; Ramamoorthy, M.; Lyon, D.; Jones, K.; Duttaroy, A. Mechanism of Silver Nanoparticles Action on Insect Pigmentation Reveals Intervention of Copper Homeostasis. PLoS ONE 2013, 8, e53186. [Google Scholar] [CrossRef] [PubMed]
- Kantrao, S.; Ravindra, M.A.; Akbar, S.M.D.; Kamala Jayanthi, P.D.; Venkataraman, A. Effect of Biosynthesized Silver Nanoparticles on Growth and Development of Helicoverpa armigera (Lepidoptera: Noctuidae): Interaction with Midgut Protease. J. Asia Pac. Entomol. 2017, 20, 583–589. [Google Scholar] [CrossRef]
- Asoufi, H.M.; Al-Antary, T.M.; Awwad, A.M. Green Route for Synthesis Hematite (α-Fe2O3) Nanoparticles: Toxicity Effect on the Green Peach Aphid, Myzus persicae (Sulzer). Environ. Nanotechnol. Monit. Manag. 2018, 9, 107–111. [Google Scholar] [CrossRef]
- Tian, H.; Eom, H.J.; Moon, S.; Lee, J.; Choi, J.; Chung, Y.D. Development of Biomarker for Detecting Silver Nanoparticles Exposure Using a GAL4 Enhancer Trap Screening in Drosophila. Environ. Toxicol. Pharmacol. 2013, 36, 548–556. [Google Scholar] [CrossRef]
- Almadiy, A.A.; Nenaah, G.E.; Shawer, D.M. Facile Synthesis of Silver Nanoparticles Using Harmala Alkaloids and Their Insecticidal and Growth Inhibitory Activities against the Khapra Beetle. J. Pest. Sci. 2018, 91, 727–737. [Google Scholar] [CrossRef]
- Alif Alisha, A.S.; Thangapandiyan, S. Comparative Bioassay of Silver Nanoparticles and Malathion on Infestation of Red Flour Beetle, Tribolium castaneum. J. Basic Appl. Zool. 2019, 80, 55. [Google Scholar] [CrossRef]
- Rani, S.S.; Justin, C.G.L.; Gunasekaran, K.; Joyce, S.S. Efficacy of Green Synthesized Silver Nanoparticle, Plant Powders and Oil against Rice Weevil Sitophilus oryzae L. (Coleoptera: Curculionidae) on Sorghum Seeds. J. Pharmacogn. Phytochem. 2019, 8, 38–42. [Google Scholar]
- Singh, M.P.; Shabir, S.; Deopa, A.S.; Raina, S.R.; Bantun, F.; Jalal, N.A.; Abdel-razik, N.E.; Jamous, Y.F.; Alhumaidi, M.S.; Altammar, K.A.; et al. Synthesis of Green Engineered Silver Nanoparticles through Urtica dioica: An Inhibition of Microbes and Alleviation of Cellular and Organismal Toxicity in Drosophila melanogaster. Antibiotics 2022, 11, 1690. [Google Scholar] [CrossRef]
- Thabet, A.F.; Boraei, H.A.; Galal, O.A.; El-Samahy, M.F.M.; Mousa, K.M.; Zhang, Y.Z.; Tuda, M.; Helmy, E.A.; Wen, J.; Nozaki, T. Silica Nanoparticles as Pesticide against Insects of Different Feeding Types and Their Non-Target Attraction of Predators. Sci. Rep. 2021, 11, 14484. [Google Scholar] [CrossRef]
- Pittarate, S.; Rajula, J.; Rahman, A.; Vivekanandhan, P.; Thungrabeab, M.; Mekchay, S.; Krutmuang, P. Insecticidal Effect of Zinc Oxide Nanoparticles against Spodoptera frugiperda under Laboratory Conditions. Insects 2021, 12, 1017. [Google Scholar] [CrossRef] [PubMed]
- Shaker, A.M.; Zaki, A.H.; Abdel-Rahim, E.F.M.; Khedr, M.H. TiO2 Nanoparticles as an Effective Nanopesticide for Cotton Leaf Worm. Agric. Eng. Int. CIGR J. 2017, 2017, 61–68. [Google Scholar]
- Li, F.; Gu, Z.; Wang, B.; Xie, Y.; Ma, L.; Xu, K.; Ni, M.; Zhang, H.; Shen, W.; Li, B. Effects of the Biosynthesis and Signaling Pathway of Ecdysterone on Silkworm (Bombyx mori) Following Exposure to Titanium Dioxide Nanoparticles. J. Chem. Ecol. 2014, 40, 913–922. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.; Pittarate, S.; Perumal, V.; Rajula, J.; Thungrabeab, M.; Mekchay, S.; Krutmuang, P. Larvicidal and Antifeedant Effects of Copper Nano-Pesticides against Spodoptera frugiperda (J.E. Smith) and Its Immunological Response. Insects 2022, 13, 1030. [Google Scholar] [CrossRef] [PubMed]
- El-Saadony, M.T.; Abd El-Hack, M.E.; Taha, A.E.; Fouda, M.M.G.; Ajarem, J.S.; Maodaa, S.N.; Allam, A.A.; Elshaer, N. Ecofriendly Synthesis and Insecticidal Application of Copper Nanoparticles against the Storage Pest Tribolium castaneum. Nanomaterials 2020, 10, 587. [Google Scholar] [CrossRef]
- Keratum, A.Y.; Abo Arab, R.B.; Ismail, A.A.; Nasr, M. Impact of Nanoparticle Zinc Oxide and Aluminum Oxide against Rice Weevil Sitophilus oryzae (Coleoptera: Curculionidae) under Laboratory Conditions. Egy. J. Plant Pro. Res. 2015, 3, 30–38. [Google Scholar]
- Chen, H.; Wang, B.; Feng, W.; Du, W.; Ouyang, H.; Chai, Z.; Bi, X. Oral Magnetite Nanoparticles Disturb the Development of Drosophila melanogaster from Oogenesis to Adult Emergence. Nanotoxicology 2014, 9, 302–312. [Google Scholar] [CrossRef]
- Jin, T.; He, Y. Antibacterial Activities of Magnesium Oxide (MgO) Nanoparticles against Foodborne Pathogens. J. Nanopart. Res. 2011, 13, 6877–6885. [Google Scholar] [CrossRef]
- Patra, J.K.; Baek, K.H. Novel Green Synthesis of Gold Nanoparticles Using Citrullus lanatus Rind and Investigation of Proteasome Inhibitory Activity, Antibacterial, and Antioxidant Potential. Int. J. Nanomed. 2015, 10, 7253–7264. [Google Scholar] [CrossRef]
- de Lacerda Coriolano, D.; de Souza, J.B.; Bueno, E.V.; de Fátima Ramos dos Santos Medeiros, S.M.; Cavalcanti, I.D.L.; Cavalcanti, I.M.F. Antibacterial and Antibiofilm Potential of Silver Nanoparticles against Antibiotic-Sensitive and Multidrug-Resistant Pseudomonas aeruginosa Strains. Braz. J. Microbiol. 2021, 52, 267–278. [Google Scholar] [CrossRef]
- Wang, L.; Hu, C.; Shao, L. The Antimicrobial Activity of Nanoparticles: Present Situation and Prospects for the Future. Int. J. Nanomed. 2017, 2017, 1227–1249. [Google Scholar] [CrossRef]
- Ahmed, T.; Shahid, M.; Noman, M.; Niazi, M.B.K.; Mahmood, F.; Manzoor, I.; Zhang, Y.; Li, B.; Yang, Y.; Yan, C.; et al. Silver Nanoparticles Synthesized by Using Bacillus Cereus SZT1 Ameliorated the Damage of Bacterial Leaf Blight Pathogen in Rice. Pathogens 2020, 9, 160. [Google Scholar] [CrossRef]
- Cheng, H.J.; Wang, H.; Zhang, J.Z. Phytofabrication of Silver Nanoparticles Using Three Flower Extracts and Their Antibacterial Activities against Pathogen Ralstonia solanacearum Strain YY06 of Bacterial Wilt. Front. Microbiol. 2020, 11, 2110. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Khan, A.U.; Alam, M.J.; Park, S.; Alam, M. Biosynthesis of Silver Nanoparticles and Its Application against Phytopathogenic Bacterium and Fungus. Int. J. Environ. Anal. Chem. 2020, 100, 1390–1401. [Google Scholar] [CrossRef]
- Jiang, L.; Xiang, S.; Lv, X.; Wang, X.; Li, F.; Liu, W.; Liu, C.; Ran, M.; Huang, J.; Xu, X.; et al. Biosynthesized Silver Nanoparticles Inhibit Pseudomonas syringae Pv. Tabaci by Directly Destroying Bacteria and Inducing Plant Resistance in Nicotiana benthamiana. Phytopathol. Res. 2022, 4, 43. [Google Scholar] [CrossRef]
- Ghazy, N.A.; Abd El-Hafez, O.A.; El-Bakery, A.M.; El-Geddawy, D.I.H. Impact of Silver Nanoparticles and Two Biological Treatments to Control Soft Rot Disease in Sugar Beet (Beta vulgaris L). Egypt. J. Biol. Pest. Control 2021, 31, 3. [Google Scholar] [CrossRef]
- Pečenka, J.; Bytešníková, Z.; Kiss, T.; Peňázová, E.; Baránek, M.; Eichmeier, A.; Tekielska, D.; Richtera, L.; Pokluda, R.; Adam, V. Silver Nanoparticles Eliminate Xanthomonas Campestris Pv. Campestris in Cabbage Seeds More Efficiently than Hot Water Treatment. Mater. Today Commun. 2021, 27, 102284. [Google Scholar] [CrossRef]
- Varympopi, A.; Dimopoulou, A.; Papafotis, D.; Avramidis, P.; Sarris, I.; Karamanidou, T.; Kerou, A.K.; Vlachou, A.; Vellis, E.; Giannopoulos, A.; et al. Antibacterial Activity of Copper Nanoparticles against Xanthomonas campestris Pv. Vesicatoria in Tomato Plants. Int. J. Mol. Sci. 2022, 23, 4080. [Google Scholar] [CrossRef]
- Majumdar, T.D.; Singh, M.; Thapa, M.; Dutta, M.; Mukherjee, A.; Ghosh, C.K. Size-Dependent Antibacterial Activity of Copper Nanoparticles against Xanthomonas oryzae Pv. Oryzae—A Synthetic and Mechanistic Approach. Colloids Interface Sci. Commun. 2019, 32, 100190. [Google Scholar] [CrossRef]
- Luong, H.T.; Nguyen, C.X.; Lam, T.T.; Nguyen, T.H.; Dang, Q.L.; Lee, J.H.; Hur, H.G.; Nguyen, H.T.; Ho, C.T. Antibacterial Effect of Copper Nanoparticles Produced in a: Shewanella -Supported Non-External Circuit Bioelectrical System on Bacterial Plant Pathogens. RSC Adv. 2022, 12, 4428–4436. [Google Scholar] [CrossRef]
- Siddiqui, Z.A.; Khan, A.; Khan, M.R.; Abd-Allah, E.F. Effects of Zinc Oxide Nanoparticles (ZnO NPs) and Some Plant Pathogens on the Growth and Nodulation of Lentil (Lens culinaris Medik.). Acta Phytopathol. Entomol. Hung. 2018, 53, 195–212. [Google Scholar] [CrossRef]
- Imada, K.; Sakai, S.; Kajihara, H.; Tanaka, S.; Ito, S. Magnesium Oxide Nanoparticles Induce Systemic Resistance in Tomato against Bacterial Wilt Disease. Plant Pathol. 2016, 65, 551–560. [Google Scholar] [CrossRef]
- Cai, L.; Chen, J.; Liu, Z.; Wang, H.; Yang, H.; Ding, W. Magnesium Oxide Nanoparticles: Effective Agricultural Antibacterial Agent against Ralstonia solanacearum. Front. Microbiol. 2018, 9, 790. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.Y.; Strayer-Scherer, A.; White, J.C.; De La Torre-Roche, R.; Ritchie, L.; Colee, J.; Vallad, G.E.; Freeman, J.; Jones, J.B.; Paret, M.L. Particle-Size Dependent Bactericidal Activity of Magnesium Oxide against Xanthomonas perforans and Bacterial Spot of Tomato. Sci. Rep. 2019, 9, 18530. [Google Scholar] [CrossRef] [PubMed]
- Alam, T.; Khan, R.A.A.; Ali, A.; Sher, H.; Ullah, Z.; Ali, M. Biogenic Synthesis of Iron Oxide Nanoparticles via Skimmia Laureola and Their Antibacterial Efficacy against Bacterial Wilt Pathogen Ralstonia solanacearum. Mater. Sci. Eng. C 2019, 98, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Li, X.; Maier, M.; O’Brien-Simpson, N.M.; Heath, D.E.; O’Connor, A.J. Using Inorganic Nanoparticles to Fight Fungal Infections in the Antimicrobial Resistant Era. Acta Biomater. 2023, 158, 56–79. [Google Scholar] [CrossRef]
- Dizaj, S.M.; Lotfipour, F.; Barzegar-Jalali, M.; Zarrintan, M.H.; Adibkia, K. Antimicrobial Activity of the Metals and Metal Oxide Nanoparticles. Mater. Sci. Eng. C 2014, 44, 278–284. [Google Scholar] [CrossRef]
- Cartwright, A.; Jackson, K.; Morgan, C.; Anderson, A.; Britt, D.W. A Review of Metal and Metal-Oxide Nanoparticle Coating Technologies to Inhibit Agglomeration and Increase Bioactivity for Agricultural Applications. Agronomy 2020, 10, 1018. [Google Scholar] [CrossRef]
- Balu, S.K.; Andra, S.; Jeevanandam, J.; Kulabhusan, P.K.; Khamari, A.; Vedarathinam, V.; Hamimed, S.; Chan, Y.S.; Danquah, M.K. Exploring the Potential of Metal Oxide Nanoparticles as Fungicides and Plant Nutrient Boosters. Crop. Prot. 2023, 174, 106398. [Google Scholar] [CrossRef]
- Safaei, M.; Taran, M.; Imani, M.M. Preparation, Structural Characterization, Thermal Properties and Antifungal Activity of Alginate-CuO Bionanocomposite. Mater. Sci. Eng. C 2019, 101, 323–329. [Google Scholar] [CrossRef]
- Bogdanović, U.; Lazić, V.; Vodnik, V.; Budimir, M.; Marković, Z.; Dimitrijević, S. Copper Nanoparticles with High Antimicrobial Activity. Mater. Lett. 2014, 128, 75–78. [Google Scholar] [CrossRef]
- Saqib, S.; Faryad, S.; Afridi, M.I.; Arshad, B.; Younas, M.; Naeem, M.; Zaman, W.; Ullah, F.; Nisar, M.; Ali, S.; et al. Bimetallic Assembled Silver Nanoparticles Impregnated in Aspergillus fumigatus Extract Damage the Bacterial Membrane Surface and Release Cellular Content. Coatings 2022, 12, 1505. [Google Scholar] [CrossRef]
- Bocate, K.P.; Reis, G.F.; de Souza, P.C.; Oliveira Junior, A.G.; Durán, N.; Nakazato, G.; Furlaneto, M.C.; de Almeida, R.S.; Panagio, L.A. Antifungal Activity of Silver Nanoparticles and Simvastatin against Toxigenic Species of Aspergillus. Int. J. Food Microbiol. 2019, 291, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Sharma, A.; Sharma, M.; Bhalla, N.; Estrela, P.; Jain, A.; Thakur, P.; Thakur, A. Nanomaterial Fungicides: In Vitro and in Vivo Antimycotic Activity of Cobalt and Nickel Nanoferrites on Phytopathogenic Fungi. Global Chall. 2017, 1, 1700041. [Google Scholar] [CrossRef]
- Chen, J.; Wu, L.; Lu, M.; Lu, S.; Li, Z.; Ding, W. Comparative Study on the Fungicidal Activity of Metallic MgO Nanoparticles and Macroscale MgO against Soilborne Fungal Phytopathogens. Front. Microbiol. 2020, 11, 365. [Google Scholar] [CrossRef]
- Bawskar, M.; Bansod, S.; Rathod, D.; dos Santos, C.A.; Ingle, P.; Rai, M.; Gade, A. Silver Nanoparticles as Nanofungicide and Plant Growth Promoter: Evidences from Morphological and Chlorophyll ‘a’ Fluorescence Analysis. Adv. Mater. Lett. 2021, 12, 1–7. [Google Scholar] [CrossRef]
- Al-Sahli, S.A.; Al-Otibi, F.; Alharbi, R.I.; Amina, M.; Al Musayeib, N.M. Silver Nanoparticles Improve the Fungicidal Properties of Rhazya stricta Decne Aqueous Extract against Plant Pathogens. Sci. Rep. 2024, 14, 1297. [Google Scholar] [CrossRef]
- Luan, L.Q.; Xo, D.H. In Vitro and in Vivo Fungicidal Effects of γ-Irradiation Synthesized Silver Nanoparticles against Phytophthora capsici Causing the Foot Rot Disease on Pepper Plant. J. Plant Pathol. 2018, 100, 241–248. [Google Scholar] [CrossRef]
- Singh, R.; Gupta, A.K.; Patade, V.Y.; Balakrishna, G.; Pandey, H.K.; Singh, A. Synthesis of Silver Nanoparticles Using Extract of Ocimum kilimandscharicum and Its Antimicrobial Activity against Plant Pathogens. SN Appl. Sci. 2019, 1, 1625. [Google Scholar] [CrossRef]
- Almaary, K.S.; Sayed, S.R.M.; Abd-Elkader, O.H.; Dawoud, T.M.; El Orabi, N.F.; Elgorban, A.M. Complete Green Synthesis of Silver-Nanoparticles Applying Seed-Borne Penicillium duclauxii. Saudi. J. Biol. Sci. 2020, 27, 1333–1339. [Google Scholar] [CrossRef]
- Ansari, M.; Ahmed, S.; Khan, M.T.; Hamad, N.A.; Ali, H.M.; Abbasi, A.; Mubeen, I.; Intisar, A.; Hasan, M.E.; Jasim, I.K. Evaluation of in Vitro and in Vivo Antifungal Activity of Green Synthesized Silver Nanoparticles against Early Blight in Tomato. Horticulturae 2023, 9, 369. [Google Scholar] [CrossRef]
- Qureshi, A.K.; Farooq, U.; Shakeel, Q.; Ali, S.; Ashiq, S.; Shahzad, S.; Tariq, M.; Seleiman, M.F.; Jamal, A.; Saeed, M.F.; et al. The Green Synthesis of Silver Nanoparticles from Avena fatua Extract: Antifungal Activity against Fusarium oxysporum f.sp. lycopersici. Pathogens 2023, 12, 1247. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, K.L.M.; Martínez, H.D.R.G.; Cerritos, R.C.; Espinosa, J.C.M. In Vitro Evaluation of the Antifungal Effect of AgNPs on Fusarium oxysporum f. sp. lycopersici. Nanomaterials 2023, 13, 1274. [Google Scholar] [CrossRef]
- Giannousi, K.; Avramidis, I.; Dendrinou-Samara, C. Synthesis, Characterization and Evaluation of Copper Based Nanoparticles as Agrochemicals against Phytophthora infestans. RSC Adv. 2013, 3, 21743–21752. [Google Scholar] [CrossRef]
- Saikia, S.; Saud, B.K.; Dutta, P.; Gogoi, A.K. Efficacy of Green Synthesized Copper Nanoparticles towards Leaf Spot Disease and Its Effects on Vase Life of Chrysanthemum Cv. Snowball. Pharma Innov. J. 2022, 11, 2344–2347. [Google Scholar]
- Ismail, A.M.; Mosa, M.A.; El-Ganainy, S.M. Chitosan-Decorated Copper Oxide Nanocomposite: Investigation of Its Antifungal Activity against Tomato Gray Mold Caused by Botrytis cinerea. Polymers 2023, 15, 1099. [Google Scholar] [CrossRef]
- Rafiq, H.; Aftab, Z.E.H.; Anjum, T.; Ali, B.; Akram, W.; Bashir, U.; Mirza, F.S.; Aftab, M.; Ali, M.D.; Li, G. Bio-Fabrication of Zinc Oxide Nanoparticles to Rescue Mung Bean against Cercospora Leaf Spot Disease. Front. Plant Sci. 2022, 13, 1052984. [Google Scholar] [CrossRef]
- Abdelaziz, A.M.; Salem, S.S.; Khalil, A.M.A.; El-Wakil, D.A.; Fouda, H.M.; Hashem, A.H. Potential of Biosynthesized Zinc Oxide Nanoparticles to Control Fusarium Wilt Disease in Eggplant (Solanum melongena) and Promote Plant Growth. Biometals 2022, 35, 601–616. [Google Scholar] [CrossRef]
- Satti, S.H.; Raja, N.I.; Ikram, M.; Oraby, H.F.; Mashwani, Z.U.R.; Mohamed, A.H.; Singh, A.; Omar, A.A. Plant-Based Titanium Dioxide Nanoparticles Trigger Biochemical and Proteome Modifications in Triticum aestivum L. under Biotic Stress of Puccinia striiformis. Molecules 2022, 27, 4274. [Google Scholar] [CrossRef]
- Alabdallah, N.M.; Irshad, M.A.; Rizwan, M.; Nawaz, R.; Inam, A.; Mohsin, M.; Khurshid, I.; Alharby, H.F.; Bamagoos, A.A.; Ali, S. Synthesis, Characterization and Antifungal Potential of Titanium Dioxide Nanoparticles against Fungal Disease (Ustilago tritici) of Wheat (Triticum aestivum L.). Environ. Res. 2023, 228, 115852. [Google Scholar] [CrossRef] [PubMed]
- Mogazy, A.M.; Mohamed, H.I.; El-mahdy, O.M. Calcium and Iron Nanoparticles: A Positive Modulator of Innate Immune Responses in Strawberry against Botrytis cinerea. Process Biochem. 2022, 115, 128–145. [Google Scholar] [CrossRef]
- Elbasuney, S.; El-Sayyad, G.S.; Abdelaziz, A.M.; Rizk, S.H.; Tolba, M.M.; Attia, M.S. Stable Colloidal Iron Oxide Nanoparticles: A New Green Nanofertilizer and Therapeutic Nutrient for Eggplant Immune Response against Fusarium Wilt Disease. J. Clust. Sci. 2024, 35, 983–997. [Google Scholar] [CrossRef]
- Castillo, P.; Navas-Cortés, J.A.; Landa, B.B.; Jiménez-Díaz, R.M.; Vovlas, N. Plant-Parasitic Nematodes Attacking Chickpea and Their in Planta Interactions with Rhizobia and Phytopathogenic Fungi. Plant Dis. 2008, 92, 840–853. [Google Scholar] [CrossRef]
- Yadav, A.; Yadav, K. Nanoparticle-Based Plant Disease: Tools for Sustainable. In Nanobiotechnology Applications in Plant Protection; Abd-Elsalam, K.A., Prasad, R., Eds.; Springer: Cham, Switzerland, 2018; pp. 29–62. [Google Scholar] [CrossRef]
- Kennedy, M.W.; Harnett, W. (Eds.) Plant-Parasitic Nematodes. In Parasitic Nematodes: Molecular Biology, Biochemistry and Immunology; CABI Publishing: Wallingford, UK, 2001; pp. 139–166. [Google Scholar]
- Oka, Y.; Koltai, H.; Bar-Eyal, M.; Mor, M.; Sharon, E.; Chet, I.; Spiegel, Y. New Strategies for the Control of Plant-Parasitic Nematodes. Pest. Manag. Sci. 2000, 56, 983–988. [Google Scholar] [CrossRef]
- Khan, M.; Khan, A.U.; Rafatullah, M.; Alam, M.; Bogdanchikova, N.; Garibo, D. Search for Effective Approaches to Fight Microorganisms Causing High Losses in Agriculture: Application of P. lilacinum Metabolites and Mycosynthesised Silver Nanoparticles. Biomolecules 2022, 12, 174. [Google Scholar] [CrossRef]
- Ghareeb, R.Y.; Shams El-Din, N.G.E.D.; Maghraby, D.M.E.; Ibrahim, D.S.S.; Abdel-Megeed, A.; Abdelsalam, N.R. Nematicidal Activity of Seaweed-Synthesized Silver Nanoparticles and Extracts against Meloidogyne Incognita on Tomato Plants. Sci. Rep. 2022, 12, 3841. [Google Scholar] [CrossRef]
- El-Ashry, R.M.; Nader, M.M.; Shami, A.; Alduwish, M.A.; Ahmed, A.E.; Alamoud, S.A.; Allohibi, A.; Alqahtani, F.S.; Alghamdi, A.M.; Ahmed, A.I.; et al. Ecofriendly Synthesis and Nematicidal Application of Copper Nanoparticles Fabricated from Bacillus subtilis AM18, against Root-Knot Nematode of Cucumber. Eur. J. Plant Pathol. 2024, 168, 53–81. [Google Scholar] [CrossRef]
- Afzal, A.; Mukhtar, T. Revolutionizing Nematode Management to Achieve Global Food Security Goals—An Overview. Heliyon 2024, 10, e25325. [Google Scholar] [CrossRef]
- Fabiyi, O.; Lateef, A.; Gueguim-Kana, E.B.; Beukes, L.S.; Matyumza, N.; Bello, T.; Olatunji, G. Characterization and Nematicidal Potential of Copper, Iron and Zinc Nanoparticles Synthesized from Tridax procumbens L. Extract on Meloidogyne incognita Infected Cabbage Plants. Eur. J. Plant Pathol. 2024, 168, 683–695. [Google Scholar] [CrossRef]
- Elarabi, N.I.; Abdel-Rahman, A.A.; Abdel-Haleem, H.; Abdel-Hakeem, M. Silver and Zinc Oxide Nanoparticles Disrupt Essential Parasitism, Neuropeptidergic, and Expansion-like Proteins Genes in Meloidogyne incognita. Exp. Parasitol. 2022, 243, 108402. [Google Scholar] [CrossRef]
- Ellegaard-Jensen, L.; Jensen, K.A.; Johansen, A. Nano-Silver Induces Dose-Response Effects on the Nematode Caenorhabditis elegans. Ecotoxicol. Environ. Saf. 2012, 80, 216–223. [Google Scholar] [CrossRef]
- Abdellatif, K.F.; Hamouda, R.A.; El-Ansary, M.S.M. Green Nanoparticles Engineering on Root-Knot Nematode Infecting Eggplants and Their Effect on Plant Dna Modification. Iran. J. Biotechnol. 2016, 14, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Baliyarsingh, B.; Pradhan, C.K. Prospects of Plant-Derived Metallic Nanopesticides against Storage Pests—A Review. J. Agric. Food Res. 2023, 14, 100687. [Google Scholar] [CrossRef]
- Meyer, J.N.; Lord, C.A.; Yang, X.Y.; Turner, E.A.; Badireddy, A.R.; Marinakos, S.M.; Chilkoti, A.; Wiesner, M.R.; Auffan, M. Intracellular Uptake and Associated Toxicity of Silver Nanoparticles in Caenorhabditis elegans. Aquat. Toxicol. 2010, 100, 140–150. [Google Scholar] [CrossRef]
- Lim, D.; Roh, J.Y.; Eom, H.J.; Choi, J.Y.; Hyun, J.; Choi, J. Oxidative Stress-Related PMK-1 P38 MAPK Activation as a Mechanism for Toxicity of Silver Nanoparticles to Reproduction in the Nematode Caenorhabditis elegans. Environ. Toxicol. Chem. 2012, 31, 585–592. [Google Scholar] [CrossRef]
- Abbassy, M.A.; Abdel-Rasoul, M.A.; Nassar, A.M.K.; Soliman, B.S.M. Nematicidal Activity of Silver Nanoparticles of Botanical Products against Root-Knot Nematode, Meloidogyne incognita. Arch. Phytopathol. Plant Prot. 2017, 50, 909–926. [Google Scholar] [CrossRef]
- Hamed, S.M.; Hagag, E.S.; El-Raouf, N.A. Green Production of Silver Nanoparticles, Evaluation of Their Nematicidal Activity against Meloidogyne javanica and Their Impact on Growth of Faba Bean. Beni. Suef. Univ. J. Basic Appl. Sci. 2019, 8, 9. [Google Scholar] [CrossRef]
- Baronia, R.; Kumar, P.; Singh, S.P.; Walia, R.K. Silver Nanoparticles as a Potential Nematicide against Meloidogyne graminicola. J. Nematol. 2020, 52, 1–9. [Google Scholar] [CrossRef]
- Rani, K.; Devi, N.; Banakar, P.; Kharb, P.; Kaushik, P. Nematicidal Potential of Green Silver Nanoparticles Synthesized Using Aqueous Root Extract of Glycyrrhiza glabra. Nanomaterials 2022, 12, 2966. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.S.d.; Furtado, L.L.; Diniz, F.d.A.d.S.; Mendes, B.L.; Araújo, T.R.d.; Silva, L.P.; Santiago, T.R. Eco-Friendly Silver Nanoparticles Synthesized from a Soybean by-Product with Nematicidal Efficacy against Pratylenchus brachyurus. Nanomaterials 2024, 14, 101. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, E.A.; Elsharabasy, S.F.; Abdulsamad, D. Evaluation of in Vitro Nematicidal Efficiency of Copper Nanoparticles against Root-Knot Nematode Meloidogyne incognita. South Asian J. Parasitol. 2019, 2, 13–18. [Google Scholar]
- Akhter, G.; Khan, A.; Ali, S.G.; Khan, T.A.; Siddiqi, K.S.; Khan, H.M. Antibacterial and Nematicidal Properties of Biosynthesized Cu Nanoparticles Using Extract of Holoparasitic Plant. SN Appl. Sci. 2020, 2, 1268. [Google Scholar] [CrossRef]
- Kiss, L.V.; Hrács, K.; Nagy, P.I.; Seres, A. Effects of Zinc Oxide Nanoparticles on Panagrellus redivivus (Nematoda) and Folsomia candida (Collembola) in Various Test Media. Int. J. Environ. Res. 2018, 12, 233–243. [Google Scholar] [CrossRef]
- Ahmad, S.; Ahmad, M.A.; Umar, F.; Munir, I.; Iqbal, N.; Ahmad, N.; Ahmad, G.; Ijaz, M.; Rahman, Z.U.; Shah, S.J.; et al. Green Nano-Synthesis: Salix alba Bark-Derived Zinc Oxide Nanoparticle and Their Nematicidal Efficacy against Root Knot Nematode Meloidogyne incognita. Adv. Life Sci. 2023, 10, 675–681. [Google Scholar] [CrossRef]
- Khan, A.; Raza, A.; Hashem, A.; Avila-Quezada, G.D.; Abd_Allah, E.F.; Ahmad, F.; Ahmad, A. Green Fabrication of Titanium Dioxide Nanoparticles via Syzygium cumini Leaves Extract: Characterizations, Photocatalytic Activity and Nematicidal Evaluation. Green Chem. Lett. Rev. 2024, 17, 2331063. [Google Scholar] [CrossRef]
- Wang, H.; Wick, R.L.; Xing, B. Toxicity of Nanoparticulate and Bulk ZnO, Al2O3 and TiO2 to the Nematode Caenorhabditis elegans. Environ. Pollut. 2009, 157, 1171–1177. [Google Scholar] [CrossRef]
- Warghane, A.; Saini, R.; Shri, M.; Andankar, I.; Ghosh, D.K.; Chopade, B.A. Application of Nanoparticles for Management of Plant Viral Pathogen: Current Status and Future Prospects. Virology 2024, 592, 109998. [Google Scholar] [CrossRef]
- Dutta, P.; Kumari, A.; Mahanta, M.; Biswas, K.K.; Dudkiewicz, A.; Thakuria, D.; Abdelrhim, A.S.; Singh, S.B.; Muthukrishnan, G.; Sabarinathan, K.G.; et al. Advances in Nanotechnology as a Potential Alternative for Plant Viral Disease Management. Front. Microbiol. 2022, 13, 935193. [Google Scholar] [CrossRef]
- Elbeshehy, E.K.F.; Elazzazy, A.M.; Aggelis, G. Silver Nanoparticles Synthesis Mediated by New Isolates of Bacillus Spp., Nanoparticle Characterization and Their Activity against Bean Yellow Mosaic Virus and Human Pathogens. Front. Microbiol. 2015, 6, 453. [Google Scholar] [CrossRef]
- Shafie, R.M.; Salama, A.M.; Farroh, K.Y. Silver Nanoparticles Activity against Tomato Spotted Wilt Virus. Middle East J. Agric. Res. 2018, 7, 1251–1267. [Google Scholar]
- El-Dougdoug, N.K.; Bondok, A.M.; El-Dougdoug, K.A. Evaluation of Silver Nanoparticles as Antiviral Agent against ToMV and PVY in Tomato Plants. Middle East J. Appl. Sci. 2018, 8, 100–111. [Google Scholar]
- Mahfouze, H.A.; El-Dougdoug, N.K.; Mahfouze, S.A. Virucidal Activity of Silver Nanoparticles against Banana Bunchy Top Virus (BBTV) in Banana Plants. Bull. Natl. Res. Cent. 2020, 44, 199. [Google Scholar] [CrossRef]
- Cai, L.; Liu, C.; Fan, G.; Liu, C.; Sun, X. Preventing Viral Disease by ZnONPs through Directly Deactivating TMV and Activating Plant Immunity in: Nicotiana benthamiana. Environ. Sci. Nano 2019, 6, 3653–3669. [Google Scholar] [CrossRef]
- Abdelkhalek, A.; Al-Askar, A.A. Green Synthesized ZnO Nanoparticles Mediated by Mentha spicata Extract Induce Plant Systemic Resistance against Tobacco Mosaic Virus. Appl. Sci. 2020, 10, 5054. [Google Scholar] [CrossRef]
- Derbalaha, A.S.H.; Elsharkawy, M.M. A New Strategy to Control Cucumber Mosaic Virus Using Fabricated NiO-Nanostructures. J. Biotechnol. 2019, 306, 134–141. [Google Scholar] [CrossRef]
- Cai, L.; Cai, L.; Jia, H.; Liu, C.; Wang, D.; Sun, X. Foliar Exposure of Fe3O4 Nanoparticles on Nicotiana benthamiana: Evidence for Nanoparticles Uptake, Plant Growth Promoter and Defense Response Elicitor against Plant Virus. J. Hazard. Mater. 2020, 393, 122415. [Google Scholar] [CrossRef]
- Alkubaisi, N.A.; Aref, N.M.A. Dispersed Gold Nanoparticles Potentially Ruin Gold Barley Yellow Dwarf Virus and Eliminate Virus Infectivity Hazards. Appl. Nanosci. 2017, 7, 31–40. [Google Scholar] [CrossRef]
- Acuña-Fuentes, N.L.; Vargas-Hernandez, M.; Rivero-Montejo, S.D.J.; Rivas-Ramirez, L.K.; Macias-Bobadilla, I.; Palos-Barba, V.; Rivera-Muñoz, E.M.; Guevara-Gonzalez, R.G.; Torres-Pacheco, I. Antiviral Activity of TiO2 NPs against Tobacco Mosaic Virus in Chili Pepper (Capsicum annuum L.). Agriculture 2022, 12, 2101. [Google Scholar] [CrossRef]
- More, P.R.; Pandit, S.; Filippis, A.D.; Franci, G.; Mijakovic, I.; Galdiero, M. Silver Nanoparticles: Bactericidal and Mechanistic Approach against Drug Resistant Pathogens. Microorganisms 2023, 11, 369. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Zhou, S.; Fu, Y.; Wang, Y.; Mi, J.; Lu, T.; Wang, X.; Lü, C. Size-Controllable Preparation and Antibacterial Mechanism of Thermo-Responsive Copolymer-Stabilized Silver Nanoparticles with High Antimicrobial Activity. Mater. Sci. Eng. C 2020, 110, 110735. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Azad, M.B.; Gibson, S.B. Superoxide Is the Major Reactive Oxygen Species Regulating Autophagy. Cell Death Differ. 2009, 16, 1040–1052. [Google Scholar] [CrossRef]
- Alavi, M.; Yarani, R. Nano Micro Biosystems ROS and RNS Modulation: The Main Antimicrobial, Anticancer, Antidiabetic, and Antineurodegenerative Mechanisms of Metal or Metal Oxide Nanoparticles. Nano Micro Biosyst. 2023, 2, 22–30. [Google Scholar] [CrossRef]
- Samrot, A.V.; Ram Singh, S.P.; Deenadhayalan, R.; Rajesh, V.V.; Padmanaban, S.; Radhakrishnan, K. Nanoparticles, a Double-Edged Sword with Oxidant as Well as Antioxidant Properties—A Review. Oxygen 2022, 2, 591–604. [Google Scholar] [CrossRef]
- Arvind Bharani, R.; Karthick Raja Namasivayam, S. Biogenic Silver Nanoparticles Mediated Stress on Developmental Period and Gut Physiology of Major Lepidopteran Pest Spodoptera litura (Fab.) (Lepidoptera: Noctuidae)—An Eco-Friendly Approach of Insect Pest Control. J. Environ. Chem. Eng. 2017, 5, 453–467. [Google Scholar] [CrossRef]
- Leung, Y.H.; Ng, A.M.C.; Xu, X.; Shen, Z.; Gethings, L.A.; Wong, M.T.; Chan, C.M.N.; Guo, M.Y.; Ng, Y.H.; Djurišić, A.B.; et al. Mechanisms of Antibacterial Activity of Mgo: Non-ROS Mediated Toxicity of Mgo Nanoparticles towards Escherichia coli. Small 2014, 10, 1171–1183. [Google Scholar] [CrossRef]
- Tang, S.; Zheng, J. Antibacterial Activity of Silver Nanoparticles: Structural Effects. Adv. Healthc. Mater. 2018, 7, e1701503. [Google Scholar] [CrossRef]
- Lai, M.J.; Huang, Y.W.; Chen, H.C.; Tsao, L.I.; Chang Chien, C.F.; Singh, B.; Liu, B.R. Effect of Size and Concentration of Copper Nanoparticles on the Antimicrobial Activity in Escherichia Coli through Multiple Mechanisms. Nanomaterials 2022, 12, 3715. [Google Scholar] [CrossRef]
- Gallud, A.; Klöditz, K.; Ytterberg, J.; Östberg, N.; Katayama, S.; Skoog, T.; Gogvadze, V.; Chen, Y.Z.; Xue, D.; Moya, S.; et al. Cationic Gold Nanoparticles Elicit Mitochondrial Dysfunction: A Multi-Omics Study. Sci. Rep. 2019, 9, 4366. [Google Scholar] [CrossRef]
- Hussein-Al-Ali, S.H.; El Zowalaty, M.E.; Hussein, M.Z.; Geilich, B.M.; Webster, T.J. Synthesis, Characterization, and Antimicrobial Activity of an Ampicillin-Conjugated Magnetic Nanoantibiotic for Medical Applications. Int. J. Nanomed. 2014, 9, 3801–3814. [Google Scholar] [CrossRef]
- Vodyanoy, V. The Role of Endogenous Metal Nanoparticles in Biological Systems. Biomolecules 2021, 11, 1574. [Google Scholar] [CrossRef]
- Malik, A.; Alshehri, M.A.; Alamery, S.F.; Khan, J.M. Impact of Metal Nanoparticles on the Structure and Function of Metabolic Enzymes. Int. J. Biol. Macromol. 2021, 188, 576–585. [Google Scholar] [CrossRef]
- Saptarshi, S.R.; Duschl, A.; Lopata, A.L. Interaction of Nanoparticles with Proteins: Relation to Bio-Reactivity of the Nanoparticle. J. Nanobiotechnol. 2013, 11, 26. [Google Scholar] [CrossRef]
- Yan, A.; Chen, Z. Impacts of Silver Nanoparticles on Plants: A Focus on the Phytotoxicity and Underlying Mechanism. Int. J. Mol. Sci. 2019, 20, 1003. [Google Scholar] [CrossRef]
- Ihtisham, M.; Noori, A.; Yadav, S.; Sarraf, M.; Kumari, P.; Brestic, M.; Imran, M.; Jiang, F.; Yan, X.; Rastogi, A. Silver Nanoparticle’s Toxicological Effects and Phytoremediation. Nanomaterials 2021, 11, 2164. [Google Scholar] [CrossRef]
- Naz, S.; Gul, A.; Zia, M. Toxicity of Copper Oxide Nanoparticles: A Review Study. IET Nanobiotechnol. 2020, 14, 1–13. [Google Scholar] [CrossRef]
- Kang, M.; Liu, Y.; Weng, Y.; Wang, H.; Bai, X. A Critical Review on the Toxicity Regulation and Ecological Risks of Zinc Oxide Nanoparticles to Plants. Environ. Sci. Nano 2024, 11, 14–35. [Google Scholar] [CrossRef]
- Mustafa, A.; Zulfiqar, U.; Mumtaz, M.Z.; Radziemska, M.; Haider, F.U.; Holatko, J.; Hammershmiedt, T.; Naveed, M.; Ali, H.; Kintl, A.; et al. Nickel (Ni) Phytotoxicity and Detoxification Mechanisms: A Review. Chemosphere 2023, 328, 138574. [Google Scholar] [CrossRef]
- Hou, J.; Wang, L.; Wang, C.; Zhang, S.; Liu, H.; Li, S.; Wang, X. Toxicity and Mechanisms of Action of Titanium Dioxide Nanoparticles in Living Organisms. J. Environ. Sci. 2019, 75, 40–53. [Google Scholar] [CrossRef]
- Thakur, N.; Ghosh, J.; Pandey, S.K.; Pabbathi, A.; Das, J. A Comprehensive Review on Biosynthesis of Magnesium Oxide Nanoparticles, and Their Antimicrobial, Anticancer, Antioxidant Activities as Well as Toxicity Study. Inorg. Chem. Commun. 2022, 146, 110156. [Google Scholar] [CrossRef]
- Sani, A.; Cao, C.; Cui, D. Toxicity of Gold Nanoparticles (AuNPs): A Review. Biochem. Biophys. Rep. 2021, 26, 100991. [Google Scholar] [CrossRef]
- Malhotra, N.; Lee, J.S.; Liman, R.A.D.; Ruallo, J.M.S.; Villaflore, O.B.; Ger, T.R.; Hsiao, C.D. Potential Toxicity of Iron Oxide Magnetic Nanoparticles: A Review. Molecules 2020, 25, 3159. [Google Scholar] [CrossRef] [PubMed]
- Dietz, K.J.; Herth, S. Plant Nanotoxicology. Trends Plant Sci. 2011, 16, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Rajput, V.D.; Singh, A.; Minkina, T.; Rawat, S.; Mandzhieva, S.; Sushkova, S.; Shuvaeva, V.; Nazarenko, O.; Rajput, P.; Komariah; et al. Nano-Enabled Products: Challenges and Opportunities for Sustainable Agriculture. Plants 2021, 10, 2727. [Google Scholar] [CrossRef] [PubMed]
- Basavegowda, N.; Baek, K.-H. Current and Future Perspectives on the Use of Nanofertilizers for Sustainable Agriculture: The Case of Phosphorus Nanofertilizer. 3 Biotech 2021, 11, 357. [Google Scholar] [CrossRef]
- Qian, H.; Peng, X.; Han, X.; Ren, J.; Sun, L.; Fu, Z. Comparison of the Toxicity of Silver Nanoparticles and Silver Ions on the Growth of Terrestrial Plant Model Arabidopsis thaliana. J. Environ. Sci. 2013, 25, 1947–1956. [Google Scholar] [CrossRef]
- Rasheed, A.; Li, H.; Tahir, M.M.; Mahmood, A.; Nawaz, M.; Shah, A.N.; Aslam, M.T.; Negm, S.; Moustafa, M.; Hassan, M.U.; et al. The Role of Nanoparticles in Plant Biochemical, Physiological, and Molecular Responses under Drought Stress: A Review. Front. Plant Sci. 2022, 13, 976179. [Google Scholar] [CrossRef]
- Mazumdar, H.; Ahmed, G.U. Phytotoxicity Effect of Silver Nanoparticles on Oryza sativa. Int. J. Chemtech. Res. 2011, 3, 1494–1500. [Google Scholar]
- Arif, N.; Yadav, V.; Singh, S.; Tripathi, D.K.; Dubey, N.K.; Chauhan, D.K.; Giorgetti, L. Interaction of Copper Oxide Nanoparticles with Plants: Uptake, Accumulation, and Toxicity. In Nanomaterials in Plants, Algae, and Microorganisms; Tripathi, D.K., Ahmad, P., Sharma, S., Chauhan, D.K., Dubey, N.K., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; Volume 1, pp. 297–310. [Google Scholar] [CrossRef]
- Yang, J.; Cao, W.; Rui, Y. Interactions between Nanoparticles and Plants: Phytotoxicity and Defense Mechanisms. J. Plant Interact. 2017, 12, 158–169. [Google Scholar] [CrossRef]
- Sembada, A.A.; Lenggoro, I.W. Transport of Nanoparticles into Plants and Their Detection Methods. Nanomaterials 2024, 14, 131. [Google Scholar] [CrossRef]
- Ali, S.; Mehmood, A.; Khan, N. Uptake, Translocation, and Consequences of Nanomaterials on Plant Growth and Stress Adaptation. J. Nanomater. 2021, 2021. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Saad, A.M.; Soliman, S.M.; Salem, H.M.; Desoky, E.S.M.; Babalghith, A.O.; El-Tahan, A.M.; Ibrahim, O.M.; Ebrahim, A.A.M.; Abd El-Mageed, T.A.; et al. Role of Nanoparticles in Enhancing Crop Tolerance to Abiotic Stress: A Comprehensive Review. Front. Plant Sci. 2022, 13, 946717. [Google Scholar] [CrossRef] [PubMed]
- Parrella, J.A.; Leggette, H.R.; Lu, P.; Wingenbach, G.; Baker, M.; Murano, E. Nanofood Insights: A Survey of U.S. Consumers’ Attitudes toward the Use of Nanotechnology in Food Processing. Appetite 2024, 201, 107613. [Google Scholar] [CrossRef] [PubMed]
- Giacalone, D.; Jaeger, S.R. Consumer Acceptance of Novel Sustainable Food Technologies: A Multi-Country Survey. J. Clean. Prod. 2023, 408, 137119. [Google Scholar] [CrossRef]
- Joubert, I.A.; Geppert, M.; Ess, S.; Nestelbacher, R.; Gadermaier, G.; Duschl, A.; Bathke, A.C.; Himly, M. Public Perception and Knowledge on Nanotechnology: A Study Based on a Citizen Science Approach. NanoImpact 2020, 17, 100201. [Google Scholar] [CrossRef]
- Feng, S.; Zhu, L.; Zhao, X.; Sui, Q.; Sun, X.; Chen, B.; Qu, K.; Xia, B. Ecological Risk Assessment of Metallic Nanoparticles on the Marine Environments: Species Sensitivity Distributions Analysis. Front. Mar. Sci. 2022, 9, 985195. [Google Scholar] [CrossRef]
- Li, G.; Liu, X.; Wang, H.; Liang, S.; Xia, B.; Sun, K.; Li, X.; Dai, Y.; Yue, T.; Zhao, J.; et al. Detection, Distribution and Environmental Risk of Metal-Based Nanoparticles in a Coastal Bay. Water Res. 2023, 242, 120242. [Google Scholar] [CrossRef]
NPs Types | Synthesis Method | Insect | Host Plant/Target | Condition of Experiment | References |
---|---|---|---|---|---|
AgNPs | GS (Peganum harmala L.) | Trogoderma granarium (Khapra beetle) | Stored grains | Petri dish | [51] |
AgNPs | GS (Suaeda maritima) | Spodoptera litura (Tobacco cutworm) | Nicotiana tabaccum | Leaf disk assay | [44] |
AgNPs | CS | Tribolium castaneum (Red flour beetle) | Wheat | Jar | [52] |
AgNPs | GS (Moringa oleifera F.) | Sitophilus oryzae L. (Rice weevil) | Sorghum | Laboratory | [53] |
AgNPs | Commercial | Spodoptera litura (Asian armyworm) Achaea janata (Castor semi looper) | Ricinus communis L. | Laboratory | [46] |
AgNPs | GS (Urtica dioica) | Drosophila melanogaster (Fruit flies) | Common fruits | Laboratory | [54] |
Silica (SiO) | Commercial | Aphis craccivora (Cowpea aphid) Liriomyza trifolii (Serpentine leafminer) Spodoptera littoralis (Cotton leafworm) | Faba bean Soybean | Field | [55] |
ZnONPs | Commercial | Spodoptera frugiperda (Fall armyworm) | Rice | Laboratory | [56] |
TiO2NPs | Commercial | Spodoptera littoralis (Cotton leaf worm) | Cotton, tomatoes, cabbage, squash, etc | Laboratory | [57] |
TiO2NPs | CS | Bombyx mori (Silkworm) | Mulberry | [58] | |
CuONPs | CS | Spodoptera frugiperda (Fall armyworm) | Maize, rice, crabgrass, sorghum, cotton, and vegetable crops | Container | [59] |
CuNPs | GS (Pseudomonas fluorescens) | Tribolium castaneum (Red flour beetle) | Wheat | Laboratory | [60] |
Al2O3NPs | CS | Sitophilus oryzae L. (Rice weevil) | Wheat | Laboratory | [61] |
Fe3O4NPs | CS | Drosophila melanogaster (Fruit fly) | Common fruits | Laboratory | [62] |
NPs Type | Synthesis Method | Size (nm) | Concentration | Plant Disease | Fungal Phytopathogens | Host Plant Species | Application Method | References |
---|---|---|---|---|---|---|---|---|
AgNPs | PS | 5–15 | 10 and 50 ppm | Foot rot | Phytophthora capsica | Piper ningrum L. | In vitro and in vivo | [93] |
AgNPs | GS (Ocimum kilimandscharicum) | - | 75 and 100 ppm | Fusarium wilt Anthracnose | Fusarium oxysporum Colletotrichum gloeosporioides | - | In vitro | [94] |
AgNPs | GS (P. duclauxii) | 3–32 | 150–200 ppm | Leaf spot | Bipolaris sorghicola | Sorghum bicolor | In vitro | [95] |
AgNPs | GS (Zea mays) | 25 | 100 ppm | Blight and rot | Phomopsis vexans | - | In vitro | [69] |
AgNPs | GS (Azadirachta indica) | 22–30 | 50 ppm | Early blight | Alternaria solani | Solanum lycopersicum L. | In vitro and in vivo | [96] |
AgNPs | GS (Avena fatua) | 5–25 | 40 ppm | Fusarium wilt | Fusarium oxysporum | - | In vitro | [97] |
AgNPs | GS (Geranium) | 38.5 | 150 mg L−1 | Fusarium wilt | Fusarium oxysporum | - | In vitro | [98] |
CuNPs | CS | 11–14 | Tomato late blight | Phytophthora infestans | Lycopersicon esculentum | In the vivo | [99] | |
CuNPs | GS (Jasmine) | - | - | Corynespora dendranthema | Dendranthema grandiflora | In vitro | [100] | |
CH@CuONPs | CS | 29.98 | 100 and 250 mg L−1 | Tomato gray mold | Botrytis cinerea | Solanum lycopersicum Mill. | In vitro and in vivo | [101] |
ZnONPs | GS (Trachyspermum ammi) | 15–20 | 1200 ppm | Cercospora leaf spot | Cercospora canesens | Vigna radiata L. | In vivo & in vitro | [102] |
ZnONPs | GS (Penicillium expansum) | 3.50–67.30 | 500 µg mL−1 | Fusarium wilt | Fusarium oxysporum | Solanum melongena | In vivo | [103] |
NiNPs | PS (Plasma thermal) | <100 | 50 and 100 ppm | Fusarium disease | Fusarium solani Fusarium equiseti Fusariumn merismoides Fusarium proliferatum Fusarium fujikuroi | - | In vitro | [26] |
ZnONPs | Commercial | ≤40 | 0.1 mg mL–1 | Alternaria blight Fusarium wilt | Alternaria alternata Fusarium oxysporum | Lens culinaris Medik. | In vivo | [76] |
TiO2NPs | GS (Moringa oleifera) | 10–100 | 40 mg L−1 | Yellow stripe rust | Puccinia striiformis | Triticum aestivum L. | In vivo | [104] |
TiO2NPs | GS (Trianthema portulacastrum) GS (Chenopodium quinoa) | 6–8 | 75 μg mL−1 | Fungus disease | Ustilago tritici | Triticum aestivum L. | [105] | |
MgONPs | GS (Carica papaya) | 100 | 500 µg mL−1 | Soilborne | Phytophthora nicotianae Thielaviopsis basicola | Nicotiana tabacum L. | In vitro and in vivo | [90] |
Fe2O3NPs | GS (thyme) | 48 | 200 | Gray or blue mold | Botrytis cinerea | Fragaria ananassa | In vitro and in vivo | [106] |
Fe2O3NPs | CS | 5 ± 1.0 | 20 µg mL−1 | Fusarium wilt | Fusarium oxysporum | Solanum melongena | In vivo | [107] |
Nanoparticles | Synthesis Method | Size (nm) | Host Plant | Nematode | Condition of Experiment | References |
---|---|---|---|---|---|---|
AgNPs | CS | 140 ± 10 | - | Caenorhabditis elegans | In vitro | [121] |
AgNPs | CS | 20–30 | - | Caenorhabditis elegans | Well plates | [122] |
AgNPs | GS (Conyza dioscoridis) | 30–100 | Solanum melongena L. | Meloidogyne incognita | Greenhouse | [123] |
AgNPs | GS (Nostoc sp.) | 6.4–16 | Faba bean | Meloidogyne javanica | Greenhouse | [124] |
AgNPs | CS | ~20 nm | Oryza sativa | Meloidogyne graminicola | Lab, glass house | [125] |
AgNPs | GS (P. lilacinus) | 50 | Brinjal | Meloidogyne incognita | Petri dish | [112] |
AgNPs | GS (Algae) | <40 | Tomato | Meloidogyne incognita | Petri dish, pots | [113] |
AgNPs | GS (Glycyrrhiza glabra) | 9.6–34.74 | - | Meloidogyne incognita | Tissue culture plate | [126] |
AgNPs | GS (Glycine max) | - | Soybean | Pratylenchus brachyurus | In vitro | [127] |
CuNPs | CS | 100 | - | Meloidogyne Incognita | In vitro | [128] |
CuNPs | GS (O. aegyptiaca) | <50 | - | Meloidogyne incognita | In vitro | [129] |
CuNPs | GS (Bacillus subtilis) | 15–45 | Cucumber | Meloidogyne incognita | Petri dish | [114] |
ZnONPs | Commercial | 15–140 | - | Panagrellus redivivus | In vitro | [130] |
ZnONPs | Commercial | ≤40 | Lens culinaris Medik. | Meloidogyne incognita | Pot | [76] |
ZnONPs | GS (Salix alba) | - | Tomato | Meloidogyne incognita | In vitro | [131] |
TiO2NPs | GS (Syzygium cumini) | 12–30 | Carrot | Meloidogyne incognita | In vitro and in pot | [132] |
ZnO, Al2O3 and TiO2 | Commercial | 20, 60, 50 | - | Caenorhabditis elegans | In vitro | [133] |
NPs Type | Synthesis Method | Size (nm) | Concentration | Plant Disease | Causal Organisms | Host Plant Species | Application Method | References |
---|---|---|---|---|---|---|---|---|
AgNPs | GS (Bacillus spp.) | 77 | 0.1 μg μL−1 | Bean Yellow Mosaic Virus | Bean yellow mosaic virus | Fava bean | In vivo | [136] |
AgNPs | CS | 12.6 ± 5 | 200 ppm | Tomato spotted wilt | Tomato spotted wilt virus | Solanum tuberosum | In vivo | [137] |
AgNPs | Commercial | - | 50 ppm | Tomato mosaic virus Potato virus Y | Tomato mosaic virus Potato virus Y | Lycopersicum esculentum | In vivo | [138] |
AgNPs | Commercial | 15 | 50 ppm | Banana bunchy top virus | Musa sp. | In vivo | [139] | |
ZnONPs | CS | 18 | 100 μg mL−1 | Tobacco mosaic virus | Tobacco mosaic virus | Nicotiana benthamiana | In vivo | [140] |
ZnONPs | GS (Mentha Spicata) | 11–88 | 100 µg mL −1 | Tobacco mosaic virus | Tobacco mosaic virus | Solanum lycopersicum L. | In vivo | [141] |
NiONPs | CS | 15–20 | 150 μg L−1 | Cucumber mosaic virus | Cucumber mosaic virus | Cucumis sativus | In vivo | [142] |
Fe3O4NPs | GS (Syzygium cumini) | 0.19 | 100 μg mL−1 | Tobacco mosaic virus | Tobacco mosaic virus | Nicotiana benthamiana | In vivo | [143] |
AuNPs | CS | 3.151–31.67 | 0.034 mg 100 mL−1 | Gold barley yellow dwarf virus | Barley yellow dwarf virus-PAV (BYDV-PAV) | Hordeum vulgare | In vivo | [144] |
TiO2NPs | CS | 20 | 150 µg mL−1 | Tobacco Mosaic Virus | Tobacco mosaic virus | Capsicum annuum L. | In vivo | [145] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shandila, P.; Mahatmanto, T.; Hsu, J.-L. Metal-Based Nanoparticles as Nanopesticides: Opportunities and Challenges for Sustainable Crop Protection. Processes 2025, 13, 1278. https://doi.org/10.3390/pr13051278
Shandila P, Mahatmanto T, Hsu J-L. Metal-Based Nanoparticles as Nanopesticides: Opportunities and Challenges for Sustainable Crop Protection. Processes. 2025; 13(5):1278. https://doi.org/10.3390/pr13051278
Chicago/Turabian StyleShandila, Puji, Tunjung Mahatmanto, and Jue-Liang Hsu. 2025. "Metal-Based Nanoparticles as Nanopesticides: Opportunities and Challenges for Sustainable Crop Protection" Processes 13, no. 5: 1278. https://doi.org/10.3390/pr13051278
APA StyleShandila, P., Mahatmanto, T., & Hsu, J.-L. (2025). Metal-Based Nanoparticles as Nanopesticides: Opportunities and Challenges for Sustainable Crop Protection. Processes, 13(5), 1278. https://doi.org/10.3390/pr13051278