Extra-Heavy Crude Oil Viscosity Reduction Using and Reusing Magnetic Copper Ferrite Nanospheres
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Copper Ferrite Nanospheres
2.3. Physicochemical Characterization Methods
2.4. Extra-Heavy Crude Oil
2.5. Adsorption/Desorption Tests
2.6. Rheological Measurements
2.6.1. Steady-State Rheology
2.6.2. Dynamic Rheology Measurements
3. Modeling
Solid–Liquid Equilibrium (SLE) Model
4. Results and Discussion
4.1. Characteristics of the CFNS Sample
4.2. Asphaltene Adsorption/Desorption Experiments
4.3. Steady-State Measurements of Heavy Crude Oil
4.3.1. First CFNS Cycle for Viscosity Evaluation
4.3.2. Second CFNS Cycle for Viscosity Evaluation
4.3.3. Comparison with SiO2 Nanoparticles
4.4. Dynamic Oscillometry Test
4.4.1. Linear Viscoelasticity Region
4.4.2. Frequency Sweep Test for Heavy Crude Oil
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hirsch, R.L.; Bezdek, R.; Wendling, R. Peaking of world oil production and its mitigation. AIChE J. 2005, 52, 2–8. [Google Scholar] [CrossRef]
- Williams, B. Heavy hydrocarbons playing key role in peak-oil debate, future energy supply. Oil Gas J. 2003, 101, 20–27. [Google Scholar]
- Bera, A.; Babadagli, T. Status of electromagnetic heating for enhanced heavy oil/bitumen recovery and future prospects: A review. Appl. Energy 2015, 151, 206–226. [Google Scholar] [CrossRef]
- Franco, C.; Flórez, A.; Ochoa, M. Análisis de la cadena de suministros de biocombustibles en Colombia. Rev. Dinámica Sist. 2008, 4, 109–133. [Google Scholar]
- Adams, J. Asphaltene adsorption, a literature review. Energy Fuels 2014, 28, 2831–2856. [Google Scholar] [CrossRef]
- Chavan, S.; Kini, H.; Ghosal, R. Process for sulfur reduction from high viscosity petroleum oils. Int. J. Environ. Sci. Dev. 2012, 3, 228–231. [Google Scholar] [CrossRef]
- Chew, K.J. The future of oil: Unconventional fossil fuels. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014, 372, 20120324. [Google Scholar] [CrossRef]
- Ghanavati, M.; Shojaei, M.-J.; Saadatabadi, A.R. Effects of asphaltene content and temperature on viscosity of Iranian heavy crude oil: Experimental and modeling study. Energy Fuels 2013, 27, 7217–7232. [Google Scholar] [CrossRef]
- Groenzin, H.; Mullins, O.C. Asphaltene molecular size and structure. J. Phys. Chem. A 1999, 103, 11237–11245. [Google Scholar] [CrossRef]
- Hinkle, A.; Shin, E.-J.; Liberatore, M.W.; Herring, A.M.; Batzle, M. Correlating the chemical and physical properties of a set of heavy oils from around the world. Fuel 2008, 87, 3065–3070. [Google Scholar] [CrossRef]
- Khalil, M.; Jan, B.M.; Tong, C.W.; Berawi, M.A. Advanced nanomaterials in oil and gas industry: Design, application and challenges. Appl. Energy 2017, 191, 287–310. [Google Scholar] [CrossRef]
- Meyer, R.F.; Attanasi, E. Heavy Oil and Natural Bitumen : Strategic Petroleum Resources; US Geological Survey: Reston, VA, USA, 2003; Volume 434, pp. 650–657. [Google Scholar]
- Al-Maamari, R.S.; Buckley, J.S. Asphaltene precipitation and alteration of wetting: The potential for wettability changes during oil production. SPE Reserv. Eval. Eng. 2003, 6, 210–214. [Google Scholar] [CrossRef]
- Gharfeh, S.; Yen, A.; Asomaning, S.; Blumer, D. Asphaltene flocculation onset determinations for heavy crude oil and its implications. Pet. Sci. Technol. 2004, 22, 1055–1072. [Google Scholar] [CrossRef]
- Kojima, T.; Tahara, K. Refinement and transportation of petroleum with hydrogen from renewable energy. Energy Convers. Manag. 2001, 42, 1839–1851. [Google Scholar] [CrossRef]
- Oskui, G.; Jumaa, M.; Folad, E.G.; Rashed, A. Systematic approach for prevention and remediation of asphaltene problems during CO2/hydrocarbon injection project. In Proceedings of the Twenty-First International Offshore and Polar Engineering Conference, Maui, Hawaii, USA, 19–24 June 2011; International Society of Offshore and Polar Engineers: Cupertino, CA, USA, 2011. [Google Scholar]
- Alvarez, G.; Poteau, S.; Argillier, J.-F.; Langevin, M.; Salager, J.-L. Heavy oil−water interfacial properties and emulsion stability: Influence of dilution. Energy Fuels 2009, 23, 294–299. [Google Scholar] [CrossRef]
- Gutierrez, J.G. Plan de Inversiones ECOPETROL. 2011, p. 34. Available online: www.infraestructura.org.co (accessed on 6 January 2021).
- Hasan, S.W.; Ghannam, M.T.; Esmail, N. Heavy crude oil viscosity reduction and rheology for pipeline transportation. Fuel 2010, 89, 1095–1100. [Google Scholar] [CrossRef]
- López, E.; Montes, E.; Garavito, A.; Collazos, M.M. La economía petrolera en Colombia (Parte II). Relaciones intersectoriales e importancia en la economía nacional. Borradores Econ. 2013, 748, 1–58. [Google Scholar]
- Mortazavi-Manesh, S.; Shaw, J.M. Thixotropic rheological behavior of maya crude oil. Energy Fuels 2014, 28, 972–979. [Google Scholar] [CrossRef]
- Al-Roomi, Y.; George, R.; Elgibaly, A.; Elkamel, A. Use of a novel surfactant for improving the transportability/transportation of heavy/viscous crude oils. J. Pet. Sci. Eng. 2004, 42, 235–243. [Google Scholar] [CrossRef]
- Bensakhria, A.; Peysson, Y.; Antonini, G. Experimental study of the pipeline lubrication for heavy oil transport. Oil Gas. Sci. Technol. Rev. de l’IFP 2004, 59, 523–533. [Google Scholar] [CrossRef]
- Chang, C.; Nguyen, Q.; Rønningsen, H.P. Isothermal start-up of pipeline transporting waxy crude oil. J. Non-Newton. Fluid Mech. 1999, 87, 127–154. [Google Scholar] [CrossRef]
- Gateau, P.; Henaut, I.; Barré, L.; Argillier, J.F. Heavy oil dilution. Oil Gas. Sci. Technol. Rev. de l’IFP 2004, 59, 503–509. [Google Scholar] [CrossRef]
- Isaac, J.D.; Speed, J.B. Method of Piping Fluids. U.S. Patent 759,374A, 1 May 1904. [Google Scholar]
- Joseph, D.D.; Bai, R.; Chen, K.P.; Renardy, Y.Y. Core-annular flows. Annu. Rev. Fluid Mech. 1997, 29, 65–90. [Google Scholar] [CrossRef] [Green Version]
- Kessick, M.A.; Denis, C.E.S. Pipeline Transportation of Heavy Crude Oil. U.S. Patent 4343323, 12 August 1982. [Google Scholar]
- Khan, M.R. Rheological properties of heavy oils and heavy oil emulsions. Energy Sources 1996, 18, 385–391. [Google Scholar] [CrossRef]
- McKibben, M.J.; Gillies, R.G.; Shook, C.A. A laboratory investigation of horizontal well heavy oil-water flows. Can. J. Chem. Eng. 2000, 78, 743–751. [Google Scholar] [CrossRef]
- Saniere, A.; Hénaut, I.; Argillier, J.F. Pipeline transportation of heavy oils, a strategic, economic and technological challenge. Oil Gas. Sci. Technol. Rev. de l’IFP 2004, 59, 455–466. [Google Scholar] [CrossRef]
- Selim, M.Y.E. Reducing the viscosity of Jojoba Methyl Ester diesel fuel and effects on diesel engine performance and roughness. Energy Convers. Manag. 2009, 50, 1781–1788. [Google Scholar] [CrossRef]
- Castro, J. Perspectivas de la demanda energética global. Petrotecnia 2011, February, 54–70. [Google Scholar]
- Mortazavi-Manesh, S.; Shaw, J.M. Effect of diluents on the rheological properties of maya crude oil. Energy Fuels 2016, 30, 766–772. [Google Scholar] [CrossRef]
- Urquhart, R. Heavy oil transportation—Present and future. J. Can. Pet. Technol. 1986, 25. [Google Scholar] [CrossRef]
- Langevin, D.; Argillier, J.-F. Interfacial behavior of asphaltenes. Adv. Colloid Interface Sci. 2016, 233, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Palou, R.; Mosqueira, M.D.L.; Zapata-Rendón, B.; Mar-Juárez, E.; Bernal-Huicochea, C.; Clavel-López, J.D.L.C.; Aburto, J. Transportation of heavy and extra-heavy crude oil by pipeline: A review. J. Pet. Sci. Eng. 2011, 75, 274–282. [Google Scholar] [CrossRef]
- Briceno, M.I.; Salager, J.-L.; Bracho, C.L. Heavy Hydrocarbon Emulsions Making Use of the State of the Art in Formulation Engineering. In Encyclopedic Handbook of Emulsion Technology; Sjöblom, J., Ed.; Publ. Marcel Dekker: New York, NY, USA, 2001; Volume 20, pp. 455–495. [Google Scholar]
- Anto, R.; Deshmukh, S.; Sanyal, S.; Bhui, U.K. Nanoparticles as flow improver of petroleum crudes: Study on temperature-dependent steady-state and dynamic rheological behavior of crude oils. Fuel 2020, 275, 117873. [Google Scholar] [CrossRef]
- Contreras–Mateus, M.D.; López–López, M.T.; Ariza-León, E.; Chaves-Guerrero, A. Rheological implications of the inclusion of ferrofluids and the presence of uniform magnetic field on heavy and extra-heavy crude oils. Fuel 2021, 285, 119184. [Google Scholar] [CrossRef]
- Ke, H.; Yuan, M.; Xia, S. A review of nanomaterials as viscosity reducer for heavy oil. J. Dispers. Sci. Technol. 2020, 1–12. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, D.; Shi, L.; Wu, H.; Cao, Y.; He, Y.; Xie, T. Properties of nanofluids and their applications in enhanced oil recovery: A comprehensive review. Energy Fuels 2020, 34, 1202–1218. [Google Scholar] [CrossRef]
- Taborda, E.A.; Alvarado, V.; Cortés, F.B. Effect of SiO 2 -based nanofluids in the reduction of naphtha consumption for heavy and extra-heavy oils transport: Economic impacts on the Colombian market. Energy Convers. Manag. 2017, 148, 30–42. [Google Scholar] [CrossRef]
- Taborda, E.A.; Alvarado, V.; Franco, C.A.; Cortés, F.B. Rheological demonstration of alteration in the heavy crude oil fluid structure upon addition of nanoparticles. Fuel 2017, 189, 322–333. [Google Scholar] [CrossRef]
- Taborda, E.A.; Franco, C.A.; Lopera, S.H.; Alvarado, V.; Cortés, F.B. Effect of nanoparticles/nanofluids on the rheology of heavy crude oil and its mobility on porous media at reservoir conditions. Fuel 2016, 184, 222–232. [Google Scholar] [CrossRef]
- Taborda, E.A.; Franco, C.A.; Ruiz, M.A.; Alvarado, V.; Cortés, F.B. Experimental and theoretical study of viscosity reduction in heavy crude oils by addition of nanoparticles. Energy Fuels 2017, 31, 1329–1338. [Google Scholar] [CrossRef]
- Moreno-Castilla, C.; López-Ramón, M.V.; Fontecha-Cámara, M. Ángeles; Álvarez, M.; Mateus, L. Removal of phenolic compounds from water using copper ferrite nanosphere composites as fenton catalysts. Nanomaterials 2019, 9, 901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fontecha-Camara, M.A.; Moreno-Castilla, C.; López-Ramón, M.V.; Álvarez, M.A. Mixed iron oxides as Fenton catalysts for gallic acid removal from aqueous solutions. Appl. Catal. B Environ. 2016, 196, 207–215. [Google Scholar] [CrossRef]
- Yabuki, A.; Tanaka, S. Oxidation behavior of copper nanoparticles at low temperature. Mater. Res. Bull. 2011, 46, 2323–2327. [Google Scholar] [CrossRef]
- Chen, W.; Fan, Z.; Lai, Z. Synthesis of core-shell heterostructured Cu/Cu2O nanowires monitored by in situ XRD as efficient visible-light photocatalysts. J. Mater. Chem. A 2013, 1, 13862–13868. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, S.; Ding, J.; Deng, Z.; Guo, L.; Zhong, Q. Enhanced catalytic ozonation for NOx removal with CuFe2O4 nanoparticles and mechanism analysis. J. Mol. Catal. A Chem. 2016, 424, 153–161. [Google Scholar] [CrossRef]
- Cortés, F.B.; Ruiz, M.A.; Benjumea, P.; Patiño, E.; Franco Ariza, C.A. Kinetic and thermodynamic equilibrium of asphaltenes sorption onto nanoparticles of nickel oxide supported on nanoparticulated alumina. Fuel 2013, 105, 408–414. [Google Scholar]
- Franco, C.A.; Montoya, T.; Nassar, N.N.; Pereira-Almao, P.; Cortés, F.B. Adsorption and subsequent oxidation of colombian asphaltenes onto nickel and/or palladium oxide supported on fumed silica nanoparticles. Energy Fuels 2013, 27, 7336–7347. [Google Scholar] [CrossRef]
- Nassar, N.N.; Hassan, A.; Pereira-Almao, P. Effect of the particle size on asphaltene adsorption and catalytic oxidation onto alumina particles. Energy Fuels 2011, 25, 3961–3965. [Google Scholar] [CrossRef]
- Nassar, N.N. Asphaltene adsorption onto alumina nanoparticles: Kinetics and thermodynamic studies. Energy Fuels 2010, 24, 4116–4122. [Google Scholar] [CrossRef]
- Franco, C.A.; Lozano, M.M.; Acevedo, S.; Nassar, N.N.; Cortés, F.B. Effects of resin I on asphaltene adsorption onto nanoparticles: A novel method for obtaining asphaltenes/resin isotherms. Energy Fuels 2016, 30, 264–272. [Google Scholar] [CrossRef]
- Nassar, N.N.; Franco, C.A.; Montoya, T.; Cortés, F.B.; Hassan, A. Effect of oxide support on Ni–Pd bimetallic nanocatalysts for steam gasification of n-C 7 asphaltenes. Fuel 2015, 156, 110–120. [Google Scholar] [CrossRef]
- Cortés, F.B.; Montoya, T.; Acevedo, S.; Nassar, N.N.; Franco, C.A. Adsorption-desorption of n–C7 asphaltenes over micro- and nanoparticles of silica and its impact on wettability alteration. CTF—Ciencia Tecnología Futuro 2016, 6, 89–106. [Google Scholar] [CrossRef] [Green Version]
- Guzmán, J.D.; Betancur, S.; Carrasco-Marín, F.; Franco, C.A.; Nassar, N.N.; Cortés, F.B. Importance of the adsorption method used for obtaining the nanoparticle dosage for asphaltene-related treatments. Energy Fuels 2015, 30, 2052–2059. [Google Scholar] [CrossRef]
- Chen, D.T.N.; Wen, Q.; Janmey, P.A.; Crocker, J.C.; Yodh, A.G. Rheology of soft materials. Annu. Rev. Condens. Matter Phys. 2010, 1, 301–322. [Google Scholar] [CrossRef] [Green Version]
- Visintin, R.F.G.; Lapasin, R.; Vignati, E.; D’Antona, P.; Lockhart, T.P. Rheological behavior and structural interpretation of waxy crude oil gels. Langmuir 2005, 21, 6240–6249. [Google Scholar] [CrossRef]
- Bazyleva, A.B.; Hasan, A.; Fulem, M.; Becerra, M.; Shaw, J.M. Bitumen and heavy oil rheological properties: Reconciliation with viscosity measurements. J. Chem. Eng. Data 2010, 55, 1389–1397. [Google Scholar] [CrossRef]
- Behzadfar, E.; Hatzikiriakos, S.G. Viscoelastic properties and constitutive modelling of bitumen. Fuel 2013, 108, 391–399. [Google Scholar] [CrossRef]
- Dimitriou, C.J.; McKinley, G.H. A comprehensive constitutive law for waxy crude oil: A thixotropic yield stress fluid. Soft Matter 2014, 10, 6619–6644. [Google Scholar] [CrossRef] [Green Version]
- Ershov, D.; Stuart, M.C.; Van Der Gucht, J. Mechanical properties of reconstituted actin networks at an oil-water interface determined by microrheology. Soft Matter 2012, 8, 5896. [Google Scholar] [CrossRef]
- Montoya, T.; Coral, D.; Franco, C.A.; Nassar, N.N.; Cortés, F.B. A novel solid-liquid equilibrium model for describing the adsorption of associating asphaltene molecules onto solid surfaces based on the “Chemical Theory”. Energy Fuels 2014, 28, 4963–4975. [Google Scholar] [CrossRef]
- Talu, O.; Meunier, F. Adsorption of associating molecules in micropores and application to water on carbon. AIChE J. 1996, 42, 809–819. [Google Scholar] [CrossRef]
- Buckley, S.; Leverett, M. Mechanism of fluid displacement in sands. Trans. AIME 1942, 146, 107–116. [Google Scholar] [CrossRef]
- Herschel, W.H. The Change in viscosity of oils with the temperature. J. Ind. Eng. Chem. 1922, 14, 715–722. [Google Scholar] [CrossRef]
- Preece, D.A.; Montgomery, D.C. Design and analysis of experiments. Int. Stat. Rev. 1978, 46, 120. [Google Scholar] [CrossRef] [Green Version]
- Nassar, N.N.; Betancur, S.; Acevedo, S.; Franco, C.A.; Cortés, F.B. Development of a population balance model to describe the influence of shear and nanoparticles on the aggregation and fragmentation of asphaltene aggregates. Ind. Eng. Chem. Res. 2015, 54, 8201–8211. [Google Scholar] [CrossRef]
- Nik, W.W.; Ani, F.N.; Masjuki, H.; Giap, S.E. Rheology of bio-edible oils according to several rheological models and its potential as hydraulic fluid. Ind. Crop. Prod. 2005, 22, 249–255. [Google Scholar] [CrossRef]
- Sarpkaya, T. Flow of non-Newtonian fluids in a magnetic field. AIChE J. 1961, 7, 324–328. [Google Scholar] [CrossRef]
- Shao, S.; Lo, E.Y. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv. Water Resour. 2003, 26, 787–800. [Google Scholar] [CrossRef]
- Ding, Y.; Zhu, L.; Wang, N.; Tang, H. Sulfate radicals induced degradation of tetrabromobisphenol A with nanoscaled magnetic CuFe2O4 as a heterogeneous catalyst of peroxymonosulfate. Appl. Catal. B Environ. 2013, 129, 153–162. [Google Scholar] [CrossRef]
- Erdoğan, İ.Y.; Güllü, Ö. Optical and structural properties of CuO nanofilm: Its diode application. J. Alloy. Compd. 2010, 492, 378–383. [Google Scholar] [CrossRef]
- Selvan, R.; Augustin, C.; Berchmans, L.; Saraswathi, R. Combustion synthesis of CuFe2O. Mater. Res. Bull. 2003, 38, 41–54. [Google Scholar] [CrossRef]
- Silva, M.; Silva, F.; Sinfrônio, F.S.M.; Paschoal, A.; Silva, E.; Paschoal, C. The effect of cobalt substitution in crystal structure and vibrational modes of CuFe2O4 powders obtained by polymeric precursor method. J. Alloy. Compd. 2014, 584, 573–580. [Google Scholar] [CrossRef]
- Waldron, R.D. Infrared spectra of ferrites. Phys. Rev. 1955, 99, 1727–1735. [Google Scholar] [CrossRef]
- Wu, F.; Li, X.; Wang, Z.; Xu, C.; He, H.; Qi, A.; Yin, X.; Guo, H. Preparation of high-value TiO2 nanowires by leaching of hydrolyzed titania residue from natural ilmenite. Hydrometallurgy 2013, 140, 82–88. [Google Scholar] [CrossRef]
- Xiong, Z.; Cao, J.; Lai, B.; Yang, P. Comparative study on degradation of p-nitrophenol in aqueous solution by mFe/Cu/O3 and mFe0 /O3 processes. J. Ind. Eng. Chem. 2018, 59, 196–207. [Google Scholar] [CrossRef]
- He, Z.; Song, S.; Ying, H.; Xu, L.; Chen, J. p-Aminophenol degradation by ozonation combined with sonolysis: Operating conditions influence and mechanism. Ultrason. Sonochem. 2007, 14, 568–574. [Google Scholar] [CrossRef]
- Sun, M.; Yao, R.; You, Y.; Deng, S.; Gao, W. Degradation of 4-aminophenol by hydrogen peroxide oxidation using enzyme from Serratia marcescens as catalyst. Front. Environ. Sci. Eng. China 2007, 1, 95–98. [Google Scholar] [CrossRef]
- Calemma, V.; Iwanski, P.; Nali, M.; Scotti, R.; Montanari, L. Structural characterization of asphaltenes of different origins. Energy Fuels 1995, 9, 225–230. [Google Scholar] [CrossRef]
- Arias-Madrid, D.; Medina, O.E.; Gallego, J.; Acevedo, S.; Correa-Espinal, A.A.; Cortés, F.B.; Franco, C.A. NiO, Fe2O3, and MoO3 supported over SiO2 nanocatalysts for asphaltene adsorption and catalytic decomposition: Optimization through a simplex-centroid mixture design of experiments. Catalysts 2020, 10, 569. [Google Scholar] [CrossRef]
- Ascanius, B.E.; Garcia, D.M.; Andersen, S.I. Analysis of asphaltenes subfractionated byN-Methyl-2-pyrrolidone. Energy Fuels 2004, 18, 1827–1831. [Google Scholar] [CrossRef]
- Mozaffari, S.; Tchoukov, P.; Atias, J.; Czarnecki, J.; Nazemifard, N. Effect of asphaltene aggregation on rheological properties of diluted athabasca bitumen. Energy Fuels 2015, 29, 5595–5599. [Google Scholar] [CrossRef]
- Tao, R.; Xu, X. Reducing the viscosity of crude oil by pulsed electric or magnetic field. Energy Fuels 2006, 20, 2046–2051. [Google Scholar] [CrossRef]
- Andreatta, G.; Bostrom, N.; Mullins, O.C. High-Q ultrasonic determination of the critical nanoaggregate concentration of asphaltenes and the critical micelle concentration of standard surfactants. Langmuir 2005, 21, 2728–2736. [Google Scholar] [CrossRef] [PubMed]
- Andreatta, G.; Bostrom, N.; Mullins, O.C. Ultrasonic spectroscopy of asphaltene aggregation. In Asphaltenes, Heavy Oils, and Petroleomics; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2007; pp. 231–257. [Google Scholar]
- Yang, X.; Czarnecki, J. Tracing sodium naphthenate in asphaltenes precipitated from athabasca bitumen. Energy Fuels 2005, 19, 2455–2459. [Google Scholar] [CrossRef]
- Einstein, A. Eine neue bestimmung der moleküldimensionen. Ann. Phys. 1906, 324, 289–306. [Google Scholar] [CrossRef] [Green Version]
- Maya, G.A.; Sierra, D.P.M.; Castro, R.H.; Portillo, M.L.T.; Soto, C.P.; Perez, H.H. Enhanced oil recovery (EOR) status—Colombia. In Proceedings of the Latin American & Caribbean Petroleum Engineering Conference, Lima, Peru, 1–3 December 2010. [Google Scholar]
- García, R.H.C.; Toro, G.A.M.; Diaz, R.J.; Perez, H.I.Q.; Guardia, V.M.D.; Vargas, K.M.C.; Bustamante, J.M.P.; Aya, C.L.D.; Romero, R.A.P. Polymer flooding to improve volumetric sweep efficiency in waterflooding processes. CTF—Ciencia Tecnología Futuro 2016, 6, 71–90. [Google Scholar] [CrossRef] [Green Version]
- Giraldo, L.J.; Giraldo, M.A.; Gallo, S.L.; Maya, G.; Zabala, R.D.; Nassar, N.N.; Franco, C.A.; Alvarado, V.; Cortés, F.B. The effects of SiO2 nanoparticles on the thermal stability and rheological behavior of hydrolyzed polyacrylamide based polymeric solutions. J. Pet. Sci. Eng. 2017, 159, 841–852. [Google Scholar] [CrossRef]
- Ghannam, M.T.; Hasan, S.W.; Abu-Jdayil, B.; Esmail, N. Rheological properties of heavy & light crude oil mixtures for improving flowability. J. Pet. Sci. Eng. 2012, 81, 122–128. [Google Scholar] [CrossRef]
- Behura, J.; Batzle, M.; Hofmann, R.; Dorgan, J. Heavy oils: Their shear story. Geophysics 2007, 72, E175–E183. [Google Scholar] [CrossRef] [Green Version]
- Lesueur, D. The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Adv. Colloid Interface Sci. 2009, 145, 42–82. [Google Scholar] [CrossRef]
- Mullins, O.C.; Betancourt, S.S.; Cribbs, M.E.; Dubost, F.X.; Creek, J.L.; Andrews, A.B.; Venkataramanan, L. The colloidal structure of crude oil and the structure of oil reservoirs. Energy Fuels 2007, 21, 2785–2794. [Google Scholar] [CrossRef]
- Wong, G.K.; Yen, T.F. An electron spin resonance probe method for the understanding of petroleum asphaltene macrostructure. J. Pet. Sci. Eng. 2000, 28, 55–64. [Google Scholar] [CrossRef]
- Yen, T.F.; Chilingarian, G.V. Asphaltenes and Asphalts, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2000. [Google Scholar]
Model | Parameters |
---|---|
SLE | (mg/g): amount adsorbed (mg/g): maximum adsorption capacity CE (mg/g) is the equilibrium concentration of n-C7 asphaltenes. K (g/g): the degree of n-C7 asphaltenes self-association over the CFNS surface H (mg/g): and Henry’s law constant related to adsorption affinity |
H-B | : viscosity at a determined shear rate γ (s−1): shear rate : index of flow behavior (Pa sn): consistency index (cP): viscosity at zero stress (cP): viscosity at infinite stress |
Sample | H (mg/g) | K × 10−4 (g/g) | (mg/g) | R2 | RMSE |
---|---|---|---|---|---|
CFNS cycle 1 | 1.24 | 1.9 | 472.5 | 0.96 | 6.84 |
CFNS cycle 2 | 1.27 | 2.1 | 413.2 | 0.97 | 5.79 |
CFNS (desorption) | 1.35 | 3.4 | 407.6 | 0.99 | 4.99 |
Sample | Dosage (mg/L) | H-B Model Parameters | ||||
---|---|---|---|---|---|---|
R2 | RSME% | |||||
EHO | – | 385,700 | 0.925 | 6552 | 0.92 | 9.2 |
CFNS cycle 1 | 300 | 205,010 | 0.965 | 6250 | 0.91 | 9.4 |
500 | 102,555 | 0.975 | 5450 | 0.91 | 9.3 | |
700 | 365,850 | 0.94 | 6415 | 0.95 | 9.9 | |
1000 | 405,240 | 0.921 | 7355 | 0.93 | 9.9 | |
1500 | 412,500 | 0.910 | 7913 | 0.94 | 9.7 | |
CFNS cycle 2 | 500 | 105,000 | 0.975 | 5578 | 0.92 | 9.1 |
SiO2 | 500 | 98,950 | 0.981 | 5365 | 0.92 | 9.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mateus, L.; Taborda, E.A.; Moreno-Castilla, C.; López-Ramón, M.V.; Franco, C.A.; Cortés, F.B. Extra-Heavy Crude Oil Viscosity Reduction Using and Reusing Magnetic Copper Ferrite Nanospheres. Processes 2021, 9, 175. https://doi.org/10.3390/pr9010175
Mateus L, Taborda EA, Moreno-Castilla C, López-Ramón MV, Franco CA, Cortés FB. Extra-Heavy Crude Oil Viscosity Reduction Using and Reusing Magnetic Copper Ferrite Nanospheres. Processes. 2021; 9(1):175. https://doi.org/10.3390/pr9010175
Chicago/Turabian StyleMateus, Lucía, Esteban A. Taborda, Carlos Moreno-Castilla, María Victoria López-Ramón, Camilo A. Franco, and Farid B. Cortés. 2021. "Extra-Heavy Crude Oil Viscosity Reduction Using and Reusing Magnetic Copper Ferrite Nanospheres" Processes 9, no. 1: 175. https://doi.org/10.3390/pr9010175
APA StyleMateus, L., Taborda, E. A., Moreno-Castilla, C., López-Ramón, M. V., Franco, C. A., & Cortés, F. B. (2021). Extra-Heavy Crude Oil Viscosity Reduction Using and Reusing Magnetic Copper Ferrite Nanospheres. Processes, 9(1), 175. https://doi.org/10.3390/pr9010175