The Synthesis of NiY Zeolite via the Acid Hydrolysis of Ethyl Silicate and Its Catalytic Performance in the Degradation of Benzyl Phenyl Ethers
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Crystallization Temperature and Crystallization Time
2.2. Effect of Initial SiO2/Al2O3 Ratio Amount
2.3. Effect of Initial Na2O Amount
2.4. Effect of Initial H2O Amount
2.5. Comparison of Nickel Content in Two Types of Zeolite
2.6. Catalytic Performance
3. Materials and Methods
3.1. Zeolite Synthesis
3.2. Synthesis of NiY Zeolite
3.3. Zeolite Characterization
3.4. Testing of NiY Catalytic Performance
- First, 20 mg of the catalyst sample and 184.2 mg of the benzyl phenyl ether were weighed and added to a 100 mL high-pressure reactor with isopropanol as the solvent (30 mL), and the lid of the high-pressure reactor was tightened.
- After exhausting the air three times with hydrogen, the reactor was filled with a certain pressure of hydrogen. The reactor program was adjusted to a certain temperature, pressure, and reaction time, and the stirring speed inside the reactor was set to stir the reaction.
- After a certain period of reaction, the reactor was taken out and cooled to room temperature. The hydrogen was slowly vented out until it was exhausted, and the reactor was opened to take samples. The solid and liquid products were separated by magnetic separation under an external magnetic field, and the liquid product was analyzed by Gas chromatography (GC) for conversion rate, and the solid was recovered and preserved.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, J.; Wang, Y.; Yang, W.; Tang, Y.; Xie, Z. Recent advances of pore system construction in zeolite-catalyzed chemical industry processes. Chem. Soc. Rev. 2015, 44, 8877–8903. [Google Scholar] [CrossRef] [PubMed]
- Martínez, C.; Corma, A. Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coord. Chem. Rev. 2011, 255, 1558–1580. [Google Scholar] [CrossRef]
- Van der Wal, L.I.; Oenema, J.; Smulders, L.C.J.; Samplonius, N.J.; Nandpersad, K.R.; Zečević, J.; de Jong, K.P. Control and Impact of Metal Loading Heterogeneities at the Nanoscale on the Performance of Pt/Zeolite Y Catalysts for Alkane Hydroconversion. ACS Catal. 2021, 11, 3842–3855. [Google Scholar] [CrossRef] [PubMed]
- West, R.M.; Holm, M.S.; Saravanamurugan, S.; Xiong, J.; Beversdorf, Z.; Taarning, E.; Christensen, C.H. Zeolite H-USY for the production of lactic acid and methyl lactate from C3-sugars. J. Catal. 2010, 269, 122–130. [Google Scholar] [CrossRef]
- Vermeiren, W.; Gilson, J.-P. Impact of Zeolites on the Petroleum and Petrochemical Industry. Top. Catal. 2009, 52, 1131–1161. [Google Scholar] [CrossRef]
- Agostini, G.; Lamberti, C.; Palin, L.; Milanesio, M.; Danilina, N.; Xu, B.; Janousch, M.; van Bokhoven, J.A. In Situ XAS and XRPD Parametric Rietveld Refinement To Understand Dealumination of Y Zeolite Catalyst. J. Am. Chem. Soc. 2009, 132, 667–678. [Google Scholar] [CrossRef]
- Silaghi, M.-C.; Chizallet, C.; Raybaud, P. Challenges on molecular aspects of dealumination and desilication of zeolites. Microporous Mesoporous Mater. 2014, 191, 82–96. [Google Scholar] [CrossRef]
- Sun, B.; Kang, Y.; Shi, Q.; Arowo, M.; Luo, Y.; Chu, G.; Zou, H. Synthesis of ZSM-5 by hydrothermal method with pre-mixing in a stirred-tank reactor. Can. J. Chem. Eng. 2019, 97, 3063–3073. [Google Scholar] [CrossRef]
- Moosavifar, M.; Heidari, S.M.; Fathyunes, L.; Ranjbar, M.; Wang, Y.; Arandiyan, H. Photocatalytic Degradation of Dye Pollutant Over FeTPP/NaY Zeolite Nanocomposite. J. Inorg. Organomet. Polym. 2019, 30, 1621–1628. [Google Scholar] [CrossRef]
- Ghebache, Z.; Hamidouche, F.; Safidine, Z.; Trari, M.; Bellal, B. Synthesis and Electrical Conducting Properties of Poly(aniline) Doped with Zeolite HY Nanocomposites Containing SnO2 for High-Performance Supercapacitor Electrode. J. Inorg. Organomet. Polym. 2019, 29, 1548–1558. [Google Scholar] [CrossRef]
- Tang, T.; Zhang, L.; Dong, H.; Fang, Z.; Fu, W.; Yu, Q.; Tang, T. Organic template-free synthesis of zeolite Y nanoparticle assemblies and their application in the catalysis of the Ritter reaction. RSC Adv. 2017, 7, 7711–7717. [Google Scholar] [CrossRef]
- Ferdov, S.; Tsuchiya, K.; Tsunoji, N.; Sano, T. Comparative study between high-silica faujasites (FAU) from organic-free system and the commercial zeolite Y. Microporous Mesoporous Mater. 2019, 276, 154–159. [Google Scholar] [CrossRef]
- Li, R.; Linares, N.; Sutjianto, J.G.; Chawla, A.; Garcia-Martinez, J.; Rimer, J.D. Ultrasmall Zeolite L Crystals Prepared from Highly Interdispersed Alkali-Silicate Precursors. Angew. Chem. Int. Ed. 2018, 57, 11283–11288. [Google Scholar] [CrossRef] [PubMed]
- Mintova, S.; Gilson, J.-P.; Valtchev, V. Advances in nanosized zeolites. Nanoscale 2013, 5, 6693. [Google Scholar] [CrossRef]
- Wu, Q.; Hong, X.; Zhu, L.; Meng, X.; Han, S.; Zhang, J.; Liu, X.; Jin, C.; Xiao, F.-S. Generalized ionothermal synthesis of silica-based zeolites. Microporous Mesoporous Mater. 2019, 286, 163–168. [Google Scholar] [CrossRef]
- Han, S.; Tang, X.; Wang, L.; Ma, Y.; Chen, W.; Wu, Q.; Zhang, L.; Zhu, Q.; Meng, X.; Zheng, A.; et al. Potassium-directed sustainable synthesis of new high silica small-pore zeolite with KFI structure (ZJM-7) as an efficient catalyst for NH3-SCR reaction. Appl. Catal. B Environ. 2021, 281, 119480. [Google Scholar] [CrossRef]
- Delprato, F.; Delmotte, L.; Guth, J.L.; Huve, L. Synthesis of new silica-rich cubic and hexagonal faujasites using crown-etherbased supramolecules as templates. Zeolites 1990, 10, 546–552. [Google Scholar] [CrossRef]
- Yu, O.; Kim, K.H. Lignin to Materials: A Focused Review on Recent Novel Lignin Applications. Appl. Sci. 2020, 10, 4626. [Google Scholar] [CrossRef]
- Yan, Z.; Chen, Y.; Wu, T.; Deng, Y.; Shen, K.; Fang, G. Research Progress on the Application of Lignin Functional Materials. Appl. Chem. Ind. 2022, 51, 491–495+500. [Google Scholar]
- Mukherjee, A.; Mandal, T.; Ganguly, A.; Chatterjee, P.K. Lignin Degradation in the Production of Bioethanol—A Review. ChemBioEng Rev. 2016, 3, 86–96. [Google Scholar] [CrossRef]
- Yadav, V.K.; Gupta, N.; Kumar, P.; Dashti, M.G.; Tirth, V.; Khan, S.H.; Yadav, K.K.; Islam, S.; Choudhary, N.; Algahtani, A.; et al. Recent Advances in Synthesis and Degradation of Lignin and Lignin Nanoparticles and Their Emerging Applications in Nanotechnology. Materials 2022, 15, 953. [Google Scholar] [CrossRef] [PubMed]
- Ye, K.; Liu, Y.; Wu, S.; Zhuang, J. A review for lignin valorization: Challenges and perspectives in catalytic hydrogenolysis. Ind. Crops Prod. 2021, 172, 114008. [Google Scholar] [CrossRef]
- Torres, L.A.Z.; Woiciechowski, A.L.; de Andrade Tanobe, V.O.; Karp, S.G.; Lorenci, L.C.G.; Faulds, C.; Soccol, C.R. Lignin as a potential source of high-added value compounds: A review. J. Clean. Prod. 2020, 263, 121499. [Google Scholar] [CrossRef]
- Zhu, C.; Cao, J.-P.; Zhao, X.-Y.; Xie, T.; Ren, J.; Wei, X.-Y. Mechanism of Ni-catalyzed selective C O cleavage of lignin model compound benzyl phenyl ether under mild conditions. J. Energy Inst. 2019, 92, 74–81. [Google Scholar] [CrossRef]
- Song, Q.; Wang, F.; Xu, J. Hydrogenolysis of lignosulfonate into phenols over heterogeneous nickel catalysts. Chem. Commun. 2012, 48, 7019. [Google Scholar] [CrossRef]
- Liu, H.; Liu, H.; Hu, J.; Zhong, W.; Hu, Z.; Wang, H. Comprehensive study of alkali lignin pyrolysis catalyzed by composite metal-modified molecular sieves for the preparation of hydrocarbon liquid fuels. J. Anal. Appl. Pyrolysis 2024, 181, 106608. [Google Scholar] [CrossRef]
- Jiang, T.; Zhao, Q.; Chen, K.; Tang, Y.; Yu, L.; Yin, H. Synthesis and characterization of Co (Ni or Cu)-MCM-41 mesoporous molecular sieves with different amount of metal obtained by using microwave irradiation method. Appl. Surf. Sci. 2008, 254, 2575–2580. [Google Scholar] [CrossRef]
- Mendoza, C.; Echavarría, A. A systematic study on the synthesis of nanosized Y zeolite without using organic structure-directing agents: Control of Si/Al ratio. J. Porous Mater. 2022, 29, 907–919. [Google Scholar] [CrossRef]
- Moteki, T.; Okubo, T. From Charge Density Mismatch to a Simplified, More Efficient Seed-Assisted Synthesis of UZM-4. Chem. Mater. 2013, 25, 2603–2609. [Google Scholar] [CrossRef]
- Inayat, A.; Knoke, I.; Spiecker, E.; Schwieger, W. Assemblies of Mesoporous FAU-Type Zeolite Nanosheets. Angew. Chem. Int. Ed. 2012, 51, 1962–1965. [Google Scholar] [CrossRef]
- Valtchev, V.; Tosheva, L. Porous Nanosized Particles: Preparation, Properties, and Applications. Chem. Rev. 2013, 113, 6734–6760. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.L.S.; Monteiro, J.L.F.; Pastore, H.O. Static crystallization of zeolites MCM-22 and MCM-49. Microporous Mesoporous Mater. 1999, 32, 131–145. [Google Scholar] [CrossRef]
- Cheng, M.; Tan, D.; Liu, X.; Han, X.; Bao, X.; Lin, L. Effect of aluminum on the formation of zeolite MCM-22 and kenyaite. Microporous Mesoporous Mater. 2001, 42, 307–316. [Google Scholar] [CrossRef]
- Ma, Y.-K.; Rigolet, S.; Michelin, L.; Paillaud, J.; Mintova, S.; Khoerunnisa, F.; Daou, T.; Ng, E. Facile and fast determination of Si/Al ratio of zeolites using FTIR spectroscopy technique. Microporous Mesoporous Mater. 2021, 311, 110683. [Google Scholar] [CrossRef]
- Jiang, Y.; Huang, J.; Dai, W.; Hunger, M. Solid-state nuclear magnetic resonance investigations of the nature, property, and activity of acid sites on solid catalysts. Solid State Nucl. Magn. Reson. 2011, 39, 116–141. [Google Scholar] [CrossRef]
- Mu, L.; Feng, W.; Zhang, H.; Hu, X.; Cui, Q. Synthesis and catalytic performance of a small crystal NaY zeolite with high SiO2/Al2O3 ratio. RSC Adv. 2019, 9, 20528–20535. [Google Scholar] [CrossRef]
- Meng, B.; Ren, S.; Li, Z.; Nie, S.; Zhang, X.; Song, W.; Guo, Q.; Shen, B. A facile organic-free synthesis of high silica zeolite Y with small crystal in the presence of Co2+. Microporous Mesoporous Mater. 2021, 323, 111248. [Google Scholar] [CrossRef]
- Eapen, M.J.; Reddy, K.S.N.; Shiralkar, V.P. Hydrothermal crystallization of zeolite beta using tetraethylammonium bromide. Zeolites 1994, 14, 295–302. [Google Scholar] [CrossRef]
- Nakhaei Pour, A.; Mohammadi, A. Effects of Synthesis Parameters on Organic Template-Free Preparation of Zeolite Y. J. Inorg. Organomet. Polym. 2021, 31, 2501–2510. [Google Scholar] [CrossRef]
- Wei, Q.; Zhang, P.; Liu, X.; Huang, W.; Fan, X.; Yan, Y.; Zhang, R.; Wang, L.; Zhou, Y. Synthesis of Ni-Modified ZSM-5 Zeolites and Their Catalytic Performance in n-Octane Hydroconversion. Front. Chem. 2020, 8, 586445. [Google Scholar] [CrossRef]
- Richardson, J. X-Ray Diffraction Study of Nickel Oxide Reduction by Hydrogen. Appl. Catal. A Gen. 2003, 246, 137–150. [Google Scholar] [CrossRef]
Samples | Crystallization Temperature, °C | Crystallization Time, Hour | SiO2/Al2O3, Radio | SBET, m2/g [c] | Vmicro, cm3/g [d] | VTot, cm3/g [e] |
---|---|---|---|---|---|---|
NaY-1 | 85 | 32 | 6 [a](2.47) [b] | 494 | 0.18 | 0.22 |
NaY-2 | 85 | 32 | 9(3.89) | 641 | 0.24 | 0.27 |
NaY-3 | 85 | 32 | 10 (4.56) | 743 | 0.27 | 0.31 |
NaY-4 | 85 | 32 | 12 (5.55) | 672 | 0.25 | 0.29 |
NaY-5 | 85 | 32 | 15 (5.73) | 567 | 0.21 | 0.24 |
Silicon Source | Test Element | BET Surface Area, m2/g | Sample Content of the Element, wt(%) |
---|---|---|---|
Colloidal silica | Ni | 662 | 11.0 |
TEOS acid hydrolysis | Ni | 743 | 12.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, B.; Lai, Z.; Li, Y.; Zhou, H.; Tian, Y.; Zhao, Y.; Xia, M. The Synthesis of NiY Zeolite via the Acid Hydrolysis of Ethyl Silicate and Its Catalytic Performance in the Degradation of Benzyl Phenyl Ethers. Inorganics 2025, 13, 89. https://doi.org/10.3390/inorganics13030089
Zhou B, Lai Z, Li Y, Zhou H, Tian Y, Zhao Y, Xia M. The Synthesis of NiY Zeolite via the Acid Hydrolysis of Ethyl Silicate and Its Catalytic Performance in the Degradation of Benzyl Phenyl Ethers. Inorganics. 2025; 13(3):89. https://doi.org/10.3390/inorganics13030089
Chicago/Turabian StyleZhou, Bosen, Zhengbo Lai, Yuanyuan Li, Hualan Zhou, Ye Tian, Yibo Zhao, and Ming Xia. 2025. "The Synthesis of NiY Zeolite via the Acid Hydrolysis of Ethyl Silicate and Its Catalytic Performance in the Degradation of Benzyl Phenyl Ethers" Inorganics 13, no. 3: 89. https://doi.org/10.3390/inorganics13030089
APA StyleZhou, B., Lai, Z., Li, Y., Zhou, H., Tian, Y., Zhao, Y., & Xia, M. (2025). The Synthesis of NiY Zeolite via the Acid Hydrolysis of Ethyl Silicate and Its Catalytic Performance in the Degradation of Benzyl Phenyl Ethers. Inorganics, 13(3), 89. https://doi.org/10.3390/inorganics13030089