Cd(II)-Based Coordination Polymers and Supramolecular Complexes Containing Dianiline Chromophores: Synthesis, Crystal Structures, and Photoluminescence Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. General Process
2.2. IR Characterization
2.3. X-Ray Study
2.4. Photoluminescence Properties
3. Materials and Methods
3.1. Generals
3.2. Syntheses
3.2.1. {[Cd(H2O)(OH)(ddpm)2](BF4)}n, 1
3.2.2. {[Cd(NO3)2(ddpm)2]·(H2O)}n, 2
3.2.3. [Cd(2,2′-bpy)2(ddpm)2](ddpm)(NO3)2, 3
3.2.4. {[Cd(phen)2(ddpe)](ClO4)2}n, 4
3.2.5. [Cd(phen)3](ClO4)(ddpe)0.5(CH3CN)0.5, 5
3.3. Single-Crystal X-Ray Diffraction Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burrows, A.D.; Chan, C.-W.; Chowdhry, M.M.; McGrady, J.E.; Mingos, D.M.P. Multidimensional Crystal Engineering of Bifunctional Metal Complexes Containing Complementary Triple Hydrogen Bonds. Chem. Soc. Rev. 1995, 24, 329–339. [Google Scholar] [CrossRef]
- MacDonald, J.C.; Dorrestein, P.C.; Pilley, M.M.; Foote, M.M.; Lundburg, J.L.; Henning, R.W.; Schultz, A.J.; Manson, J.L. Design of Layered Crystalline Materials Using Coordination Chemistry and Hydrogen Bonds. J. Am. Chem. Soc. 2000, 122, 11692–11702. [Google Scholar] [CrossRef]
- Beatty, A.M. Open-framework coordination complexes from hydrogen-bonded networks: Toward host/guest complexes. Coord. Chem. Rev. 2003, 246, 131–143. [Google Scholar] [CrossRef]
- Pickering, A.L.; Long, D.L.; Cronin, L. Coordination Networks through the Dimensions: From Discrete Clusters to 1D, 2D, and 3D Silver(I) Coordination Polymers with Rigid Aliphatic Amino Ligands. Inorg. Chem. 2004, 43, 4953–4961. [Google Scholar] [CrossRef]
- Ðaković, M.; Borovina, M.; Pisačić, M.; Aakeröy, C.B.; Soldin, Ž.; Kukovec, B.-M.; Kodrin, I. Mechanically Responsive Crystalline Coordination Polymers with Controllable Elasticity. Angew. Chem. Int. Ed. 2018, 57, 14801–14805. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, B.; Michalchuk, A.A.L.; Silbernagl, D.; Rautenberg, M.; Schmid, T.; Feiler, T.; Reimann, K.; Ghalgaoui, A.; Sturm, H.; Paulus, B.; et al. A Mechanistic Perspective on Plastically Flexible Coordination Polymers. Angew. Chem. Int. Ed. 2020, 59, 5557–5561. [Google Scholar] [CrossRef]
- Yin, M.-R.; Yan, Q.-Q.; Li, B.; Yong, G.-P. 1D ladder and 2D bilayer coordination polymers constructed from a new T-shaped ligand: Luminescence, magnetic and CO2 gas adsorption properties. Cryst. Eng. Comm. 2021, 23, 3196–3203. [Google Scholar] [CrossRef]
- Sun, N.; Yu, H.; Yu, X.; Jiang, Q.; Wang, Z.; Ding, F.; Potapov, A.S.; Sun, Y. Zinc-based 1D coordination polymer for selective luminescent detection of nitrofuran antibiotics at part-per-billion level. Polyhedron 2024, 259, 117065. [Google Scholar] [CrossRef]
- Dong, X.; Li, Y.; Li, D.; Liao, D.; Qin, T.; Prakash, O.; Kumar, A.; Liu, J. A new 3D 8-connected Cd(ii) MOF as a potent photocatalyst for oxytetracycline antibiotic degradation. Cryst. Eng. Comm. 2022, 24, 6933–6943. [Google Scholar] [CrossRef]
- Liu, C.-Y.; Chen, X.-R.; Chen, H.-X.; Niu, Z.; Hirao, H.; Braunstein, P.; Lang, J.-P. Ultrafast Luminescent Light-Up Guest Detection Based on the Lock of the Host Molecular Vibration. J. Am. Chem. Soc. 2020, 142, 6690–6697. [Google Scholar] [CrossRef]
- Chisca, D.; Croitor, L.; Coropceanu, E.B.; Petuhov, O.; Volodina, G.F.; Baca, S.G.; Krämer, K.; Hauser, J.; Decurtins, S.; Liu, S.-X.; et al. Six Flexible and Rigid Co(II) Coordination Networks with Dicarboxylate and Nicotinamide-Like Ligands: Impact of Noncovalent Interactions in Retention of Dimethylformamide Solvent. Cryst. Growth Des. 2016, 16, 7011–7024. [Google Scholar] [CrossRef]
- Shao, C.; Chang, H.; Wang, M.; Xu, F.; Yang, J. High-Strength, Tough, and Self-Healing Nanocomposite Physical Hydrogels Based on the Synergistic Effects of Dynamic Hydrogen Bond and Dual Coordination Bonds. ACS Appl. Mater. Interfaces 2017, 9, 28305–28318. [Google Scholar] [CrossRef]
- Wu, X.; Wang, J.; Huang, J.; Yang, S. Robust, Stretchable, and Self-Healable Supramolecular Elastomers Synergistically Cross-Linked by Hydrogen Bonds and Coordination Bonds. ACS Appl. Mater. Interfaces 2019, 11, 7387–7396. [Google Scholar] [CrossRef]
- Li, B.; Cao, P.-F.; Saito, T.; Sokolov, A.P. Intrinsically Self-Healing Polymers: From Mechanistic Insight to Current Challenges. Chem. Rev. 2023, 123, 701–735. [Google Scholar] [CrossRef]
- Carlucci, L.; Ciani, G.; Proserpio, D.H.; Porta, F. New metal–organic frameworks and supramolecular arrays assembled with the bent ditopic ligand 4,4-diaminodiphenylmethane. Cryst. Eng. Comm. 2006, 8, 696–706. [Google Scholar] [CrossRef]
- Yu, W.-J.; Li, X.-M.; Zhang, S.-S. Synthesis and characterization of polymeric Ni(II) complexes of 4-(4-aminobenzyl)benzenamine (abba) and 4-(4-aminophenylthio)benzenamine (aptba) with thiocyanate. J. Coord. Chem. 2007, 60, 2361. [Google Scholar] [CrossRef]
- Luo, J.; Hong, M.; Wang, R.; Cao, R.; Shi, Q.; Weng, J. Self-Assembly of Five Cadmium(II) Coordination Polymers from 4,4′-Diaminodiphenylmethane. Eur. J. Inorg. Chem. 2003, 9, 1778–1784. [Google Scholar] [CrossRef]
- Liu, L.; Huang, S.-P.; Yang, G.-D.; Zhang, H.; Wang, X.-L.; Fu, Z.-Y.; Dai, J.-C. Zn[Htma][ddm]: An Interesting Three-Dimensional Chiral Nonlinear Optical-Active Zinc-Trimesate Framework. Cryst. Growth Des. 2010, 10, 930–936. [Google Scholar] [CrossRef]
- Chisca, D.; Croitor, L.; Melnic, E.; Petuhov, O.; Kulikova, O.; Fonari, M.S. Six transition metal–organic materials with the ditopic 4,4’-diaminodiphenylmethane ligand: Synthesis, structure characterization and luminescent properties. Polyhedron 2020, 192, 114844. [Google Scholar] [CrossRef]
- Craciun, N.; Chisca, D.; Melnic, E.; Fonari, M.S. Unprecedented Coordination Compounds with 4,4′-Diaminodiphenylethane as a Supramolecular Agent and Ditopic Ligand: Synthesis, Crystal Structures and Hirshfeld Surface Analysis. Crystals 2023, 13, 289. [Google Scholar] [CrossRef]
- Craciun, N.; Melnic, E.; Kulikova, O.V.; Siminel, A.V.; Chisca, D.; Fonari, M.S. Interplay of bipyridine and 4,4′-diaminodiphenylmethane ligands in crystal design of cadmium-based coordination polymers: Structures and unusual photoluminescence quenching. Polyhedron 2024, 251, 116850. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, M.; Lu, H.; Ma, Z.; Wang, Z.; Yang, J. Three-arm star-shaped aniline derivatives: Tunable photoluminescence, aggregation-induced emission and reversible acid-base vapor fluorescence response. J. Photochem. Photobiol. A Chem. 2022, 432, 114098. [Google Scholar] [CrossRef]
- Jhang, W.R.; Lai, H.Y.; Lin, Y.-C.; Lee, C.; Lee, S.-H.; Lee, Y.-Y.; Chi-Kung Ni, C.-K.; Tsen, C.-M. Triplet vs πσ∗ state mediated N–H dissociation of aniline. J. Chem. Phys. 2019, 151, 141101. [Google Scholar] [CrossRef]
- Knowles, K.E.; Tice, D.B.; McArthur, E.A.; Solomon, G.C.; Weiss, E.A. Chemical Control of the Photoluminescence of CdSe Quantum Dot-Organic Complexes with a Series of Para-Substituted Aniline Ligands. J. Am. Chem. Soc. 2010, 132, 1041–1050. [Google Scholar] [CrossRef] [PubMed]
- Kwon, W.; Do, S.; Kim, J.H.; Jeong, M.S.; Rhee, S.-W. Control of Photoluminescence of Carbon Nanodots via Surface Functionalization using Para-substituted Anilines. Sci. Rep. 2015, 5, 12604. [Google Scholar] [CrossRef]
- Ghosh, T.; Chatterjee, S.; Prasad, E. Photoinduced Electron Transfer from Various Aniline Derivatives to Graphene Quantum Dots. J. Phys. Chem. A 2015, 119, 11783–11790. [Google Scholar] [CrossRef] [PubMed]
- Melnic, E.; Coropceanu, E.B.; Forni, A.; Cariati, E.; Kulikova, O.V.; Siminel, A.V.; Kravtsov, V.C.; Fonari, M. Discrete Complexes and One-Dimensional Coordination Polymers with [Cu(II)(2,2′-bpy)]2+ and [Cu(II)(phen)]2+ Corner Fragments: Insight into Supramolecular Structure and Optical Properties. Cryst. Growth Des. 2016, 16, 6275–6285. [Google Scholar] [CrossRef]
- Melnic, E.; Coropceanu, E.B.; Kulikova, O.V.; Siminel, A.V.; Anderson, D.; Rivera-Jacquez, H.J.; Masunov, A.E.; Fonari, M.S.; Kravtsov, V.C. Robust Packing Patterns and Luminescence Quenching in Mononuclear [Cu(II)(phen)2] Sulfates. J. Phys. Chem. C 2014, 118, 30087–30100. [Google Scholar] [CrossRef]
- Accorsi, G.; Listorti, A.; Yoosaf, K.; Armaroli, N. 1,10-Phenanthrolines: Versatile building blocks for luminescent molecules, materials and metal complexes. Chem. Soc. Rev. 2009, 38, 1690–1700. [Google Scholar] [CrossRef]
- David, A.; Thornton, D.A. Metal Complexes of Aniline: Infrared and Raman Spectra. J. Coord. Chem. 1991, 24, 261–289. [Google Scholar] [CrossRef]
- Yamada, T.; Mizuno, M. Infrared and Terahertz Spectroscopic Investigation of Imidazolium, Pyridinium, and Tetraalkylammonium Tetrafluoroborate Ionic Liquids. ACS Omega 2022, 7, 29804–29812. [Google Scholar] [CrossRef] [PubMed]
- Gatehouse, B.M.; Livingstone, S.E.; Nyholm, R.S. 847. Infrared spectra of some nitrato-co-ordination complexes. J. Chem. Soc. 1957, 4222–4225. [Google Scholar] [CrossRef]
- Fogaça, L.A.; Bereczki, L.; Petruševski, V.M.; Barta-Holló, B.; Franguelli, F.P.; Mohai, M.; Béres, K.A.; Sajó, I.E.; Szilágyi, I.M.; Kotai, L. A Quasi-Intramolecular Solid-Phase Redox Reaction of Ammonia Ligands and Perchlorate Anion in Diamminesilver(I) Perchlorate. Inorganics 2021, 9, 38. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Cryst. B 2016, 72, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Braga, D.; Grepioni, F.; Andre, V.; Duarte, M.T. Drug-containing coordination and hydrogen bonding networks obtained mechanochemically. Cryst. Eng. Comm. 2009, 11, 2618–2621. [Google Scholar] [CrossRef]
- Barbieri, A.; Accorsi, G.; Armaroli, N. Luminescent complexes beyond the platinum group: The d10 avenue. Chem. Commun. 2008, 2185–2193. [Google Scholar] [CrossRef]
- Pal, T.K.; Mallik, G.K.; Laha, S.; Chatterjee, K.; Ganguly, T.; Banerjee, S.B. Electronic emission and absorption spectra and the effect of hydrogen bonding on the ground and excited electronic states of some anilines. Spectrochim. Acta. Part. A Mol. Spectroscopy 1987, 43A, 853–859. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Cryst. 2008, A64, 112–122. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar] [CrossRef]
- Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; Streek, J.; Wood, P.A. Mercury CSD 2.0—New features for the visualization and investigation of crystal structures. J. Appl. Cryst. 2008, 41, 466–470. [Google Scholar] [CrossRef]
Compound | 1 | 2 | 3 | 4 | 5 |
CCDC number | 2423294 | 2423295 | 2332080 | 2423296 | 2423297 |
Empirical formula | C26H31BCdF4N4O2 | C26H30CdN6O7 | C59H58CdN12O6 | C38H32CdCl2N6O8 | C44H33.50CdCl2N7.50O8 |
FW (g mol−1) | 630.76 | 650.96 | 1143.57 | 884.01 | 978.58 |
Crystal system | monoclinic | orthorhombic | triclinic | triclinic | triclinic |
Space group | C2/c | Pnma | P-1 | P-1 | P-1 |
a/Å | 23.5888(8) | 19.5161(5) | 12.2860(7) | 10.9317(5) | 13.0433(9) |
b/Å | 5.9097(2) | 21.6880(7) | 13.7458(7) | 11.1640(5) | 13.0998(9) |
c/Å | 18.6485(8) | 6.3941(2) | 19.1891(10) | 16.4121(7) | 13.5835(9) |
α/deg | 90 | 90 | 105.155(5) | 78.883(4) | 89.028(5) |
β/deg | 93.629(3) | 90 | 91.482(4) | 77.982(4) | 75.710(6) |
γ/deg | 90 | 90 | 115.670(5) | 79.885(4) | 74.084(6) |
V/Å3 | 2594.44(17) | 2706.40(14) | 2783.0(3) | 1903.05(14) | 2159.7(3) |
Z | 4 | 4 | 2 | 2 | 2 |
Dcalcd g/cm3 | 1.615 | 1.598 | 1.365 | 1.543 | 1.505 |
µ/mm−1 | 0.903 | 0.864 | 0.455 | 0.775 | 0.692 |
F(000) | 1280 | 1328 | 1184 | 896 | 992 |
Reflections collected | 4618 | 6470 | 18163 | 12489 | 13666 |
Independent reflections | 2404 [R(int) = 0.0177] | 2586 [R(int) = 0.0247] | 10334 [R(int) = 0.0353] | 7067 [R(int) = 0.0296] | 7647 [R(int) = 0.0475] |
Data/restraints/parameters | 2404/79/227 | 2586/11/230 | 10334/37/767 | 7067/103/556 | 7647/127/628 |
GOF | 1.070 | 1.141 | 0.988 | 1.024 | 0.952 |
R1, wR2 (I > 2σ(I)) | 0.0347, 0.0864 | 0.0355, 0.0718 | 0.0522, 0.0834 | 0.0435, 0.0936 | 0.0762, 0.1718 |
R1, wR2 (all data) | 0.0467, 0.0960 | 0.0424, 0.0745 | 0.0927, 0.0975 | 0.0615, 0.1032 | 0.1548, 0.2117 |
Largest diff. peak and hole | 0.549 and −0.474 | 0.559 and −0.485 | 0.370 and −0.315 | 0.387 and −0.384 | 0.556 and −0.773 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Craciun, N.; Melnic, E.; Siminel, A.V.; Costriucova, N.V.; Chisca, D.; Fonari, M.S. Cd(II)-Based Coordination Polymers and Supramolecular Complexes Containing Dianiline Chromophores: Synthesis, Crystal Structures, and Photoluminescence Properties. Inorganics 2025, 13, 90. https://doi.org/10.3390/inorganics13030090
Craciun N, Melnic E, Siminel AV, Costriucova NV, Chisca D, Fonari MS. Cd(II)-Based Coordination Polymers and Supramolecular Complexes Containing Dianiline Chromophores: Synthesis, Crystal Structures, and Photoluminescence Properties. Inorganics. 2025; 13(3):90. https://doi.org/10.3390/inorganics13030090
Chicago/Turabian StyleCraciun, Nicoleta, Elena Melnic, Anatolii V. Siminel, Natalia V. Costriucova, Diana Chisca, and Marina S. Fonari. 2025. "Cd(II)-Based Coordination Polymers and Supramolecular Complexes Containing Dianiline Chromophores: Synthesis, Crystal Structures, and Photoluminescence Properties" Inorganics 13, no. 3: 90. https://doi.org/10.3390/inorganics13030090
APA StyleCraciun, N., Melnic, E., Siminel, A. V., Costriucova, N. V., Chisca, D., & Fonari, M. S. (2025). Cd(II)-Based Coordination Polymers and Supramolecular Complexes Containing Dianiline Chromophores: Synthesis, Crystal Structures, and Photoluminescence Properties. Inorganics, 13(3), 90. https://doi.org/10.3390/inorganics13030090