Nutritional and Healthy Value of Chemical Constituents Obtained from Patagonian Squid (Doryteuthis gahi) By-Products Captured at Different Seasons
Abstract
:1. Introduction
2. Materials and Methods
2.1. Starting Squid Material and Sampling Procedure
2.2. Proximate Analysis
2.3. Lipid Class Analysis
2.4. Analysis of the Fatty Acid Composition
2.5. Determination of Macroelements and Trace Elements
2.6. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition
3.2. Lipid Class Content
3.3. Fatty Acid Composition
3.4. Content of Macroelements and Trace Elements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blanco, M.; Sotelo, C.G.; Chapela, M.J.; Pérez-Martín, R. Towards sustainable and efficient use of fishery resources: Present and future trends. Trends Food Sci. Technol. 2007, 18, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Tilami, S.K.; Sampels, S. Nutritional Value of Fish: Lipids, Proteins, Vitamins, and Minerals. Rev. Fish. Sci. 2018, 26, 242–253. [Google Scholar]
- Minihane, A.; Armah, C.; Miles, E.; Madden, J.; Clark, A.; Caslake, M.; Calder, P. Consumption of fish oil providing amounts of eicosapentaenoic acid and docosahexaenoic acid that can be obtained from the diet reduces blood pressure in adults with systolic hypertension: A retrospective analysis. J. Nutr. 2016, 146, 516–523. [Google Scholar] [CrossRef]
- Schunck, W.; Konkel, A.; Fischer, R.; Weylandt, K. Therapeutic potential of omega-3 fatty acid-derived epoxy eicosanoids in cardiovascular and inflammatory diseases. Pharmacol. Ther. 2018, 183, 177–204. [Google Scholar] [CrossRef]
- Piclet, G. Le poisson aliment. Composition-Intérêt nutritionnel. Cah. Nutr. Diét. 1987, XXII, 317–335. [Google Scholar]
- Hayashi, K. Composition and distribution of lipids in different tissues of the arrow squid Loligo bleekeri. Fish. Sci. 1996, 62, 84–87. [Google Scholar] [CrossRef] [Green Version]
- Testi, S.; Bonaldo, A.; Gatta, P.; Badiani, A. Nutritional traits of dorsal and ventral fillets from three farmed fish species. Food Chem. 2006, 98, 104–111. [Google Scholar] [CrossRef]
- Saito, H.; Ishihara, K.; Murase, T. The fatty acid composition in tuna (bonito, Euthynnus pelamis) caught at three different localities from tropics to temperate. J. Sci. Food Agric. 1997, 73, 53–59. [Google Scholar] [CrossRef]
- Bandarra, N.; Batista, I.; Nunes, M.L.; Empis, J. Seasonal variations in the chemical composition of horse mackerel (Trachurus trachurus). Eur. Food Res. Technol. 2001, 212, 535–539. [Google Scholar] [CrossRef]
- FAO. El Estado Mundial de la Pesca y la Acuicultura; Organización de las Naciones Unidas para la Alimentación y la Agricultura: Rome, Italy, 2018; pp. 1–110. [Google Scholar]
- Ezquerra-Brauer, J.M.; Aubourg, S.P. Recent trends for the employment of jumbo squid (Dosidicus gigas) by-products as a source of bioactive compounds with nutritional, functional and preservative applications: A review. Int. J. Food Sci. Technol. 2019, 54, 987–998. [Google Scholar] [CrossRef] [Green Version]
- Shahidi, F. Maximising the Value of Marine By-Products; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Arvanitoyannis, I.S.; Kassaveti, A. Fish industry waste: Treatments, environmental impacts, current and potential uses. Int. J. Food Sci. Technol. 2008, 43, 726–745. [Google Scholar] [CrossRef]
- Linder, M.; Fanni, J.; Parmentier, M. Proteolytic extraction of salmon oil and PUFA concentration by lipases. Mar. Biotechnol. 2005, 15, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Atef, M.; Ojagh, M. Health benefits and food applications of bioactive compounds from fish byproducts: A review. J. Funct. Foods 2017, 35, 673–681. [Google Scholar] [CrossRef]
- Ferraro, V.; Cruz, I.B.; Jorge, R.F.; Malcata, F.X.; Pintado, M.E.; Castro, P.M.L. Valorisation of natural extracts from marine source focused on marine by-products: A review. Food Res. Int. 2010, 43, 2221–2223. [Google Scholar] [CrossRef]
- Rustad, T.; Storro, I.; Slizyte, R. Possibilities for the utilisation of marine by-products. Int. J. Food Sci. Technol. 2011, 46, 2001–2014. [Google Scholar] [CrossRef]
- Torrinha, A.; Gomes, F.; Oliveira, M.; Cruz, R.; Mendes, E.; Delerue-Matis, C.; Casal, S.; Morais, S. Commercial squids: Characterization, assessment of potential health benefits/risks and discrimination based on mineral, lipid and vitamin E concentrations. Food Chem. Toxicol. 2014, 67, 44–56. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Benjakul, S.; Kishimura, H. Characteristics and functional properties of ovary from squid Loligo formosana. J. Aquat. Food Prod. Technol. 2017, 26, 1083–1092. [Google Scholar] [CrossRef]
- Food and Agricultural Organisation of the United Nations (FAO). Species Fact Sheets. Loligo gahi (Orbigny, 1835). Fishery Division. 2021. Available online: www.fao.org/fishery/species/2713/en (accessed on 9 September 2021).
- García, S.; Domingues, P.; Navarro, J.C.; Hachero, I.; Garrido, D.; Rosas, C. Growth, partial energy balance, mantle and digestive gland lipid composition of Octopus vulgaris (Cuvier, 1797) fed with two artificial diets. Aquac. Nutr. 2011, 17, e174–e187. [Google Scholar] [CrossRef] [Green Version]
- Sadowska, M.; Sikorski, Z.E. Collagen in the tissues of squid Illex argentinus and Loligo patagonica—Contents and solubility. J. Food Biochem. 1987, 11, 109–120. [Google Scholar] [CrossRef]
- Falandysz, J. Trace metal levels in the raw and tinned squid Loligo patagonica. Food Addit. Contam. 1989, 6, 483–488. [Google Scholar] [CrossRef]
- Gomes, F.; Oliveira, M.; Ramalhosa, M.J.; Delerue-Matos, C.; Morais, S. Polycyclic aromatic hydrocarbons in commercial squids from different geographical origins: Levels and risks for human consumption. Food Chem. Toxicol. 2013, 59, 46–54. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods for Analysis of the Association of Analytical Chemistry, 15th ed.; Association of Official Chemists, Inc.: Arlington, VA, USA, 1990; pp. 931–937. [Google Scholar]
- Bligh, E.; Dyer, W. A rapid method of total extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [Green Version]
- Raheja, R.; Kaur, C.; Singh, A.; Bhatia, A. New colorimetric method for the quantitative determination of phospholipids without acid digestion. J. Lipid Res. 1973, 14, 695–697. [Google Scholar] [CrossRef]
- Huang, T.; Chen, C.; Wefler, V.; Raftery, A. A stable reagent for the Liebermann-Buchardt reaction. Anal. Chem. 1961, 33, 1405–1407. [Google Scholar] [CrossRef]
- Álvarez, V.; Medina, I.; Prego, R.; Aubourg, S.P. Lipid and mineral distribution in different zones of farmed and wild blackspot seabream (Pagellus bogaraveo). Eur. J. Lipid Sci. Technol. 2009, 111, 957–966. [Google Scholar] [CrossRef]
- Vioque, E.; Holman, R. Quantitative estimation of esters by thin-layer chromatography. J. Am. Oil Chem. Soc. 1962, 39, 63–66. [Google Scholar] [CrossRef]
- Lowry, R.; Tinsley, I. Rapid colorimetric determination of free fatty acids. J. Am. Oil Chem. Soc. 1976, 53, 470–472. [Google Scholar] [CrossRef]
- Cabrini, L.; Landi, L.; Stefanelli, C.; Barzanti, V.; Sechi, A. Extraction of lipid and lipophilic antioxidants from fish tissues: A comparison among different methods. Comp. Biochem. Physiol. Biochem. Mol. Biol. 1992, 101, 383–386. [Google Scholar] [CrossRef]
- Barbosa, R.G.; Trigo, M.; Prego, R.; Fett, R.; Aubourg, S.P. The chemical composition of different edible locations (central and edge muscles) of flat fish (Lepidorhombus whiffiagonis). Int. J. Food Sci. Technol. 2018, 53, 271–281. [Google Scholar] [CrossRef] [Green Version]
- US-EPA. Acid Digestion of Sediments, Sludges, and Soils; SW-846 Test Method 3050B; Revision 2 (12 Pages); United States Environmental Protection Agency: Washington, DC, USA, 1996.
- Sieiro, M.P.; Aubourg, S.P.; Rocha, F. Seasonal study of the lipid composition in different tissues of the common octopus (Octopus vulgaris). Eur. J. Lipid Sci. Technol. 2006, 108, 479–487. [Google Scholar] [CrossRef]
- Kacem, M.; Sellami, M.; Kammoun, W.; Frikh, F.; Miled, N.; Rebah, F.B. Seasonal variations in proximate and fatty acid composition of viscera of Sardinella aurita, Sarpa salpa, and Sepia officinalis from Tunisia. J. Aquat. Food Prod. Technol. 2011, 20, 233–246. [Google Scholar] [CrossRef]
- Saito, H.; Sakai, M.; Wakabayashi, T. Characteristics of the lipid and fatty acid compositions of the Humboldt squid, Dosidicus gigas: The trophic relationship between the squid and its prey. Eur. J. Lipid Sci. Technol. 2014, 116, 360–366. [Google Scholar] [CrossRef]
- Hayashi, K.; Kishimura, H. Amount and composition of diacyl glyceryl ethers in various tissue lipids of the deep-sea squid Berryteuthis magister. J. Oleo Sci. 2002, 51, 523–529. [Google Scholar] [CrossRef] [Green Version]
- Küllenberg, D.; Taylor, L.A.; Schneider, M.; Massing, U. Health effects of dietary phospholipids. Lipids Health Dis. 2012, 11, 3. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wang, X.; Zhang, T.; Huang, Z.; Luo, X.; Deng, Y. A review on phospholipids and their main applications in drug delivery systems. Asian J. Pharm. Sci. 2015, 10, 81–98. [Google Scholar] [CrossRef]
- Takahashi, K.; Inoue, Y. Marine by-product phospholipids as booster of medicinal compounds. Adv. Food Nutr. Res. 2012, 65, 31–46. [Google Scholar]
- Aubourg, S.; Rey-Mansilla, M.; Sotelo, C.G. Differential lipid damage in various muscle zones of frozen hake (Merluccius meluccius). Z. Lebensm. Unters. Forsch. 1999, 208, 189–193. [Google Scholar] [CrossRef] [Green Version]
- Kamal-Eldin, A.; Appelqvist, L. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 1996, 31, 671–701. [Google Scholar] [CrossRef] [PubMed]
- Uauy, R.; Valenzuela, A. Marine oils: The health benefits of n-3 fatty acids. Nutrition 2000, 16, 680–684. [Google Scholar] [CrossRef]
- Komprda, T. Eicosapentaenoic and docosahexaenoic acids as inflammation-modulating and lipid homeostasis influencing nutraceuticals: A review. J. Funct. Foods 2012, 4, 25–38. [Google Scholar] [CrossRef]
- Kumari, P.; Kumar, M.; Reddy, C.R.; Jha, B. Algal lipids, fatty acids and sterols. In Functional Ingredients from Algae for Foods and Nutraceuticals; Domínguez, H., Ed.; Woodhead Publishing: Cambridge, UK, 2013; pp. 87–134. [Google Scholar]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Shen, C.; Xie, J.; Xu, X. The components of cuttlefish (Sepiella maindroni de Rochebruns) oil. Food Chem. 2007, 102, 210–214. [Google Scholar] [CrossRef]
- Gordon, D. Minerals in seafoods: Their bioavailability and interactions. Food Technol. 1988, 42, 156–160. [Google Scholar]
- Oehlenschläger, J. Minerals and trace elements. In Handbook of Seafood and Seafood Products Analysis; Nollet, L., Toldrá, F., Eds.; CRC Press: Boca Raton, FL, USA, 2010; Chapter 20; pp. 351–375. [Google Scholar]
- Johnson, M.; Fisher, J. Role of minerals in protection against free radicals. Food Technol. 1994, 48, 112–120. [Google Scholar]
- Reilly, C. Selenium: A new entrant into the functional food arena. Trends Food Sci. Technol. 1998, 9, 114–118. [Google Scholar] [CrossRef]
- Falandysz, J. Macroelements content of common pacific squid (Loligo opalescens). Z. Lebens. Unters. Forsch. 1992, 195, 423–425. [Google Scholar] [CrossRef] [PubMed]
- Storelli, M.M.; Garofalo, R.; Giungato, D.; Giacominelli-Stuffler, R. Intake of essential and non-essential elements from consumption of octopus, cuttlefish and squid. Food Addit. Contam. B 2010, 3, 14–18. [Google Scholar] [CrossRef]
- Rjeibi, M.; Metian, M.; Hajji, T.; Guyot, T.; Chaouacha-Chékir, R.B.; Bustamante, P. Interspecific and geographical variations of trace metal concentrations in cephalopods from Tunisian waters. Environ. Monit. Assess. 2014, 186, 3767–3783. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Shen, Y.; Huang, H.; Yang, X.Q.; Zhao, Y.Q.; Cen, J.W.; Qi, B. Trace element accumulation and tissue distribution in the purpleback flying squid Sthenoteuthis oualaniensis from the Central and Southern South China Sea. Biol. Trace Elem. Res. 2017, 175, 214–222. [Google Scholar] [CrossRef]
Chemical Constituent | Capture Season | |||
---|---|---|---|---|
Summer | Autumn | Winter | Spring | |
Moisture | 829.0 a (5.0) | 831.6 a (3.8) | 837.5 b (0.8) | 842.8 c (3.5) |
Lipids | 17.5 a (0.4) | 19.2 b (0.5) | 21.5 c (0.3) | 21.8 c (0.7) |
Proteins | 123.7 c (4.0) | 118.1 bc (3.4) | 114.0 b (1.7) | 106.0 a (5.2) |
Ash | 12.1 b (0.4) | 13.3 b (1.3) | 9.3 a (0.1) | 12.7 b (0.3) |
Lipid Class | Capture Season | |||
---|---|---|---|---|
Summer | Autumn | Winter | Spring | |
Phospholipids | 398.2 b (18.1) | 359.2 a (10.3) | 463.5 c (6.4) | 412.6 b (11.7) |
Sterols | 132.1 d (2.2) | 127.2 c (1.4) | 122.1 b (1.8) | 115.0 a (1.8) |
Triacylglycerols | 9.5 a (0.7) | 10.2 a (0.3) | 12.9 b (0.4) | 13.1 b (0.5) |
Free fatty acids | 274.3 c (3.8) | 282.0 c (13.5) | 156.6 a (1.2) | 242.4 b (8.6) |
Alpha-tocopherol | 973.3 c (28.0) | 949.7 c (65.9) | 617.6 b (21.0) | 539.6 a (17.5) |
FA | Capture Season | |||
---|---|---|---|---|
Summer | Autumn | Winter | Spring | |
14:0 | 3.01 a (0.09) | 3.24 b (0.11) | 3.33 b (0.02) | 3.80 c (0.15) |
15:0 | 0.58 b (0.00) | 0.62 c (0.01) | 0.44 a (0.02) | 0.52 b (0.04) |
16:0 | 24.35 a (0.02) | 24.71 b (0.06) | 26.16 d (0.17) | 25.74 c (0.05) |
16:1ω7 | 1.31 a (0.00) | 1.59 b (0.07) | 1.57 b (0.02) | 1.64 ab (0.28) |
17:0 | 1.34 bc (0.00) | 1.42 c (0.05) | 1.03 a (0.01) | 1.24 b (0.08) |
18:0 | 4.61 b (0.02) | 4.54 b (0.08) | 4.22 a (0.02) | 4.25 a (0.01) |
18:1ω9 | 3.63 a (0.03) | 4.14 bc (0.05) | 3.95 b (0.02) | 4.33 c (0.28) |
18:1ω7 | 2.05 a (0.04) | 2.15 ab (0.04) | 2.17 b (0.02) | 2.23 b (0.04) |
18:2ω6 | 0.57 b (0.02) | 0.57 b (0.01) | 0.47 a (0.02) | 0.59 b (0.05) |
20:1ω9 | 5.30 a (0.02) | 5.54 b (0.06) | 5.41 a (0.02) | 5.27 a (0.12) |
20:2ω6 | 0.78 c (0.02) | 0.58 b (0.05) | 0.37 a (0.04) | 0.39 a (0.02) |
20:4ω6 | 2.43 b (0.03) | 2.42 ab (0.04) | 2.41 ab (0.03) | 2.30 a (0.05) |
22:1ω9 | 0.57 a (0.01) | 0.58 a (0.01) | 0.58 a (0.03) | 0.58 a (0.02) |
20:5ω3 | 17.24 c (0.03) | 16.89 b (0.10) | 15.93 a (0.12) | 16.18 a (0.10) |
22:4ω6 | 0.23 a (0.03) | 0.24 a (0.00) | 0.24 a (0.03) | 0.22 a (0.04) |
24:1ω9 | 0.69 a (0.02) | 0.75 a (0.04) | 0.71 a (0.02) | 0.69 a (0.02) |
22:5ω3 | 0.51 a (0.04) | 0.50 a (0.02) | 0.51 a (0.08) | 0.53 a (0.01) |
22:6ω3 | 30.79 c (0.03) | 29.52 a (0.35) | 30.48 b (0.19) | 29.45 ab (0.79) |
Total ω3 | 48.59 b (0.01) | 47.05 a (0.23) | 46.97 a (0.24) | 46.11 ab (1.37) |
Capture Season | ||||
---|---|---|---|---|
Summer | Autumn | Winter | Spring | |
Macroelement | ||||
Ca | 0.686 b (0.017) | 0.831 c (0.064) | 0.399 a (0.029) | 1.131 d (0.042) |
K | 1.239 c (0.027) | 1.071 b (0.038) | 1.039 b (0.010) | 0.881 a (0.020) |
Mg | 0.503 c (0.015) | 0.487 bc (0.002) | 0.398 a (0.002) | 0.469 b (0.009) |
Na | 2.406 b (0.040) | 2.572 c (0.028) | 1.685 a (0.025) | 2.276 b (0.114) |
P | 2.646 c (0.084) | 2.180 b (0.069) | 1.970 a (0.025) | 1.913 a (0.082) |
S | 3.303 c (0.010) | 3.151 b (0.036) | 2.811 a (0.014) | 2.704 a (0.084) |
Trace element | ||||
Cu | 55.51 b (2.01) | 59.24 bc (3.35) | 59.97 c (0.51) | 48.89 a (3.97) |
Fe | 9.31 b (1.49) | 11.43 c (1.90) | 5.79 a (1.08) | 20.43 c (6.07) |
Mn | 0.637 ab (0.036) | 0.595 ab (0.032) | 0.581 a (0.025) | 0.668 b (0.051) |
Se | 1.354 c (0.109) | 1.303 c (0.018) | 1.032 b (0.004) | 0.888 a (0.020) |
Zn | 25.09 b (2.46) | 23.86 b (0.54) | 19.27 a (0.54) | 20.62 a (1.51) |
Co | 6.85 b (0.53) | 7.37 b (0.58) | 5.45 a (0.11) | 8.35 b (0.86) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aubourg, S.P.; Trigo, M.; Prego, R.; Cobelo-García, A.; Medina, I. Nutritional and Healthy Value of Chemical Constituents Obtained from Patagonian Squid (Doryteuthis gahi) By-Products Captured at Different Seasons. Foods 2021, 10, 2144. https://doi.org/10.3390/foods10092144
Aubourg SP, Trigo M, Prego R, Cobelo-García A, Medina I. Nutritional and Healthy Value of Chemical Constituents Obtained from Patagonian Squid (Doryteuthis gahi) By-Products Captured at Different Seasons. Foods. 2021; 10(9):2144. https://doi.org/10.3390/foods10092144
Chicago/Turabian StyleAubourg, Santiago P., Marcos Trigo, Ricardo Prego, Antonio Cobelo-García, and Isabel Medina. 2021. "Nutritional and Healthy Value of Chemical Constituents Obtained from Patagonian Squid (Doryteuthis gahi) By-Products Captured at Different Seasons" Foods 10, no. 9: 2144. https://doi.org/10.3390/foods10092144
APA StyleAubourg, S. P., Trigo, M., Prego, R., Cobelo-García, A., & Medina, I. (2021). Nutritional and Healthy Value of Chemical Constituents Obtained from Patagonian Squid (Doryteuthis gahi) By-Products Captured at Different Seasons. Foods, 10(9), 2144. https://doi.org/10.3390/foods10092144