Sustainable Valorization of Sambucus nigra L. Berries: From Crop Biodiversity to Nutritional Value of Juice and Pomace
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field and Weather Characteristics and Sampling
2.1.1. Field Characteristics
2.1.2. Harvest Weather Conditions
2.1.3. Sampling
2.2. Eldeberry Physicochemical Parameter Determination
2.2.1. pH, °Brix, and Titratable Acidity
2.2.2. Total Phenolic Content
2.2.3. Antioxidant Activity
2.3. Eldeberry Products
2.3.1. Preparation of Elderberry Juice and Pomace Powder
2.3.2. Determination of Nutritional Value
2.4. Data Processing
3. Results and Discussion
3.1. Spacial and Temporal Variability of Eldeberry Physicochemical Composition
3.2. Evaluation of the Nutritional Value of Elderberry Juice and Respective Pomace Powder
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reeves, T.G.; Thomas, G.; Ramsay, G. Save and Grow in Practice: Maize, Rice, Wheat; FAO: Rome, Italy, 2016; Volume 53, ISBN 9788578110796. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Influencing Food Environments for Healthy Diets; FAO: Rome, Italy, 2016; ISBN 0028-0836. [Google Scholar]
- De Froidmont-Goertz, I.; Faure, U.; Gajdzinska, M.; Haentjens, W.; Krommer, J.; Lizaso, M.; Lutzeyer, H.-J.; Mangan, C.; Markakis, M.; Schoumacher, C.; et al. Food 2030 Food Pathways for Action: Research and Innovation Policy as a Driver for Sustainable, Healty and Inclusive Food Systems; Publications Office of the European Union: Luxembourg, 2020; ISBN 9789276181224. [Google Scholar]
- Saini, A.; Panwar, D.; Panesar, P.S.; Bera, M.B. Bioactive Compounds from Cereal and Pulse Processing Byproducts and Their Potential Health Benefits. Austin J. Nutr. Metab. 2019, 6, 1068. [Google Scholar]
- Qin, S.; Shekher Giri, B.; Kumar Patel, A.; Sar, T.; Liu, H.; Chen, H.; Juneja, A.; Kumar, D.; Zhang, Z.; Kumar Awasthi, M.; et al. Resource recovery and biorefinery potential of apple orchard waste in the circular bioeconomy. Bioresour. Technol. 2021, 321, 124496. [Google Scholar] [CrossRef]
- El Soury, M.; Fornasari, B.E.; Carta, G.; Zen, F.; Haastert-Talini, K.; Ronchi, G. The role of dietary nutrients in peripheral nerve regeneration. Int. J. Mol. Sci. 2021, 22, 7417. [Google Scholar] [CrossRef] [PubMed]
- Amoah, I.; Taarji, N.; Johnson, P.-N.T.; Barrett, J.; Cairncross, C.; Rush, E. Plant-Based Food By-Products: Prospects for Valorisation in Functional Bread Development. Sustainability 2020, 12, 7785. [Google Scholar] [CrossRef]
- Manzoor, M.; Singh, J.; Gani, A.; Noor, N. Valorization of natural colors as health-promoting bioactive compounds: Phytochemical profile, extraction techniques, and pharmacological perspectives. Food Chem. 2021, 362, 130141. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.; Lopes da Silva, J.A.; Pintado, M. Fruit and vegetable by-products’ flours as ingredients: A review on production process, health benefits and technological functionalities. LWT 2022, 154, 112707. [Google Scholar] [CrossRef]
- Iqbal, A.; Schulz, P.; Rizvi, S.S.H. Valorization of bioactive compounds in fruit pomace from agro-fruit industries: Present Insights and future challenges. Food Biosci. 2021, 44, 101384. [Google Scholar] [CrossRef]
- Sidor, A.; Gramza-Michałowska, A. Advanced research on the antioxidant and health benefit of elderberry (Sambucus nigra) in food—A review. J. Funct. Foods 2015, 18, 941–958. [Google Scholar] [CrossRef]
- Silva, P.; Ferreira, S.; Nunes, F.M. Elderberry (Sambucus nigra L.) by-products a source of anthocyanins and antioxidant polyphenols. Ind. Crops Prod. 2017, 95, 227–234. [Google Scholar] [CrossRef]
- Da Silva, R.F.R.; Barreira, J.C.M.; Heleno, S.A.; Barros, L.; Calhelha, R.C.; Ferreira, I.C.F.R. Anthocyanin Profile of Elderberry Juice: Potential Food Application. Molecules 2019, 24, 2359. [Google Scholar] [CrossRef] [Green Version]
- Domínguez, R.; Pateiro, M.; Munekata, P.E.S.; Santos López, E.M.; Rodríguez, J.A.; Barros, L.; Lorenzo, J.M. Potential Use of Elderberry (Sambucus nigra L.) as Natural Colorant and Antioxidant in the Food Industry. A Review. Foods 2021, 10, 2713. [Google Scholar] [CrossRef]
- Neves, M.B.; Gonçalves, F.; Wessel, D.F. Changes in Elderberry (Sambucus nigra L.) Juice Concentrate Polyphenols during Storage. Appl. Sci. 2021, 11, 6941. [Google Scholar] [CrossRef]
- Zakay-Rones, Z.; Thom, E.; Wollan, T.; Wadstein, J. Randomized study of the efficacy and safety of oral elderberry extract in the treatment of influenza A and B virus infections. J. Int. Med. Res. 2004, 32, 132–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wieland, L.S.; Piechotta, V.; Feinberg, T.; Ludeman, E.; Hutton, B.; Kanji, S.; Seely, D.; Garritty, C. Elderberry for prevention and treatment of viral respiratory illnesses: A systematic review. BMC Complement. Med. Ther. 2021, 21, 112. [Google Scholar] [CrossRef]
- Barak, V.; Halperin, T.; Kalickman, I. The effect of Sambucol, a black elderberry-based, natural product, on the production of human cytokines: I. Inflammatory cytokines. Eur. Cytokine Netw. 2001, 12, 290–296. [Google Scholar] [PubMed]
- Salvador, Â.C.; Król, E.; Lemos, V.C.; Santos, S.A.O.O.; Bento, F.P.M.S.M.S.; Costa, C.P.; Almeida, A.; Szczepankiewicz, D.; Krejpcio, Z.; Silvestre, A.J.D.D.; et al. Effect of elderberry (Sambucus nigra L.) extract supplementation in STZ-induced diabetic rats fed with a high-fat diet. Int. J. Mol. Sci. 2017, 18, 13. [Google Scholar] [CrossRef] [Green Version]
- Młynarczyk, K.; Walkowiak-Tomczak, D.; Łysiak, G.P. Bioactive properties of Sambucus nigra L. As a functional ingredient for food and pharmaceutical industry. J. Funct. Foods 2018, 40, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Zhang, W.; Li, X.; Xu, Y.; Cao, J.; Jiang, W. The anti-obesogenic effects of dietary berry fruits: A review. Food Res. Int. 2021, 147, 110539. [Google Scholar] [CrossRef]
- Domínguez, R.; Zhang, L.; Rocchetti, G.; Lucini, L.; Pateiro, M.; Munekata, P.E.S.; Lorenzo, J.M. Elderberry (Sambucus nigra L.) as potential source of antioxidants. Characterization, optimization of extraction parameters and bioactive properties. Food Chem. 2020, 330, 127266. [Google Scholar] [CrossRef] [PubMed]
- Senica, M.; Stampar, F.; Veberic, R.; Mikulic-petkovsek, M. Processed elderberry (Sambucus nigra L.) products: A beneficial or harmful food alternative? LWT—Food Sci. Technol. 2016, 72, 182–188. [Google Scholar] [CrossRef]
- Ferreira, S.S.; Silva, A.M.; Nunes, F.M. Sambucus nigra L. Fruits and Flowers: Chemical Composition and Related Bioactivities. Food Rev. Int. 2020, 1–29. [Google Scholar] [CrossRef]
- Pangestu, N.P.; Miyagusuku-Cruzado, G.; Giusti, M.M. Copigmentation with Chlorogenic and Ferulic Acid Affected Color and Anthocyanin Stability in Model Beverages Colored with Sambucus peruviana, Sambucus nigra, and Daucus carota during Storage. Foods 2020, 9, 1476. [Google Scholar] [CrossRef]
- Nemetz, N.J.; Schieber, A.; Weber, F. Application of crude pomace powder of chokeberry, bilberry, and elderberry as a coloring foodstuff. Molecules 2021, 26, 2689. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, S.S.; Silva, P.; Silva, A.M.; Nunes, F.M. Effect of harvesting year and elderberry cultivar on the chemical composition and potential bioactivity: A three-year study. Food Chem. 2020, 302, 125366. [Google Scholar] [CrossRef]
- Salvador, Â.C.; Rocha, S.M.; Silvestre, A.J.D. Lipophilic phytochemicals from elderberries (Sambucus nigra L.): Influence of ripening, cultivar and season. Ind. Crops Prod. 2015, 71, 15–23. [Google Scholar] [CrossRef]
- Gonçalves, S.; Gaivão, I. Natural Ingredients Common in the Trás-os-Montes Region (Portugal) for Use in the Cosmetic Industry: A Review about Chemical Composition and Antigenotoxic Properties. Molecules 2021, 26, 5255. [Google Scholar] [CrossRef] [PubMed]
- Touati, R.; Santos, S.A.O.; Rocha, S.M.; Belhamel, K.; Silvestre, A.J.D. The potential of cork from Quercus suber L. grown in Algeria as a source of bioactive lipophilic and phenolic compounds. Ind. Crops Prod. 2015, 76, 936–945. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis of AOAC International, 20th ed.; AOAC: Rockville, MD, USA, 2016. [Google Scholar]
- Mæhre, H.K.; Dalheim, L.; Edvinsen, G.K.; Elvevoll, E.O.; Jensen, I.J. Protein determination—Method matters. Foods 2018, 7, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyners, M. Permutation tests: Are there differences in product liking? Food Qual. Prefer. 2001, 12, 345–351. [Google Scholar] [CrossRef] [Green Version]
- Vis, D.J.; Westerhuis, J.A.; Smilde, A.K.; van der Greef, J. Statistical validation of megavariate effects in ASCA. BMC Bioinform. 2007, 8, 322. [Google Scholar] [CrossRef] [Green Version]
- Jansen, J.J.; Hoefsloot, H.C.J.; Van Der Greef, J.; Timmerman, M.E.; Westerhuis, J.A.; Smilde, A.K. ASCA: Analysis of multivariate data obtained from an experimental design. J. Chemom. 2005, 19, 469–481. [Google Scholar] [CrossRef]
- Kaack, K.; Christensen, L.P.; Hughes, M.; Eder, R. The relationship between sensory quality and volatile compounds in raw juice processed from elderberries (Sambucus nigra L.). Eur. Food Res. Technol. 2005, 221, 244–254. [Google Scholar] [CrossRef]
- Salvador, Â.C.; Rudnitskaya, A.; Silvestre, A.J.D.; Rocha, S.M. Metabolomic-Based Strategy for Fingerprinting of Sambucus nigra L. Berry Volatile Terpenoids and Norisoprenoids: Influence of Ripening and Cultivar. J. Agric. Food Chem. 2016, 64, 5428–5438. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Finn, C.E. Anthocyanins and other polyphenolics in American elderberry (Sambucus canadensis) and European elderberry (S. nigra) cultivars. J. Sci. Food Agric. 2007, 87, 2665–2675. [Google Scholar] [CrossRef] [Green Version]
- Imenšek, N.; Kristl, J.; Šumenjak, T.K.; Ivančič, A. Antioxidant activity of elderberry fruits during maturation. Agriculture 2021, 11, 555. [Google Scholar] [CrossRef]
- Marțiș, G.S.; Mureșan, V.; Marc, R.M.; Mureșan, C.C.; Pop, C.R.; Buzgău, G.; Mureșan, A.E.; Ungur, R.A.; Muste, S. The Physicochemical and Antioxidant Properties of Sambucus nigra L. and Sambucus nigra Haschberg during Growth Phases: From Buds to Ripening. Antioxidants 2021, 10, 1093. [Google Scholar] [CrossRef] [PubMed]
- Mikulic-Petkovsek, M.; Slatnar, A.; Stampar, F.; Veberic, R. HPLC-MS n identification and quantification of flavonol glycosides in 28 wild and cultivated berry species. Food Chem. 2012, 135, 2138–2146. [Google Scholar] [CrossRef] [PubMed]
- Kiprovski, B.; Malenčić, Đ.; Ljubojević, M.; Ognjanov, V.; Veberic, R.; Hudina, M.; Mikulic-Petkovsek, M. Quality parameters change during ripening in leaves and fruits of wild growing and cultivated elderberry (Sambucus nigra) genotypes. Sci. Hortic. 2021, 277, 1–9. [Google Scholar] [CrossRef]
- Szalóki-Dorkó, L.; Stéger-Máté, M.; Abrankó, L. Evaluation of colouring ability of main European elderberry (Sambucus nigra L.) varieties as potential resources of natural food colourants. Int. J. Food Sci. Technol. 2015, 50, 1317–1323. [Google Scholar] [CrossRef]
- Finn, C.E.; Thomas, A.L.; Byers, P.L.; Serçe, S. Evaluation of American (Sambucus canadensis) and European (S. nigra) elderberry genotypes grown in diverse environments and implications for cultivar development. HortScience 2008, 43, 1385–1391. [Google Scholar] [CrossRef] [Green Version]
- Reißner, A.M.; Al-Hamimi, S.; Quiles, A.; Schmidt, C.; Struck, S.; Hernando, I.; Turner, C.; Rohm, H. Composition and physicochemical properties of dried berry pomace. J. Sci. Food Agric. 2019, 99, 1284–1293. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A.; Rehm, C. Beverage: Patterns of Consumption. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldra, F., Eds.; Academic Press: Boca Raton, FL, USA, 2016; Volume I, pp. 381–387. ISBN 9780123849472. [Google Scholar]
- Ruxton, C.H.S.; Myers, M. Fruit juices: Are they helpful or harmful? An evidence review. Nutrients 2021, 13, 1815. [Google Scholar] [CrossRef] [PubMed]
- Mocellin, S.; Briarava, M.; Pilati, P. Vitamin B6 and cancer risk: A field synopsis and meta-analysis. J. Natl. Cancer Inst. 2017, 109, djw230. [Google Scholar] [CrossRef] [PubMed]
- Yoshii, K.; Hosomi, K.; Sawane, K.; Kunisawa, J. Metabolism of dietary and microbial vitamin b family in the regulation of host immunity. Front. Nutr. 2019, 6, 48. [Google Scholar] [CrossRef] [Green Version]
- Doke, S.; Inagaki, N.; Hayakawa, T.; Tsuge, H. Effect of Vitamin B6 Deficiency on an Antibody Production in Mice. Biosci. Biotechnol. Biochem. 1997, 61, 1331–1336. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.C.; Wei, J.C.C.; Wu, D.J.; Huang, Y.C. Vitamin B6 supplementation improves pro-inflammatory responses in patients with rheumatoid arthritis. Eur. J. Clin. Nutr. 2010, 64, 1007–1013. [Google Scholar] [CrossRef] [Green Version]
- Jannusch, K.; Jockwitz, C.; Bidmon, H.J.; Moebus, S.; Amunts, K.; Caspers, S. A complex interplay of vitamin B1 and B6 metabolism with cognition, brain structure, and functional connectivity in older adults. Front. Neurosci. 2017, 11, 596. [Google Scholar] [CrossRef]
- Jeon, J.; Park, K. Dietary vitamin B6 intake associated with a decreased risk of cardiovascular disease: A prospective cohort study. Nutrients 2019, 11, 1484. [Google Scholar] [CrossRef] [Green Version]
- EUR-Lex Acesso ao Direito da União Europeia. Available online: https://eur-lex.europa.eu (accessed on 1 January 2021).
- Konić-Ristić, A.; Šavikin, K.; Zdunić, G.; Janković, T.; Juranic, Z.; Menković, N.; Stanković, I. Biological activity and chemical composition of different berry juices. Food Chem. 2011, 125, 1412–1417. [Google Scholar] [CrossRef]
- Vujanović, M.; Majkić, T.; Zengin, G.; Beara, I.; Tomović, V.; Šojić, B.; Đurović, S.; Radojković, M. Elderberry (Sambucus nigra L.) juice as a novel functional product rich in health-promoting compounds. RSC Adv. 2020, 10, 44805–44814. [Google Scholar] [CrossRef]
- Siddiq, M.; Dolan, K.D.; Perkins-Veazie, P.; Collins, J.K. Effect of pectinolytic and cellulytic enzymes on the physical, chemical, and antioxidant properties of blueberry (Vaccinium corymbosum L.) juice. LWT—Food Sci. Technol. 2018, 92, 127–132. [Google Scholar] [CrossRef]
- Volpe, S.L. Magnesium in disease prevention and overall health. Adv. Nutr. 2013, 4, 378S–383S. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Wang, X.F.; Li, D.Y.; Chen, Y.C.; Zhao, L.J.; Liu, X.G.; Guo, Y.F.; Shen, J.; Lin, X.; Deng, J.; et al. The good, the bad, and the ugly of calcium supplementation: A review of calcium intake on human health. Clin. Interv. Aging 2018, 13, 2443–2452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on iron and its importance for human health. J. Res. Med. Sci. 2014, 19, 164–174. [Google Scholar] [PubMed]
- Avery, J.C.; Hoffmann, P.R. Selenium, selenoproteins, and immunity. Nutrients 2018, 10, 1203. [Google Scholar] [CrossRef] [Green Version]
Fields Characteristics | |||||
---|---|---|---|---|---|
Fields | Designation | Altitude (m) | Lines Orientation | Irrigation | Plant Age |
Varosa | C1 | 260 | North–South | 2 times/year | 7 years |
Valverde | C2 | 640–700 | East–West | No | 7 years |
São João de Tarouca | C3 | 570 | East–West | No | 5 years |
Cultivar | Field | Harvest a | TSS (°Brix) | TA (g Citric Acid/L Juice) | pH | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2020 | 2018 | 2019 | 2020 | 2018 | 2019 | 2020 | |||
‘Sabugueira’ | C1 | EM | 8.00 ± 0.00 | 9.10 ± 0.20 | 9.80 ± 0.40 | 0.80 ± 0.01 | 1.08 ± 0.01 | 0.57 ± 0.01 | 3.82 ± 0.01 | 3.78 ± 0.03 | 4.10 ± 0.00 |
AM | 20.40 ± 0.80 | 14.70 ± 0.24 | 11.80 ± 0.40 | 0.54 ± 0.01 | 0.57 ± 0.01 | 0.56 ± 0.01 | 4.89 ± 0.01 | 4.31 ± 0.00 | 4.43 ± 0.00 | ||
FM | 29.60 ± 0.80 | 16.00 ± 0.00 | 12.60 ± 0.50 | 0.76 ± 0.01 | 0.62 ± 0.02 | 0.53 ± 0.01 | 4.89 ± 0.01 | 4.59 ± 0.01 | 4.57 ± 0.01 | ||
C2 | EM | 9.10 ± 0.00 | 9.10 ± 0.20 | 8.20 ± 0.20 | 0.82 ± 0.01 | 1.16 ± 0.03 | 1.04 ± 0.03 | 4.05 ± 0.01 | 3.66 ± 0.01 | 3.59 ± 0.00 | |
AM | 18.00 ± 0.00 | 10.0 ± 0.00 | 10.00 ± 0.00 | 0.49 ± 0.02 | 1.14 ± 0.02 | 0.50 ± 0.01 | 4.77 ± 0.01 | 3.61 ± 0.00 | 4.45 ± 0.02 | ||
FM | 13.20 ± 1.00 | 13.8 ± 0.40 | 17.40 ± 0.80 | 0.43 ± 0.01 | 0.69 ± 0.02 | 0.49 ± 0.01 | 4.60 ± 0.01 | 4.29 ± 0.01 | 4.85 ± 0.00 | ||
C3 | EM | 10.00 ± 0.00 | 7.00 ± 0.00 | 9.20 ± 0.20 | 0.87 ± 0.01 | 1.29 ± 0.03 | 1.17 ± 0.02 | 3.93 ± 0.00 | 3.52 ± 0.02 | 3.43 ± 0.00 | |
AM | 12.00 ± 0.00 | 12.00 ± 0.00 | 12.00 ± 0.00 | 0.49 ± 0.01 | 0.50 ± 0.01 | 0.43 ± 0.01 | 4.47 ± 0.01 | 4.25 ± 0.02 | 4.63 ± 0.01 | ||
FM | 17.60 ± 0.80 | 13.40 ± 0.49 | 14.50 ± 0.40 | 0.38 ± 0.01 | 0.74 ± 0.04 | 0.40 ± 0.01 | 4.90 ± 0.01 | 4.13 ± 0.01 | 4.66 ± 0.01 | ||
‘Sabugueiro’ | C1 | EM | 8.00 ± 0.00 | 7.00 ± 0.00 | 9.00 ± 0.00 | 0.74 ± 0.02 | 1.09 ± 0.01 | 0.65 ± 0.02 | 4.22 ± 0.00 | 4.10 ± 0.01 | 3.85 ± 0.00 |
AM | 19.40 ± 0.50 | 15.00 ± 0.00 | 11.10 ± 0.20 | 0.49 ± 0.01 | 0.57 ± 0.01 | 0.51 ± 0.01 | 5.03 ± 0.01 | 4.51 ± 0.02 | 4.11 ± 0.01 | ||
FM | 16.00 ± 0.00 | 14.80 ± 0.40 | 11.80 ± 0.40 | 0.57 ± 0.01 | 0.61 ± 0.05 | 0.50 ± 0.01 | 4.84 ± 0.01 | 4.73 ± 0.01 | 4.34 ± 0.00 | ||
C2 | EM | 7.50 ± 0.00 | 9.30 ± 0.24 | 8.50 ± 0.40 | 1.02 ± 0.02 | 1.12 ± 0.09 | 0.71 ± 0.02 | 3.98 ± 0.02 | 3.81 ± 0.02 | 3.75 ± 0.00 | |
AM | 15.60 ± 0.80 | 10.40 ± 0.80 | 14.00 ± 0.00 | 0.74 ± 0.01 | 0.68 ± 0.01 | 0.67 ± 0.03 | 4.43 ± 0.01 | 4.20 ± 0.02 | 4.74 ± 0.01 | ||
FM | 14.80 ± 1.00 | 12.00 ± 0.00 | 14.40 ± 0.50 | 0.49 ± 0.01 | 0.76 ± 0.01 | 0.45 ± 0.01 | 4.59 ± 0.01 | 4.42 ± 0.02 | 4.94 ± 0.01 | ||
C3 | EM | 10.00 ± 0.00 | 5.80 ± 0.24 | 7.40 ± 0.4 | 0.45 ± 0.01 | 0.95 ± 0.05 | 0.72 ± 0.01 | 4.05 ± 0.00 | 3.99 ± 0.02 | 3.97 ± 0.00 | |
AM | 13.60 ± 0.50 | 10.60 ± 0.20 | 10.00 ± 0.00 | 0.50 ± 0.01 | 1.10 ± 0.08 | 0.63 ± 0.02 | 4.45 ± 0.01 | 3.98 ± 0.01 | 4.61 ± 0.00 | ||
FM | 13.60 ± 0.80 | 11.60 ± 0.49 | 12.90 ± 0.20 | 0.34 ± 0.02 | 0.64 ± 0.01 | 0.29 ± 0.01 | 4.93 ± 0.02 | 4.10 ± 0.01 | 4.67 ± 0.01 | ||
‘Bastardeira’ | C1 | EM | 8.00 ± 0.00 | 9.00 ± 0.00 | 7.80 ± 0.20 | 0.90 ± 0.03 | 1.13 ± 0.04 | 0.66 ± 0.03 | 3.96 ± 0.01 | 3.94 ± 0.03 | 3.90 ± 0.00 |
AM | 15.40 ± 0.50 | 12.40 ± 0.20 | 10.10 ± 0.20 | 0.44 ± 0.01 | 0.56 ± 0.01 | 0.49 ± 0.01 | 4.75 ± 0.00 | 4.29 ± 0.02 | 4.18 ± 0.00 | ||
FM | 16.40 ± 0.80 | 14.00 ± 0.00 | 11.80 ± 0.40 | 0.35 ± 0.01 | 0.47 ± 0.01 | 0.48 ± 0.01 | 5.00 ± 0.01 | 4.61 ± 0.01 | 4.35 ± 0.02 | ||
C2 | EM | 9.70 ± 0.20 | 10.10 ± 0.20 | 9.60 ± 0.40 | 0.94 ± 0.02 | 1.33 ± 0.01 | 0.73 ± 0.02 | 3.80 ± 0.00 | 3.96 ± 0.00 | 3.79 ± 0.00 | |
AM | 20.00 ± 0.00 | 10.60 ± 0.37 | 11.80 ± 0.40 | 0.42 ± 0.01 | 0.70 ± 0.01 | 0.45 ± 0.01 | 4.92 ± 0.01 | 4.11 ± 0.02 | 4.58 ± 0.00 | ||
FM | 17.20 ± 1.00 | 16.00 ± 0.00 | 13.80 ± 0.40 | 0.33 ± 0.01 | 0.83 ± 0.01 | 0.50 ± 0.01 | 4.81 ± 0.01 | 4.41 ± 0.01 | 4.72 ± 0.00 | ||
C3 | EM | 8.50 ± 0.00 | 5.00 ± 0.00 | 7.10 ± 0.20 | 0.62 ± 0.02 | 1.00 ± 0.01 | 0.83 ± 0.01 | 3.71 ± 0.01 | 3.74 ± 0.02 | 3.51 ± 0.00 | |
AM | 10.80 ± 0.40 | 8.00 ± 0.00 | 11.30 ± 0.40 | 0.46 ± 0.01 | 1.19 ± 0.01 | 0.66 ± 0.03 | 4.43 ± 0.00 | 3.68 ± 0.03 | 4.29 ± 0.01 | ||
FM | 16.00 ± 0.00 | 8.80 ± 0.00 | 12.90 ± 0.20 | 0.35 ± 0.01 | 0.86 ± 0.03 | 0.33 ± 0.01 | 5.02 ± 0.01 | 4.01 ± 0.01 | 4.56 ± 0.00 |
Cultivar | Field | Harvest a | TPC (g GAE/L Juice) b | Antioxidant Activity (mmol TE/L Juice) c | ||||
---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2020 | 2018 | 2019 | 2020 | |||
‘Sabugueira’ | C1 | EM | 1.35 ± 0.07 | 4.07 ± 0.11 | 7.91 ± 0.28 | 3.25 ± 0.25 | 22.08 ± 0.50 | 21.44 ± 0.15 |
AM | 14.61 ± 0.27 | 10.44 ± 0.11 | 12.49 ± 0.12 | 73.90 ± 3.25 | 83.68 ± 0.80 | 38.17 ± 0.79 | ||
FM | 19.12 ± 1.14 | 14.01 ± 0.30 | 19.22 ± 0.21 | 80.20 ± 4.06 | 84.77 ± 4.26 | 87.81 ± 0.19 | ||
C2 | EM | 2.31 ± 0.16 | 4.07 ± 0.11 | 4.15 ± 0.04 | 9.13 ± 0.47 | 20.83 ± 0.34 | 10.40 ± 0.26 | |
AM | 8.07 ± 0.42 | 7.01 ± 0.15 | 22.36 ± 0.17 | 50.58 ± 4.56 | 48.91 ± 0.93 | 70.67 ± 0.33 | ||
FM | 8.52 ± 0.43 | 10.27 ± 0.33 | 22.37 ± 0.29 | 50.76 ± 4.18 | 49.03 ± 2.02 | 78.46 ± 0.56 | ||
C3 | EM | 1.77 ± 0.17 | 1.89 ± 0.07 | 5.35 ± 0.07 | 3.40 ± 0.27 | 3.53 ± 0.17 | 8.68 ± 0.23 | |
AM | 8.52 ± 0.26 | 6.42 ± 0.15 | 12.34 ± 0.33 | 20.11 ± 0.87 | 38.63 ± 1.60 | 43.67 ± 0.41 | ||
FM | 8.65 ± 0.50 | 7.41 ± 0.26 | 17.71 ± 0.31 | 40.09 ± 2.82 | 32.67 ± 1.41 | 55.50 ± 0.33 | ||
‘Sabugueiro’ | C1 | EM | 3.94 ± 0.26 | 4.16 ± 0.03 | 5.98 ± 0.20 | 12.77 ± 0.44 | 16.46 ± 0.72 | 17.48 ± 0.85 |
AM | 9.30 ± 0.47 | 11.73 ± 0.06 | 13.08 ± 0.32 | 56.59 ± 2.00 | 97.57 ± 5.15 | 37.53 ± 0.78 | ||
FM | 14.96 ± 0.64 | 16.05 ± 0.51 | 19.16 ± 0.30 | 78.76 ± 2.57 | 101.48 ± 2.01 | 81.43 ± 0.84 | ||
C2 | EM | 2.78 ± 0.17 | 4.91 ± 0.21 | 6.88 ± 0.26 | 8.92 ± 0.55 | 26.17 ± 0.41 | 18.05 ± 0.45 | |
AM | 10.96 ± 0.25 | 9.38 ± 0.29 | 18.96 ± 0.60 | 64.83 ± 3.97 | 70.80 ± 2.39 | 64.14 ± 1.07 | ||
FM | 10.00 ± 0.53 | 12.88 ± 0.51 | 19.50 ± 0.48 | 50.02 ± 4.41 | 62.57 ± 1.49 | 66.49 ± 0.21 | ||
C3 | EM | 3.63 ± 7.85 | 2.50 ± 0.02 | 4.95 ± 0.14 | 13.01 ± 0.51 | 6.16 ± 0.23 | 14.21 ± 0.38 | |
AM | 7.85 ± 0.84 | 5.01 ± 0.13 | 11.44 ± 0.35 | 51.24 ± 3.97 | 26.67 ± 0.82 | 43.61 ± 0.53 | ||
FM | 12.40 ± 0.60 | 8.09 ± 0.14 | 18.05 ± 0.41 | 65.76 ± 3.78 | 35.80 ± 0.52 | 55.71 ± 0.50 | ||
‘Bastardeira’ | C1 | EM | 2.17 ± 0.08 | 3.82 ± 0.09 | 5.33 ± 0.16 | 5.53 ± 0.46 | 16.84 ± 0.96 | 12.75 ± 0.35 |
AM | 6.46 ± 0.34 | 7.28 ± 0.31 | 11.13 ± 0.12 | 35.95 ± 3.54 | 54.49 ± 1.25 | 32.81 ± 0.31 | ||
FM | 9.47 ± 0.09 | 9.34 ± 0.34 | 17.58 ± 0.71 | 48.25 ± 1.68 | 64.22 ± 1.38 | 72.75 ± 1.75 | ||
C2 | EM | 2.47 ± 0.14 | 6.97 ± 0.11 | 6.42 ± 0.24 | 10.39 ± 0.59 | 32.22 ± 0.20 | 19.57 ± 0.25 | |
AM | 9.75 ± 0.49 | 8.94 ± 0.29 | 17.99 ± 0.66 | 50.29 ± 2.93 | 64.09 ± 2.77 | 64.14 ± 0.91 | ||
FM | 8.08 ± 0.29 | 14.25 ± 0.26 | 21.06 ± 0.66 | 41.86 ± 2.47 | 69.79 ± 1.30 | 69.08 ± 0.95 | ||
C3 | EM | 2.51 ± 0.16 | 1.54 ± 0.07 | 3.76 ± 0.11 | 10.55 ± 0.38 | 3.93 ± 0.27 | 10.04 ± 0.22 | |
AM | 7.62 ± 0.55 | 3.46 ± 0.14 | 10.82 ± 0.84 | 42.98 ± 0.77 | 18.52 ± 0.55 | 41.34 ± 0.29 | ||
FM | 11.55 ± 0.51 | 7.29 ± 0.14 | 13.39 ± 0.23 | 62.26 ± 1.92 | 34.38 ± 1.19 | 49.09 ± 0.26 |
Factors | p-Value (2000 Permutations) | Explained Variance (%) |
---|---|---|
Harvest | <0.0005 | 35.1 |
Field | <0.0005 | 18.3 |
Cultivar | 0.003 | 5.7 |
Interactions | ||
Harvest × Field | <0.0005 | 19.3 |
Field × Cultivar | 0.015 | 6.5 |
Harvest × Cultivar | <0.0005 | 5.6 |
2018 a | 2019 a | 2020 a | C1 b | C2 b | C3 b | Sa c | So c | B c | |
---|---|---|---|---|---|---|---|---|---|
TSS (°Brix) | |||||||||
Median | 16.00 | 14.00 | 13.00 | 15.00 | 14.00 | 13.00 | 14.50 | 14.00 | 14.00 |
Minimum | 12.00 | 8.00 | 11.00 | 11.00 | 12.00 | 8.00 | 12.00 | 11.00 | 8.00 |
Maximum | 30.00 | 16.00 | 18.00 | 30.00 | 18.00 | 18.00 | 30.00 | 16.00 | 18.00 |
25% Percentile | 14.00 | 12.00 | 12.00 | 12.00 | 14.00 | 12.25 | 13.50 | 12.00 | 12.75 |
75% Percentile | 18.00 | 15.00 | 14.00 | 16.00 | 16.00 | 15.00 | 18.00 | 15.00 | 16.00 |
Titratable acidity (g citric acid/L juice) | |||||||||
Median | 0.38 | 0.59 | 0.48 | 0.52 | 0.48 | 0.37 | 0.49 | 0.50 | 0.41 |
Minimum | 0.32 | 0.35 | 0.27 | 0.34 | 0.32 | 0.27 | 0.35 | 0.27 | 0.32 |
Maximum | 0.76 | 0.78 | 0.54 | 0.76 | 0.78 | 0.65 | 0.76 | 0.78 | 0.50 |
25% Percentile | 0.34 | 0.43 | 0.40 | 0.48 | 0.42 | 0.33 | 0.40 | 0.45 | 0.34 |
75% Percentile | 0.48 | 0.65 | 0.50 | 0.59 | 0.51 | 0.41 | 0.61 | 0.62 | 0.48 |
pH | |||||||||
Median | 4.87 | 4.40 | 4.65 | 4.61 | 4.60 | 4.65 | 4.60 | 4.66 | 4.61 |
Minimum | 4.57 | 4.00 | 4.33 | 4.33 | 4.28 | 4.00 | 4.11 | 4.09 | 4.00 |
Maximum | 5.05 | 4.74 | 4.96 | 5.01 | 4.96 | 5.05 | 4.91 | 4.96 | 5.05 |
25% Percentile | 4.81 | 4.12 | 4.56 | 4.52 | 4.42 | 4.12 | 4.56 | 4.40 | 4.40 |
75% Percentile | 4.96 | 4.59 | 4.73 | 4.84 | 4.82 | 4.91 | 4.85 | 4.86 | 4.82 |
TPC (g GAE/L juice) | |||||||||
Median | 9.84 | 10.44 | 18.88 | 16.14 | 12.92 | 11.43 | 14.01 | 14.89 | 11.43 |
Minimum | 7.71 | 7.03 | 13.00 | 8.86 | 7.82 | 7.03 | 7.03 | 7.87 | 7.08 |
Maximum | 20.21 | 16.62 | 22.71 | 20.21 | 22.71 | 18.55 | 22.71 | 20.26 | 21.65 |
25% Percentile | 8.97 | 7.94 | 17.77 | 13.68 | 9.57 | 7.79 | 8.97 | 11.67 | 8.94 |
75% Percentile | 12.93 | 14.09 | 19.68 | 18.92 | 19.68 | 13.60 | 19.24 | 18.41 | 14.50 |
Antioxidant activity (mmol TE/L juice) | |||||||||
Median | 54.04 | 63.04 | 68.82 | 80.28 | 63.36 | 49.18 | 55.50 | 66.38 | 62.47 |
Minimum | 36.48 | 30.95 | 48.73 | 45.71 | 39.06 | 30.95 | 30.95 | 35.04 | 32.49 |
Maximum | 83.54 | 103.0 | 88.02 | 103.0 | 79.17 | 68.04 | 90.55 | 103.0 | 74.84 |
25% Percentile | 44.58 | 35.61 | 55.72 | 70.95 | 49.68 | 35.61 | 44.47 | 55.58 | 46.29 |
75% Percentile | 67.91 | 71.35 | 79.10 | 87.24 | 68.83 | 56.23 | 81.88 | 80.05 | 68.83 |
Nutritional Information | Juice | Pomace Powder | DRV [54] |
---|---|---|---|
Per 100 mL | Per 100 g | ||
Energy (kJ/kcal) | 211/50 | 1391/331 | 8400/2000 |
Fat (g) | <0.1 (LQ) | 2.5 | 70 |
Saturated fat acids (g) | <0.0001 (LQ) | 0.6 | 20 |
Monounsaturated fat acids (g) | - * | 0.3 | - |
Polyunsaturated fat acids (g) | - | 1.4 | - |
Trans Fat acids (g) | - | <0.0001 (LQ) | - |
Total carbohydrates (g) | 11.9 | 82.4 | 260 |
Total sugars (g) | 11.4 | 44.7 | 90 |
Fiber (g) | 0.5 | 22.4 | 30 |
Total protein (g) | 0.8 | 5.9 | 50 |
Vitamins | |||
Vitamin B6 (mg) | 0.27 | - | 1.4 |
Minerals | |||
Calcium (mg) | 16.5 | 164 | 800 |
Magnesium (mg) | 32.5 | 183 | 375 |
Iron (mg) | 0.11 | 2.41 | 14 |
Selenium (μg) | 0.78 | 4.2 | 55 |
Salt(Na × 2.5) (g) | <0.00625 (LQ) | <0.0206 (LQ) | 6 |
Water (g) | 89.4 | 5.0 | - |
Ash (g) | 1.13 | 4.23 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, C.P.; Patinha, S.; Rudnitskaya, A.; Santos, S.A.O.; Silvestre, A.J.D.; Rocha, S.M. Sustainable Valorization of Sambucus nigra L. Berries: From Crop Biodiversity to Nutritional Value of Juice and Pomace. Foods 2022, 11, 104. https://doi.org/10.3390/foods11010104
Costa CP, Patinha S, Rudnitskaya A, Santos SAO, Silvestre AJD, Rocha SM. Sustainable Valorization of Sambucus nigra L. Berries: From Crop Biodiversity to Nutritional Value of Juice and Pomace. Foods. 2022; 11(1):104. https://doi.org/10.3390/foods11010104
Chicago/Turabian StyleCosta, Carina Pedrosa, Samuel Patinha, Alisa Rudnitskaya, Sónia A. O. Santos, Armando J. D. Silvestre, and Sílvia M. Rocha. 2022. "Sustainable Valorization of Sambucus nigra L. Berries: From Crop Biodiversity to Nutritional Value of Juice and Pomace" Foods 11, no. 1: 104. https://doi.org/10.3390/foods11010104
APA StyleCosta, C. P., Patinha, S., Rudnitskaya, A., Santos, S. A. O., Silvestre, A. J. D., & Rocha, S. M. (2022). Sustainable Valorization of Sambucus nigra L. Berries: From Crop Biodiversity to Nutritional Value of Juice and Pomace. Foods, 11(1), 104. https://doi.org/10.3390/foods11010104