Will It Cricket? Product Development and Evaluation of Cricket (Acheta domesticus) Powder Replacement in Sausage, Pasta, and Brownies
Abstract
:1. Introduction
2. Materials
2.1. Sausage
2.2. Pasta
2.3. Brownies
3. Methods
3.1. Sausage
3.1.1. Cooking Yield
3.1.2. Color Measurements
- 0 < ΔE < 1—the difference is not noticeable;
- 1 < ΔE < 2—the difference is noticeable only for experienced observers;
- 2 < ΔE < 3.5—the difference is noticeable also for inexperienced observers;
- 3.5 < ΔE < 5—clear color difference;
- 5 < ΔE—observers notice two different colors [55].
3.1.3. pH Measurements
3.1.4. Textural Properties
3.2. Pasta
3.2.1. Cooking Properties
3.2.2. Color Measurements
3.2.3. Textural Properties
3.3. Brownie
Textural Properties
3.4. Proximate Analysis
3.5. Data Analysis
4. Results & Discussion
4.1. Sausage
4.1.1. Sausage Composition
4.1.2. Color
4.1.3. pH, Cooking Yield, and Textural Properties
4.2. Pasta
4.2.1. Pasta Composition
4.2.2. Pasta Color
4.2.3. Cooking and Textural Properties
4.3. Brownies
4.3.1. Brownie Composition
4.3.2. Textural Properties
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Nutrient | Amount per 100 g |
---|---|
Protein | 78.0 g |
Calories from Fat | 164 calories |
Calories | 410 calories |
Saturated Fat | 2.2 g |
Total Fat | 6.7 g |
Trans-fatty Acid | 0.02 g |
Carbohydrate | 5.5 g |
Calcium | 125 mg |
Potassium | 1.304 mg |
Fiber | 5.4 g |
Total sugar | 0.2 g |
Vitamin B12 | 5.5 g |
Iron | 16.6 mg |
Cholesterol | 6.67 mg |
Ash | 4.85 g |
Choline | 189 mg |
Folic Acid | 218 mg |
References
- van Huis, A.; van Itterbeeck, J.; Klunder, H.; Mertens, E.; Muir, G.; Vantomme, P. Edible Insects—Future Prospects for Food and Feed Security; FAO: Rome, Italy, 2013. [Google Scholar]
- McKenzie, F.C.; Williams, J. Sustainable Food Production: Constraints, Challenges and Choices by 2050. Food Secur. 2015, 7, 221–233. [Google Scholar] [CrossRef]
- United Nations. Food Production Must Double by 2050 to Meet Demand from World’s Growing Population, Innovative Strategies Needed to Combat Hunger, Experts Tell Second Committee. 2009. Available online: https://press.un.org/en/2009/gaef3242.doc.htm (accessed on 15 July 2021).
- Baiano, A. Edible Insects: An Overview on Nutritional Characteristics, Safety, Farming, Production Technologies, Regulatory Framework, and Socio-Economic and Ethical Implications. Trends Food Sci. Technol. 2020, 100, 35–50. [Google Scholar] [CrossRef]
- Choi, Y.-S.; Kim, T.-K.; Choi, H.-D.; Park, J.-D.; Sung, J.-M.; Jeon, K.-H.; Paik, H.-D.; Kim, Y.-B. Optimization of Replacing Pork Meat with Yellow Worm (Tenebrio Molitor L.) for Frankfurters. Korean J. Food Sci. Anim. Resour. 2017, 37, 617–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Govorushko, S. Global Status of Insects as Food and Feed Source: A Review. Trends Food Sci. Technol. 2019, 91, 436–445. [Google Scholar] [CrossRef]
- da Silva Lucas, A.J.; de Oliveira, L.M.; da Rocha, M.; Prentice, C. Edible Insects: An Alternative of Nutritional, Functional and Bioactive Compounds. Food Chem. 2020, 311, 126022. [Google Scholar] [CrossRef] [PubMed]
- de Castro, R.J.S.; Ohara, A.; Aguilar, J.G.d.S.; Domingues, M.A.F. Nutritional, Functional and Biological Properties of Insect Proteins: Processes for Obtaining, Consumption and Future Challenges. Trends Food Sci. Technol. 2018, 76, 82–89. [Google Scholar] [CrossRef]
- Jonas-Levi, A. The High Level of Protein Content Reported in Insects for Food and Feed Is Overestimated. J. Food Compos. Anal. 2017, 62, 184–188. [Google Scholar] [CrossRef]
- Dossey, A.T.; Tatum, J.T.; McGill, W.L. Modern Insect-Based Food Industry: Current Status, Insect Processing Technology, and Recommendations Moving Forward. In Insects as Sustainable Food Ingredients: Production, Processing and Food Applications; Dossey, A.T., Morales-Ramos, J.A., Rojas, M.G., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 113–152. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schlüter, O.K. Potential and Challenges of Insects as an Innovative Source for Food and Feed Production. Innov. Food Sci. Emerg. Technol. 2013, 17, 1–11. [Google Scholar] [CrossRef]
- Gere, A.; Radványi, D.; Héberger, K. Which Insect Species Can Best Be Proposed for Human Consumption? Innov. Food Sci. Emerg. Technol. 2019, 52, 358–367. [Google Scholar] [CrossRef]
- Feng, Y.; Zhao, M.; Ding, W.F.; Chen, X.M. Overview of Edible Insect Resources and Common Species Utilisation in China. J. Insects Food Feed 2020, 6, 13–25. [Google Scholar] [CrossRef]
- Yi, C.; He, Q.; Wang, L.; Kuang, R. The Utilization of Insect-Resources in Chinese Rural Area. J. Agric. Sci. 2010, 2. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, D.; Xu, M.-L.; Shi, S.-S.; Xiong, J.-F. Toxicological Characteristics of Edible Insects in China: A Historical Review. Food Chem. Toxicol. 2018, 119, 237–251. [Google Scholar] [CrossRef]
- Feced, C.G.; Moynihan, Q. European Commission Rules Yellow Mealworms As Safe to Eat in the EU. 2021. Business Insider, 6 May 2021. Available online: https://www.businessinsider.com/insects-bugs-edible-environment-sustainability-eco-friendly-health-sustainable-farming-2021-5 (accessed on 8 August 2021).
- Ardoin, R.; Prinyawiwatkul, W. Consumer Perceptions of Insect Consumption: A Review of Western Research since 2015. Int. J. Food Sci. Technol. 2021, 56, 4942–4958. [Google Scholar] [CrossRef]
- Sogari, G.; Menozzi, D.; Hartmann, C.; Mora, C. How to Measure Consumers Acceptance Towards Edible Insects?—A Scoping Review about Methodological Approaches. Edible Insects Food Sect. 2019, 27–44. [Google Scholar] [CrossRef]
- Hartmann, C.; Bearth, A.; Hartmann, C.; Bearth, A. Bugs on the Menu: Drivers and Barriers of Consumer Acceptance of Insects as Food. Edible Insects Food Sect. 2019, 45–55. [Google Scholar] [CrossRef]
- Alexina, C. Bugs Feeding the World: 12 Companies Selling Edible Insects. NYC Food Policy Center. 25 January 2017. Available online: https://www.nycfoodpolicy.org/bugs-feeding-world-12-companies-selling-edible-insects/(accessed on 14 September 2022).
- Food Products Made from Insects. Available online: https://www.insectgourmet.com/food-products-made-from-insects/ (accessed on 13 September 2022).
- Shahbandeh, M. Edible Insects—Statistics & Facts. Statista. 16 January 2019. Available online: https://www.statista.com/topics/4806/edible-insects/#dossierKeyfigures (accessed on 6 June 2022).
- Hartmann, C.; Siegrist, M. Development and Validation of the Food Disgust Scale. Food Qual. Prefer. 2018, 63, 38–50. [Google Scholar] [CrossRef]
- Orsi, L.; Voege, L.L.; Stranieri, S. Eating Edible Insects as Sustainable Food? Exploring the Determinants of Consumer Acceptance in Germany. Food Res. Int. 2019, 125. [Google Scholar] [CrossRef] [PubMed]
- Mancini, S.; Sogari, G.; Menozzi, D.; Nuvoloni, R.; Torracca, B.; Moruzzo, R.; Paci, G. Factors Predicting the Intention of Eating an Insect-Based Product. Foods 2019, 8, 270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- la Barbera, F.; Verneau, F.; Videbæk, P.N.; Amato, M.; Grunert, K.G. A Self-Report Measure of Attitudes toward the Eating of Insects: Construction and Validation of the Entomophagy Attitude Questionnaire. Food Qual. Prefer. 2020, 79. [Google Scholar] [CrossRef]
- Ruby, M.B.; Rozin, P. Disgust, Sushi Consumption, and Other Predictors of Acceptance of Insects as Food by Americans and Indians. Food Qual. Prefer. 2019, 74, 155–162. [Google Scholar] [CrossRef]
- Mancini, S.; Moruzzo, R.; Riccioli, F.; Paci, G. European Consumers’ Readiness to Adopt Insects as Food. A Review. Food Res. Int. 2019, 122, 661–678. [Google Scholar] [CrossRef]
- Verneau, F.; Zhou, Y.; Amato, M.; Grunert, K.G.; la Barbera, F. Cross-Validation of the Entomophagy Attitude Questionnaire (EAQ): A Study in China on Eaters and Non-Eaters. Food Qual. Prefer. 2021, 87, 104029. [Google Scholar] [CrossRef]
- la Barbera, F.; Verneau, F.; Amato, M.; Grunert, K.G.; Schnettler, B. Acceptance of Insect-Based Food in Chile: Evidence from a Survey Using the Entomophagy Attitude Questionnaire (EAQ). Food Qual. Prefer. 2021, 93, 104269. [Google Scholar] [CrossRef]
- Cerda, H.; Martinez, R.; Briceno, N.; Pizzoferrato, L.; Manzi, P.; Ponzetta, M.T.; Marin, O.; Paoletti, M.G. Palm Worm: (Rhynchophorus Palmarum) Traditional Food in Amazonas, Venezuela—Nutritional Composition, Small Scale Production and Tourist Palatability. Ecol. Food Nutr. 2001, 40, 13–32. [Google Scholar] [CrossRef]
- Lucchese-Cheung, T.; Aguiar, L.K.d.; da Silva, R.F.F.; Pereira, M.W. Determinants of the Intention to Consume Edible Insects in Brazil. J. Food Prod. Mark. 2020, 26, 297–316. [Google Scholar] [CrossRef]
- Gómez-Luciano, C.A.; de Aguiar, L.K.; Vriesekoop, F.; Urbano, B. Consumers’ Willingness to Purchase Three Alternatives to Meat Proteins in the United Kingdom, Spain, Brazil and the Dominican Republic. Food Qual. Prefer. 2019, 78, 103732. [Google Scholar] [CrossRef]
- Schardong, I.S.; Freiberg, J.A.; Santana, N.A.; Richards, N.S.P.d.S. Brazilian Consumers’ Perception of Edible Insects. Ciência Rural 2019, 49. [Google Scholar] [CrossRef]
- Bisconsin-Júnior, A.; Rodrigues, H.; Behrens, J.H.; da Silva, M.A.A.P.; Mariutti, L.R.B. “Food Made with Edible Insects”: Exploring the Social Representation of Entomophagy Where It Is Unfamiliar. Appetite 2022, 173, 106001. [Google Scholar] [CrossRef]
- Jensen, N.H.; Lieberoth, A. We Will Eat Disgusting Foods Together—Evidence of the Normative Basis of Western Entomophagy-Disgust from an Insect Tasting. Food Qual. Prefer. 2019, 72, 109–115. [Google Scholar] [CrossRef]
- Lammers, P.; Ullmann, L.M.; Fiebelkorn, F. Acceptance of Insects as Food in Germany: Is It about Sensation Seeking, Sustainability Consciousness, or Food Disgust? Food Qual. Prefer. 2019, 77, 78–88. [Google Scholar] [CrossRef]
- Woolf, E.; Zhu, Y.; Emory, K.; Zhao, J.; Liu, C. Willingness to Consume Insect-Containing Foods: A Survey in the United States. LWT 2019, 102, 100–105. [Google Scholar] [CrossRef]
- Serpico, M.; Rovai, D.; Wilke, K.; Lesniauskas, R.; Garza, J.; Lammert, A. Studying the Emotional Response to Insects Food Products. Foods 2021, 10, 2404. [Google Scholar] [CrossRef]
- Placentino, U.; Sogari, G.; Viscecchia, R.; de Devitiis, B.; Monacis, L. The New Challenge of Sports Nutrition: Accepting Insect Food as Dietary Supplements in Professional Athletes. Foods 2021, 10, 1117. [Google Scholar] [CrossRef]
- Tan, H.S.G.; Verbaan, Y.T.; Stieger, M. How Will Better Products Improve the Sensory-Liking and Willingness to Buy Insect-Based Foods? Food Res. Int. 2017, 92, 95–105. [Google Scholar] [CrossRef]
- Tan, H.S.G.; Fischer, A.R.H.; van Trijp, H.C.M.; Stieger, M. Tasty but Nasty? Exploring the Role of Sensory-Liking and Food Appropriateness in the Willingness to Eat Unusual Novel Foods like Insects. Food Qual. Prefer. 2016, 48, 293–302. [Google Scholar] [CrossRef]
- Looy, H.; Dunkel, F.V.; Wood, J.R. How Then Shall We Eat? Insect-Eating Attitudes and Sustainable Foodways. Agric. Hum. Values 2014, 31, 131–141. [Google Scholar] [CrossRef]
- Caparros Megido, R.; Gierts, C.; Blecker, C.; Brostaux, Y.; Haubruge, É.; Alabi, T.; Francis, F. Consumer Acceptance of Insect-Based Alternative Meat Products in Western Countries. Food Qual. Prefer. 2016, 52, 237–243. [Google Scholar] [CrossRef]
- Pambo, K.O.; Okello, J.J.; Mbeche, R.M.; Kinyuru, J.N.; Alemu, M.H. The Role of Product Information on Consumer Sensory Evaluation, Expectations, Experiences and Emotions of Cricket-Flour-Containing Buns. Food Res. Int. 2018, 106, 532–541. [Google Scholar] [CrossRef]
- Gurdian, C.E.; Torrico, D.D.; Li, B.; Tuuri, G.; Prinyawiwatkul, W. Effect of Informed Conditions on Sensory Expectations and Actual Perceptions: A Case of Chocolate Brownies Containing Edible-Cricket Protein. Foods 2021, 10, 1480. [Google Scholar] [CrossRef]
- Ardoin, R.; Marx, B.D.; Boeneke, C.; Prinyawiwatkul, W. Effects of Cricket Powder on Selected Physical Properties and US Consumer Perceptions of Whole-Wheat Snack Crackers. Int. J. Food Sci. Technol. 2021, 56, 4070–4080. [Google Scholar] [CrossRef]
- Barton, A.; Richardson, C.D.; McSweeney, M.B. Consumer Attitudes toward Entomophagy before and after Evaluating Cricket (Acheta Domesticus)-based Protein Powders. J. Food Sci. 2020, 85, 781–788. [Google Scholar] [CrossRef]
- The Culinary Pro. Sausages. Available online: https://www.theculinarypro.com/sausages (accessed on 12 September 2022).
- Duda, A.; Adamczak, J.; Chelminska, P.; Juszkiewicz, J.; Kowalczewski, P. Quality and Nutritional/Textural Properties of Durum Wheat Pasta Enriched with Cricket Powder. Foods 2019, 8, 46. [Google Scholar] [CrossRef] [Green Version]
- Gisslen, W. Rich Brownies. In Professional Baking; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; p. 505. [Google Scholar]
- Kim, H.W.; Setyabrata, D.; Lee, Y.J.; Jones, O.G.; Kim, Y.H.B. Effect of House Cricket (Acheta Domesticus) Flour Addition on Physicochemical and Textural Properties of Meat Emulsion Under Various Formulations. J. Food Sci. 2017, 82, 2787–2793. [Google Scholar] [CrossRef] [Green Version]
- Food Safety and Inspection Service. Safe Minimum Internal Temperature Chart. Available online: https://www.fsis.usda.gov/food-safety/safe-food-handling-and-preparation/food-safety-basics/safe-temperature-chart (accessed on 19 June 2022).
- Mokrzycki, W.; Tatol, M. Color Difference Delta E-A Survey Colour Difference ∆E-A Survey. Mach. Vis. Appl. 2014, 1, 14–18. [Google Scholar]
- Biró, B.; Fodor, R.; Szedljak, I.; Pásztor-Huszár, K.; Gere, A. Buckwheat-Pasta Enriched with Silkworm Powder: Technological Analysis and Sensory Evaluation. LWT 2019, 116, 108542. [Google Scholar] [CrossRef]
- Park, Y.-S.; Choi, Y.-S.; Hwang, K.-E.; Kim, T.-K.; Lee, C.-W.; Shin, D.-M.; Han, S.G. Physicochemical Properties of Meat Batter Added with Edible Silkworm Pupae (Bombyx Mori) and Transglutaminase. Korean J. Food Sci. Anim. Resour. 2017, 37, 351–359. [Google Scholar] [CrossRef] [Green Version]
- Technical, A. Pasta and Noodle Cooking Quality—Firmness. In AACC International Approved Methods; AACC International: St. Paul, MN, USA, 2009. [Google Scholar] [CrossRef]
- Švec, I.; Hrušková, M.; Vítová, M.; Sekerová, H. Colour Evaluation of Different Pasta Samples. Czech J. Food Sci. 2008, 26, 421–427. [Google Scholar] [CrossRef] [Green Version]
- Latimer, G.W. (Ed.) Official Methods of Analysis of AOAC International, 20th ed.; AOAC International: Rockville, MD, USA, 2016. [Google Scholar]
- Mauer, L.J.; Bradley, R.L. Moisture and Total Solids Analysis. In Food Analysis; Nielsen, S.S., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 257–286. [Google Scholar] [CrossRef]
- Krul, E.S. Calculation of Nitrogen-to-Protein Conversion Factors: A Review with a Focus on Soy Protein. JAOCS J. Am. Oil Chem. Society 2019, 96, 339–364. [Google Scholar] [CrossRef]
- Cruz-López, S.O.; Álvarez-Cisneros, Y.M.; Domínguez-Soberanes, J.; Escalona-Buendía, H.B.; Sánchez, C.N. Physicochemical and Sensory Characteristics of Sausages Made with Grasshopper (Sphenarium Purpurascens) Flour. Foods 2022, 11, 704. [Google Scholar] [CrossRef]
- Kim, H.-W.; Setyabrata, D.; Lee, Y.J.; Jones, O.G.; Kim, Y.H.B. Pre-Treated Mealworm Larvae and Silkworm Pupae as a Novel Protein Ingredient in Emulsion Sausages. Innov. Food Sci. Emerg. Technol. 2016, 38, 116–123. [Google Scholar] [CrossRef]
- Montowska, M.; Kowalczewski, P.Ł.; Rybicka, I.; Fornal, E. Nutritional Value, Protein and Peptide Composition of Edible Cricket Powders. Food Chem. 2019, 289, 130–138. [Google Scholar] [CrossRef]
- Smarzyński, K.; Sarbak, P.; Musiał, S.; Jezowski, P.; Piatek, M.; Kowalczewski, P.T. Nutritional Analysis and Evaluation of the Consumer Acceptance of Pork Pâté Enriched with Cricket Powder-Preliminary Study. Open Agric. 2019, 4, 159–163. [Google Scholar] [CrossRef]
- Cornforth, D. Color—Its Basis and Importance. In Quality Attributes and their Measurement in Meat, Poultry and Fish Products; Pearson, A.M., Dutson, T.R., Eds.; Springer: Boston, MA, USA, 1994; pp. 34–78. [Google Scholar] [CrossRef]
- Kim, H.W.; Hwang, K.E.; Song, D.H.; Kim, Y.J.; Lim, Y.-B.; Ham, Y.K.; Yeo, E.J.; Chang, S.J.; Choi, Y.S.; Kim, C.J. Effect of Glasswort (Salicornia Herbacea L.) on the Texture of Frankfurters. Meat Sci. 2014, 97, 513–517. [Google Scholar] [CrossRef]
- Hall, F.G.; Jones, O.G.; O’Haire, M.E.; Liceaga, A.M. Functional Properties of Tropical Banded Cricket (Gryllodes Sigillatus) Protein Hydrolysates. Food Chem. 2017, 224, 414–422. [Google Scholar] [CrossRef]
- Pintado, T.; Delgado-Pando, G. Towards More Sustainable Meat Products: Extenders as a Way of Reducing Meat Content. Foods 2020, 9, 1044. [Google Scholar] [CrossRef]
- Keeton, J.T. Low-Fat Meat Products—Technological Problems with Processing. Meat Sci. 1994, 36, 261–276. [Google Scholar] [CrossRef]
- Stone, A.K.; Tanaka, T.; Nickerson, M.T. Protein Quality and Physicochemical Properties of Commercial Cricket and Mealworm Powders. J. Food Sci. Technol. 2019, 56, 3355–3363. [Google Scholar] [CrossRef]
- Çabuk, B.; Yılmaz, B. Fortification of Traditional Egg Pasta (Erişte) with Edible Insects: Nutritional Quality, Cooking Properties and Sensory Characteristics Evaluation. J. Food Sci. Technol. 2020, 57, 2750–2757. [Google Scholar] [CrossRef]
- Carcea, M. Quality and Nutritional/Textural Properties of Durum Wheat Pasta Enriched with Cricket Powder. Foods 2020, 9, 1298. [Google Scholar] [CrossRef]
- Carcea, M. Nutritional Value of Grain-Based Foods. Foods 2020, 9, 504. [Google Scholar] [CrossRef]
- Bharath Kumar, S.; Prabhasankar, P. Low Glycemic Index Ingredients and Modified Starches in Wheat Based Food Processing: A Review. Trends Food Sci. Technol. 2014, 35, 32–41. [Google Scholar] [CrossRef]
- Enneking, D.; Wink, M. Towards the Elimination of Anti-Nutritional Factors in Grain Legumes. In Linking Research and Marketing Opportunities for Pulses in the 21st Century, Proceedings of the Third International Food Legumes Research Conference, Adelaide, South Australia, 22–26 September 1997; Knight, R., Ed.; Springer: Dordrecht, The Netherlands, 2000; Volume 34, pp. 671–683. [Google Scholar] [CrossRef]
- Kouřimská, L.; Adámková, A. Nutritional and Sensory Quality of Edible Insects. NFS J. 2016, 4, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Romano, A.; Ferranti, P.; Gallo, V.; Masi, P. New Ingredients and Alternatives to Durum Wheat Semolina for a High Quality Dried Pasta. Curr. Opin. Food Sci. 2021, 41, 249–259. [Google Scholar] [CrossRef]
- Jakab, I.; Tormási, J.; Dhaygude, V.; Mednyánszky, Z.S.; Sipos, L.; Szedljak, I. Cricket Flour-Laden Millet Flour Blends’ Physical and Chemical Composition and Adaptation in Dried Pasta Products. Acta Aliment. 2020, 49, 4–12. [Google Scholar] [CrossRef] [Green Version]
- Pasini, G.; Cullere, M.; Vegro, M.; Simonato, B.; Dalle Zotte, A. Potentiality of Protein Fractions from the House Cricket (Acheta Domesticus) and Yellow Mealworm (Tenebrio Molitor) for Pasta Formulation. LWT Food Sci. Technol. 2022, 164, 113638. [Google Scholar] [CrossRef]
- Li, H.; Zhang, W.C.; Tang, X.Y.; Wu, C.J.; Yu, S.J.; Zhao, Z.Q. Identification of Bitter-Taste Compounds in Class-III Caramel Colours. Flavour Fragr. J. 2021, 36, 404–411. [Google Scholar] [CrossRef]
- Mahmoud, E.A.M.; Nassef, S.L.; Basuny, A.M.M. Production of High Protein Quality Noodles Using Wheat Flour Fortified with Different Protein Products from Lupine. Ann. Agric. Sci. 2012, 57, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Phongthai, S.; D’Amico, S.; Schoenlechner, R.; Homthawornchoo, W.; Rawdkuen, S. Effects of Protein Enrichment on the Properties of Rice Flour Based Gluten-Free Pasta. LWT 2017, 80, 378–385. [Google Scholar] [CrossRef]
- Bustos, M.C.; Perez, G.T.; Leon, A.E. Structure and Quality of Pasta Enriched with Functional Ingredients. RSC Adv. 2015, 5, 30780–30792. [Google Scholar] [CrossRef]
- Larrosa, V.; Lorenzo, G.; Zaritzky, N.; Califano, A. Improvement of the Texture and Quality of Cooked Gluten-Free Pasta. LWT 2016, 70, 96–103. [Google Scholar] [CrossRef]
- Kaur, G.; Sharma, S.; Nagi, H.P.S.; Ranote, P.S. Enrichment of Pasta with Different Plant Proteins. J. Food Sci. Technol. 2013, 50, 1000–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lombardi, A.; Vecchio, R.; Borrello, M.; Caracciolo, F.; Cembalo, L. Willingness to Pay for Insect-Based Food: The Role of Information and Carrier. Food Qual. Prefer. 2019, 72, 177–187. [Google Scholar] [CrossRef]
- Ardoin, R.P. Evaluating US Consumers’ Perception of Foods Made with Cricket Evaluating US Consumers’ Perception of Foods Made with Cricket Powder Powder. [CrossRef]
- Kowalczewski, P.Ł.; Gumienna, M.; Rybicka, I.; Górna, B.; Sarbak, P.; Dziedzic, K.; Kmiecik, D. Nutritional Value and Biological Activity of Gluten-Free Bread Enriched with Cricket Powder. Molecules 2021, 26, 1184. [Google Scholar] [CrossRef] [PubMed]
- Pauter, P.; Różańska, M.; Wiza, P.; Dworczak, S.; Grobelna, N.; Sarbak, P.; Kowalczewski, P. Effects of the Replacement of Wheat Flour with Cricket Powder on the Characteristics of Muffins. Acta Sci. Pol. Technol. Aliment. 2018, 17, 227–233. [Google Scholar] [CrossRef]
- Çabuk, B. Influence of Grasshopper (Locusta Migratoria) and Mealworm (Tenebrio Molitor) Powders on the Quality Characteristics of Protein Rich Muffins: Nutritional, Physicochemical, Textural and Sensory Aspects. J. Food Meas. Charact. 2021, 15, 3862–3872. [Google Scholar] [CrossRef]
- de Oliveira, L.M.; da Silva Lucas, A.J.; Cadaval, C.L.; Mellado, M.S. Bread Enriched with Flour from Cinereous Cockroach (Nauphoeta Cinerea). Innov. Food Sci. Emerg. Technol. 2017, 44, 30–35. [Google Scholar] [CrossRef]
- Bresciani, A.; Cardone, G.; Jucker, C.; Savoldelli, S.; Marti, A. Technological Performance of Cricket Powder (Acheta domesticus L.) in Wheat-Based Formulations. Insects 2022, 13, 546. [Google Scholar] [CrossRef] [PubMed]
- González, C.M.; Garzón, R.; Rosell, C.M. Insects as Ingredients for Bakery Goods. A Comparison Study of H. Illucens, A. Domestica and T. Molitor Flours. Innov. Food Sci. Emerg. Technol. 2019, 51, 205–210. [Google Scholar] [CrossRef]
- Roncolini, A.; Milanović, V.; Cardinali, F.; Osimani, A.; Garofalo, C.; Sabbatini, R.; Clementi, F.; Pasquini, M.; Mozzon, M.; Foligni, R.; et al. Protein Fortification with Mealworm (Tenebrio molitor L.) Powder: Effect on Textural, Microbiological, Nutritional and Sensory Features of Bread. PLoS ONE 2019, 14, e0211747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bravo-Núñez, Á.; Gómez, M. Enrichment of Cakes and Cookies with Pulse Flours. A Review. Food Rev. Int. 2021, 1–19. [Google Scholar] [CrossRef]
- Yeom, K.H.; Kim, J.H.; Lee, J.H.; Bae, I.H.; Chun, S.S. Quality Characteristics and Consumer Acceptability of Brownies with Rice Bran Dietary Fiber. J. Korean Soc. Food Sci. Nutr. 2016, 45, 1823–1829. [Google Scholar] [CrossRef]
- Bawa, M.; Songsermpong, S.; Kaewtapee, C.; Chanput, W. Nutritional, Sensory, and Texture Quality of Bread and Cookie Enriched with House Cricket (Acheta Domesticus) Powder. J. Food Process. Preserv. 2020, 44. [Google Scholar] [CrossRef]
- Castro Delgado, M.; Chambers, E.; Carbonell-Barrachina, A.; Noguera Artiaga, L.; Vidal Quintanar, R.; Burgos Hernandez, A. Consumer Acceptability in the USA, Mexico, and Spain of Chocolate Chip Cookies Made with Partial Insect Powder Replacement. J. Food Sci. 2020, 85, 1621–1628. [Google Scholar] [CrossRef] [PubMed]
- JR Unique Foods Ltd. Cricket Powder (Acheta Domesticus). Available online: https://jrunique.com/product/acheta-cricket-powder/ (accessed on 25 August 2022).
Ingredients | Control Usage Level (%) | CP Usage Level (%) | Ingredient Source & Location |
---|---|---|---|
Pork Shoulder Lean | 62.29 | 56.06 | Swift Meats, Greeley, CO, USA |
Pork Shoulder Fat | 31.15 | 31.15 | Swift Meats, Greeley, CO, USA |
Cricket Powder | - | 6.23 | JR Unique Foods, Udon Thani, Thailand |
Fennel Seed, Ground | 0.91 | 0.91 | The Spice Hunter Inc., San Luis Obispo, CA, USA |
Dried Basil | 0.13 | 0.13 | The Spice Hunter Inc., San Luis Obispo, CA, USA |
Dried Oregano | 0.16 | 0.16 | Spicely Organics, Fremont, CA, USA |
Crushed Red Chili Pepper | 0.17 | 0.17 | The Spice Hunter Inc., San Luis Obispo, CA, USA |
Garlic, Minced | 3.74 | 3.74 | The Garlic Company, Bakersfield, CA, USA |
Onion Powder | 0.37 | 0.37 | McCormick & Co., Inc., Hunt Valley, MD, USA |
Black Pepper, Ground | 0.09 | 0.09 | McCormick & Co., Inc., Hunt Valley, MD, USA |
Salt | 0.76 | 0.76 | First Street, Smart & Final, Commerce, CA, USA |
Dried Thyme | 0.14 | 0.14 | The Spice Hunter Inc., San Luis Obispo, CA, USA |
Dried Rosemary | 0.10 | 0.10 | Morton & Bassett Spices, Rohnert, CA, USA |
Ingredients | Control Usage Level (%) | CP Usage Level (%) | Source & Location |
---|---|---|---|
Durum Wheat Semolina | 61.41 | 73.87 | Miller Milling Company, Fresno, CA, USA |
Whole Wheat Flour | 14.41 | - | King Arthur Flour, Norwich, VT, USA |
Cricket Powder | - | 5.00 | JR Unique Foods, Udon Thani, Thailand |
P600 Powdered Caramel Coloring | 0.10 | 0.075 | Sethness Products Company, Clinton, IA, USA |
Water | 24.08 | 21.05 | - |
Ingredient | Control Usage Level (%) | CP Usage Level (%) | Source & Location |
---|---|---|---|
Dutch Cocoa Powder | 4.91 | 4.91 | The Hershey Co., Hershey, PA, USA |
Bittersweet Chocolate | 11.86 | 11.86 | Puratos Chocolate USA, Kenosha, WI, USA |
Unsalted Butter | 26.18 | 26.18 | The Kroger Co., Cincinnati, OH, USA |
Eggs, Beaten | 16.36 | 16.36 | The Kroger Co., Cincinnati, OH, USA |
Granulated Sugar | 21.27 | 21.27 | Sysco Corp., Houston, TX, USA |
Salt | 0.36 | 0.36 | First Street, Smart & Final, Commerce, CA, USA |
Vanilla Extract | 0.57 | 0.57 | Cook Flavoring Co., Paso Robles, CA, USA |
Bread Flour | 9.41 | 2.41 | General Mills Operations Inc., Minneapolis, MN, USA |
Cricket Powder | - | 7.00 | JR Unique Foods, Udon Thani, Thailand |
Bittersweet Chocolate Chunks | 9.07 | 9.07 | Puratos Chocolate USA, Kenosha, WI, USA |
Product Type | Control | CP |
---|---|---|
Proximate Composition | ||
Moisture (%) 1 | 59.77 ± 0.47 | 54.88 ± 1.19 |
Protein (%) | 33.02 ± 1.06 | 32.38 ± 2.15 |
Fat (%) 1 | 48.61 ± 1.75 | 42.52 ± 1.47 |
Carbohydrates (%) 1 | 14.20 ± 0.16 | 20.81 ± 3.39 |
Ash (%) | 4.17 ± 0.09 | 4.29 ± 0.09 |
Color (Raw) | ||
L* | 31.10 ± 3.26 | 29.97 ± 1.12 |
a* 1 | −1.44 ± 0.24 | −2.42 ± 0.99 |
b* | 8.53 ± 0.60 | 8.36 ± 0.94 |
ΔE | - | 1.50 |
Color (Cooked) | ||
L* | 30.86 ± 1.35 | 30.05 ± 1.44 |
a* 1 | −1.02 ± 0.79 | −2.08 ± 0.39 |
b* 1 | 10.25 ± 0.79 | 8.98 ± 0.42 |
ΔE | - | 1.84 |
pH | ||
Raw | 6.20 ± 0.07 | 6.18 ± 0.03 |
Cooked | 6.36 ± 0.08 | 6.34 ± 0.17 |
Cooking Yield (%) 1 | 69.08 ± 4.05 | 81.08 ± 3.55 |
Textural Properties | ||
Firmness (N) 1 | 23.78 ± 2.01 | 16.35 ± 2.95 |
Cohesiveness 1 | 0.45 ± 0.07 | 0.34 ± 0.09 |
Springiness (mm) 1 | 6.85 ± 0.86 | 8.71 ± 1.43 |
Product Type | Control | CP |
---|---|---|
Proximate Composition | ||
Moisture (%) | 5.62 ± 0.55 | 5.87 ± 0.34 |
Protein (%) 1 | 13.13 ± 3.16 | 16.83 ± 0.24 |
Fat (%) 1 | 0.22 ± 0.36 | 1.23 ± 0.17 |
Carbohydrates (%) 1 | 82.48 ± 3.50 | 77.65 ± 0.23 |
Ash (%) | 1.02 ± 0.01 | 1.04 ± 0.14 |
Color (Dried) | ||
L* | 30.71 ± 1.08 | 30.66 ± 1.07 |
a* | −1.82 ± 0.49 | −1.74 ± 0.49 |
b* | 8.93 ± 1.02 | 9.04 ± 0.19 |
ΔE | - | 0.15 |
Color (Cooked) | ||
L*1 | 58.16 ± 2.51 | 54.67 ± 4.34 |
a* | 1.34 ± 0.89 | 0.91 ± 0.83 |
b* | 13.47 ± 2.86 | 12.58 ± 2.21 |
ΔE | - | 3.63 |
Cooking Properties | ||
OCT (min) | 5.36 ± 0.44 | 5.28 ± 0.44 |
WA (%) | 140.33 ± 10.25 | 149.33 ± 10.25 |
Cooking Loss (%) | 6.18 ± 2.89 | 6.06 ± 0.97 |
Textural Properties | ||
Firmness (N) | 1.84 ± 0.49 | 1.92 ± 0.10 |
Cohesiveness | 0.40 ± 0.48 | 0.23 ± 0.29 |
Springiness (mm) | 0.50 ± 0.19 | 0.50 ± 0.29 |
Product Type | Control | CP |
---|---|---|
Proximate Composition | ||
Moisture (%) | 11.47 ± 2.41 | 11.94 ± 2.41 |
Protein (%) 1 | 11.91 ± 0.55 | 19.26 ± 1.99 |
Fat (%) 1 | 37.28 ± 0.85 | 38.95 ± 0.86 |
Carbohydrates (%) 1 | 53.23 ± 0.90 | 46.93 ± 1.68 |
Ash (%) | 2.03 ± 0.26 | 2.08 ± 0.26 |
Textural Properties | ||
Firmness (N) | 38.44 ± 13.22 | 37.01 ± 7.86 |
Springiness (mm) | 7.67 ± 2.94 | 6.03 ± 1.56 |
Chewiness (mJ) 1 | 81.47 ± 34.54 | 38.33 ± 16.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, I.; Peterson, A.; Madden, J.; Huang, E.; Amin, S.; Lammert, A. Will It Cricket? Product Development and Evaluation of Cricket (Acheta domesticus) Powder Replacement in Sausage, Pasta, and Brownies. Foods 2022, 11, 3128. https://doi.org/10.3390/foods11193128
Ho I, Peterson A, Madden J, Huang E, Amin S, Lammert A. Will It Cricket? Product Development and Evaluation of Cricket (Acheta domesticus) Powder Replacement in Sausage, Pasta, and Brownies. Foods. 2022; 11(19):3128. https://doi.org/10.3390/foods11193128
Chicago/Turabian StyleHo, Isaac, Adelynn Peterson, Jack Madden, Evan Huang, Samir Amin, and Amy Lammert. 2022. "Will It Cricket? Product Development and Evaluation of Cricket (Acheta domesticus) Powder Replacement in Sausage, Pasta, and Brownies" Foods 11, no. 19: 3128. https://doi.org/10.3390/foods11193128
APA StyleHo, I., Peterson, A., Madden, J., Huang, E., Amin, S., & Lammert, A. (2022). Will It Cricket? Product Development and Evaluation of Cricket (Acheta domesticus) Powder Replacement in Sausage, Pasta, and Brownies. Foods, 11(19), 3128. https://doi.org/10.3390/foods11193128