Wheat Starch Modified with Ligustrum robustum (Rxob.) Blume Extract and Its Action Mechanism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of Wheat Starch and L. robustum Extract
2.3. Effect of LRE on the Physicochemical Properties of Wheat Starch
2.4. Determination of the Quality Properties of Wheat Starch Biscuits with LRE
2.5. Molecular Dynamics Simulation
2.6. Statistical Analysis
3. Results and Discussion
3.1. Thermodynamic Properties of Wheat Starch with LRE
3.2. Pasting Characteristics of Wheat Starch with LRE
3.3. Rheological Properties of Wheat Starch with LRE
3.4. Gel Microstructure of Wheat Starch with LRE
3.5. Crystalline Form and Recrystallization Degree of Wheat Starch with LRE
3.6. Quality Properties of Wheat Starch Biscuit with LRE
3.7. Molecular Interaction between Starch and LRE
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Valencia-Chamorro, S.A.; Palou, L.; Del-Rio, M.A.; Perez-Gago, M.B. Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: A review. Crit. Rev. Food Sci. Nutr. 2011, 51, 872–900. [Google Scholar] [CrossRef] [PubMed]
- Bordenave, N.; Hamaker, B.R.; Ferruzzi, M.G. Nature and consequences of non-covalent interactions between flavonoids and macronutrients in foods. Food Funct. 2014, 5, 18–34. [Google Scholar] [CrossRef] [PubMed]
- Punia, S. Barley starch modifications: Physical, chemical and enzymatic—A review. Int. J. Biol. Macromol. 2020, 144, 578–585. [Google Scholar] [CrossRef]
- Masina, N.; Choonara, Y.E.; Kumar, P.; du-Toit, L.C.; Govender, M.; Indermun, S.; Pillay, V. A review of the chemical modification techniques of starch. Carbohyd. Polym. 2017, 157, 1226–1236. [Google Scholar] [CrossRef]
- Le-Bourvellec, C.; Renard, C.M.G.C. Interactions between polyphenols and macromolecules: Quantification methods and mechanisms. Crit. Rev. Food Sci. 2012, 52, 213–248. [Google Scholar] [CrossRef]
- Wu, Y.; Lin, Q.; Chen, Z.; Xiao, H. The interaction between tea polyphenols and rice starch during gelatinization. Food Sci. Technol. Int. 2011, 17, 569–577. [Google Scholar] [CrossRef] [Green Version]
- Zhu, F. Interactions between starch and phenolic compound. Trends Food Sci. Technol. 2015, 43, 129–143. [Google Scholar] [CrossRef]
- Diez-Sanchez, E.; Quiles, A.; Hernando, I. Interactions between blackcurrant polyphenols and food macronutrients in model systems: In vitro digestion studies. Foods 2021, 10, 847. [Google Scholar] [CrossRef]
- Bangar, S.P.; Purewal, S.S.; Trif, M.; Maqsood, S.; Kumar, M.; Manjunatha, V.; Rusu, A.V. Functionality and applicability of starch-based films: An eco-friendly approach. Foods 2021, 10, 2181. [Google Scholar] [CrossRef]
- Lau, K.M.; He, Z.D.; Dong, H.; Fung, K.P.; But, P.P.H. Anti-oxidative, anti-inflammatory and hepato-protective effects of Ligustrum robustum. J. Ethnopharmacol. 2002, 83, 63–71. [Google Scholar] [CrossRef]
- Steeneken, P.A.M.; Helmens, H.J. Laboratory-scale dry/wet-milling process for the extraction of starch and gluten from wheat. Starch-Starke 2009, 61, 389–397. [Google Scholar] [CrossRef]
- Abdi, R.; Joye, I.J. Prebiotic Potential of Cereal Components. Foods 2021, 10, 2338. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.P.; Li, Y.; Tian, Y.Q.; Xu, X.M.; Ji, X.X.; Cao, X.; Jin, Z.Y. A novel triple-wavelength colorimetric method for measuring amylose and amylopectin contents. Starch-Starke 2010, 62, 508–516. [Google Scholar] [CrossRef]
- Yu, Z.L.; Zhang, Z.; Zhu, R.X.; Jia, L.R.; He, Q.; Zeng, W.C. Studies on the antioxidant activity of Ligustrum robustum (Rxob.) Blume extracts. J. Chin. Inst. Food Sci. Technol. 2017, 17, 234–240. [Google Scholar] [CrossRef]
- Yu, Z.L.; Gao, H.X.; Zhang, Z.; He, Z.; He, Q.; Jia, L.R.; Zeng, W.C. Inhibitory effects of Ligustrum robustum (Rxob.) Blume extract on alpha-amylase and alpha-glucosidase. J. Funct. Foods 2015, 19, 204–213. [Google Scholar] [CrossRef]
- Gao, H.X.; Yu, Z.L.; He, Q.; Tang, S.H.; Zeng, W.C. A potentially functional yogurt co-fermentation with Gnaphalium affine. LWT 2018, 91, 423–430. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, H.J.; Sun, H.D.; Pan, L.T.; Yao, P.; Chen, D.Y. Monoterpenoid glycosides from Ligustrum robustum. Phytochemistry 1998, 48, 1013–1018. [Google Scholar] [CrossRef]
- He, Z.D.; Lau, K.M.; But, P.P.H.; Jiang, R.W.; Dong, H.; Ma, S.C.; Fung, K.P.; Ye, W.C.; Sun, H.D. Antioxidative glycosides from the leaves of Ligustrum robustum. J. Nat. Prod. 2003, 66, 851–854. [Google Scholar] [CrossRef]
- Xiao, H.; Lin, Q.; Liu, G.Q.; Yu, F. Evaluation of black tea polyphenol extract against the retrogradation of starches from various plant sources. Molecules 2012, 17, 8147–8158. [Google Scholar] [CrossRef]
- Chen, N.; Chen, L.; Gao, H.X.; Zeng, W.C. Mechanism of bridging and interfering effects of tea polyphenols on starch molecules. J. Food Process Pres. 2020, 44, e14576. [Google Scholar] [CrossRef]
- Pan, J.; Li, M.; Zhang, S.; Jiang, Y.; Lv, Y.; Liu, J.; Liu, Q.; Zhu, Y.; Zhang, H. Effect of epigallocatechin gallate on the gelatinisation and retrogradation of wheat starch. Food Chem. 2019, 294, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Liang, H.; Xu, W.; Wang, Y.; An, Y.; Yan, X.; Ye, S.; Huang, Q.; Liu, J.; Li, B. Synergistic effects of small amounts of konjac glucomannan on functional properties of egg white protein. Food Hydrocoll. 2016, 52, 213–220. [Google Scholar] [CrossRef]
- Kollman, P.A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.H.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; et al. Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc. Chem. Res. 2000, 33, 889–897. [Google Scholar] [CrossRef]
- Guo, J.; Tang, W.; Quek, S.Y.; Liu, Z.; Lu, S.; Tu, K. Evaluation of structural and physicochemical properties of octenyl succinic anhydride modified sweet potato starch with different degrees of substitution. J. Food Sci. 2020, 85, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Zhang, M.; Zhang, R.; Huang, L.; Jia, X.; Huang, F.; Liu, L. Physicochemical interactions between rice starch and different polyphenols and structural characterization of their complexes. LWT 2020, 125, 109227. [Google Scholar] [CrossRef]
- Du, J.J.; Yang, Z.K.; Xu, X.N.; Wang, X.N.; Du, X.F. Effects of tea polyphenols on the structural and physicochemical properties of high-hydrostatic-pressure-gelatinized rice starch. Food Hydrocoll. 2019, 91, 256–262. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, B.; Zhang, S.; Zhu, Y.; Tian, Y. Inhibition of wheat starch retrogradation by tea derivatives. Carbohyd. Poly. 2015, 134, 413–417. [Google Scholar] [CrossRef]
- Zhang, B.; Saleh, A.S.M.; Su, C.; Gong, B.; Zhao, K.; Zhang, G.; Yan, W. The molecular structure, morphology, and physicochemical property and digestibility of potato starch after repeated and continuous heat-moisture treatment. J. Food Sci. 2020, 85, 4215–4224. [Google Scholar] [CrossRef]
- Chen, L.; Ren, F.; Zhang, Z.; Tong, Q.; Rashed, M.M.A. Effect of pullulan on the short-term and long-term retrogradation of rice starch. Carbohydr. Polym. 2015, 115, 415–421. [Google Scholar] [CrossRef]
- Liu, R.; Xu, C.; Cong, X.; Wu, T.; Song, Y.; Zhang, M. Effects of oligomeric procyanidins on the retrogradation properties of maize starch with different amylose/amylopectin ratios. Food Chem. 2017, 221, 2010–2017. [Google Scholar] [CrossRef]
- Sang, S.; Lambert, J.D.; Ho, C.-T.; Yang, C.S. The chemistry and biotransformation of tea constituents. Pharmacol. Res. 2011, 64, 87–99. [Google Scholar] [CrossRef]
- Harbowy, M.E.; Balentine, D.A. Tea chemistry. Crit. Rev. Plant Sci. 1997, 16, 415–480. [Google Scholar] [CrossRef]
- Schreiner, W.; Karch, R.; Knapp, B.; Ilieva, N. Relaxation estimation of RMSD in molecular dynamics immunosimulations. Comput. Math. Methods Med. 2012, 1, 173521. [Google Scholar] [CrossRef]
Concentration of LRE | Gelatinization Parameter | Pasting Parameter | |||||||
---|---|---|---|---|---|---|---|---|---|
To (°C) | Tp (°C) | Tc (°C) | ΔHg (J/g) | PV (cp) | HV (cp) | FV (cp) | BD (cp) | PT (min) | |
0% | 57.46 ± 0.56 ab | 62.20 ± 0.36 ab | 67.09 ± 0.24 a | 19.14 ± 0.32 a | 2927 ± 2 a | 2221 ± 3 a | 3459 ± 3 a | 706 ± 4 d | 6.93 ± 0.3 a |
5% | 56.43 ± 0.13 b | 61.70 ± 0.21 bc | 66.34 ± 0.22 c | 17.13 ± 0.41 b | 2821 ± 3 b | 1971 ± 2 b | 3442 ± 2 b | 850 ± 1 c | 6.47 ± 0.1 b |
10% | 56.12 ± 0.22 bc | 61.91 ± 0.11 b | 66.57 ± 0.14 bc | 15.24 ± 0.37 c | 2626 ± 2 cd | 1642 ± 3 c | 3232 ± 2 bc | 984 ± 3 b | 6.20 ± 0.2 bc |
20% | 57.55 ± 0.37 a | 62.74 ± 0.32 a | 66.78 ± 0.26 b | 7.15 ± 0.42 d | 2634 ± 3 c | 1461 ± 4 d | 3061 ± 1 c | 1173 ± 3 a | 5.73 ± 0.1 c |
Concentration of LRE | L* | a* | b* | Hardness (g) | Fracturability (g·s) |
---|---|---|---|---|---|
0% | 88.88 ± 2.23 ab | −0.35 ± 0.03 cd | 10.40 ± 1.81 f | 1830 ± 56 a | 11,054 ± 575 a |
1% | 89.91 ± 1.59 a | −0.58 ± 0.05 e | 12.27 ± 1.65 e | 1709 ± 129 b | 8712 ± 361 b |
2% | 87.42 ± 2.72 b | −0.48 ± 0.09 d | 19.53 ± 1.62 d | 1550 ± 106 c | 8559 ± 772 bc |
3% | 85.01 ± 1.46 c | −0.28 ± 0.01 c | 24.43 ± 1.80 c | 1413 ± 184 d | 8402 ± 247 cd |
4% | 84.60 ± 0.98 cd | −0.06 ± 0.10 b | 26.71 ± 1.00 b | 1262 ± 87 e | 8451 ± 501 c |
5% | 83.73 ± 0.60 d | 0.04 ± 0.13 a | 29.83 ± 1.37 a | 874 ± 90 f | 7703 ± 258 d |
Interaction System | Simulation Phase | Hydrogen Bond Acceptor | Hydrogen Bond Donor | Frames | Ratio (%) | ||
---|---|---|---|---|---|---|---|
Acceptor Molecule | Acceptor Atom | Donor Molecule | Donor Atom | ||||
SGS alone | Heating | SGS | 4GA_25@O2 | SGS | 4GA_4@H6O | 606 | 12.1 |
SGS | 4GA_25@O5 | SGS | 4GA_7@H3O | 545 | 10.9 | ||
SGS | 4GA_25@O6 | SGS | 4GA_7@H3O | 364 | 7.3 | ||
SGS | 4GA_30@O5 | SGS | 4GA_12@H3O | 310 | 6.2 | ||
SGS | 4GA_25@O6 | SGS | 4GA_7@H2O | 282 | 5.7 | ||
Cooling | SGS | 4GA_28@O2 | SGS | 4GA_7@H6O | 2560 | 51.2 | |
SGS | 4GA_27@O2 | SGS | 4GA_7@H3O | 2356 | 47.1 | ||
SGS | 4GA_37@O2 | SGS | 4GA_15@H2O | 2322 | 46.4 | ||
SGS | 4GA_35@O6 | SGS | 4GA_16@H2O | 2048 | 40.9 | ||
SGS | 4GA_30@O5 | SGS | 4GA_12@H3O | 1659 | 33.2 | ||
LGB/SGS group | Heating | SGS | 4GA_28@O2 | SGS | 4GA_27@H3O | 1157 | 23.1 |
SGS | 4GA_9@O2 | SGS | 4GA_8@H3O | 1063 | 21.2 | ||
SGS | 4GA_8@O2 | SGS | 4GA_7@H3O | 1048 | 20.9 | ||
SGS | 4GA_7@O6 | SGS | 4GA_29@H2O | 960 | 19.2 | ||
SGS | 4GA_5@O2 | SGS | 4GA_4@H3O | 959 | 19.2 | ||
Cooling | SGS | 4GA_7@O6 | SGS | 4GA_29@H2O | 4367 | 87.3 | |
SGS | 0GA_39@O2 | SGS | 4GA_19@H2O | 3960 | 79.2 | ||
SGS | 4GA_26@O5 | SGS | 4GA_25@H6O | 3902 | 78.0 | ||
SGS | 4GA_24@O5 | SGS | 4GA_29@H3O | 3493 | 69.9 | ||
SGS | 4GA_28@O2 | SGS | 4GA_27@H3O | 3340 | 66.8 | ||
LGN/SGS group | Heating | SGS | 4GA_9@O2 | SGS | 4GA_8@H3O | 1298 | 26.0 |
SGS | 4GA_19@O2 | SGS | 4GA_18@H3O | 1182 | 23.6 | ||
SGS | 4GA_14@O2 | SGS | 4GA_13@H3O | 943 | 18.9 | ||
SGS | 4GA_4@O5 | SGS | 4GA_3@H6O | 885 | 17.7 | ||
SGS | 4GA_18@O2 | SGS | 4GA_17@H3O | 873 | 17.5 | ||
Cooling | SGS | 4GA_8@O2 | SGS | 4GA_38@H2O | 4076 | 81.5 | |
SGS | 0GA_39@O2 | SGS | 4GA_14@H3O | 3808 | 76.2 | ||
SGS | 4GA_36@O3 | SGS | 4GA_15@H3O | 3022 | 60.4 | ||
SGS | 4GA_13@O2 | SGS | 4GA_12@H3O | 2981 | 59.6 | ||
SGS | 4GA_8@O2 | SGS | 4GA_38@H3O | 2761 | 55.2 | ||
LPJ/SGS group | Heating | SGS | 4GA_29@O2 | SGS | 4GA_28@H3O | 1650 | 33.0 |
SGS | 4GA_30@O2 | SGS | 4GA_29@H3O | 1480 | 29.6 | ||
SGS | 4GA_36@O2 | SGS | 4GA_35@H3O | 1340 | 26.8 | ||
SGS | 4GA_4@O2 | SGS | 4GA_25@H6O | 1256 | 25.1 | ||
SGS | 4GA_18@O2 | SGS | 4GA_17@H3O | 1181 | 23.6 | ||
Cooling | SGS | 4GA_38@O2 | SGS | 4GA_19@H2O | 4593 | 91.9 | |
SGS | 4GA_37@O3 | SGS | 4GA_12@H3O | 4330 | 86.6 | ||
SGS | 4GA_18@O2 | SGS | 4GA_17@H3O | 4259 | 85.2 | ||
SGS | 4GA_17@O2 | SGS | 4GA_16@H3O | 3858 | 77.2 | ||
SGS | 0GA_20@O2 | SGS | 4GA_19@H3O | 3436 | 68.7 |
Interaction System | Simulation Phase | Hydrogen Bond Acceptor | Hydrogen Bond Donor | Frames | Ratio (%) | ||
---|---|---|---|---|---|---|---|
Acceptor Molecule | Acceptor Atom | Donor Molecule | Donor Atom | ||||
LGB/SGS group | Heating | LGB | LGB_1@O1 | SGS | 4GA_26@H2O | 464 | 9.3 |
LGB | LGB_1@O7 | SGS | 4GA_5@H3O | 380 | 7.6 | ||
SGS | 4GA_29@O2 | LGB | LGB_1@H5 | 355 | 7.1 | ||
SGS | 4GA_25@O6 | LGB | LGB_1@H4 | 276 | 5.5 | ||
SGS | 4GA_7@O2 | LGB | LGB_1@H5 | 245 | 4.9 | ||
Cooling | SGS | 4GA_29@O2 | LGB | LGB_1@H5 | 4759 | 95.1 | |
SGS | 4GA_25@O6 | LGB | LGB_1@H4 | 1702 | 34.0 | ||
LGB | LGB_1@O13 | SGS | 4GA_8@H2O | 1605 | 32.1 | ||
LGB | LGB_1@O1 | SGS | 4GA_26@H2O | 866 | 17.3 | ||
SGS | 4GA_7@O3 | LGB | LGB_1@H26 | 658 | 13.2 | ||
LGN/SGS group | Heating | LGN | LGN_1@O14 | SGS | 4GA_24@H3O | 472 | 9.4 |
SGS | 4GA_25@O2 | LGN | LGN_1@H19 | 354 | 7.1 | ||
LGN | LGN_1@O11 | SGS | 4GA_25@H2O | 321 | 6.4 | ||
LGN | LGN_1@O10 | SGS | 4GA_24@H3O | 262 | 5.2 | ||
LGN | LGN_1@O14 | SGS | 4GA_25@H2O | 258 | 5.1 | ||
Cooling | SGS | 4GA_23@O3 | LGN | LGN_1@H31 | 220 | 4.4 | |
SGS | 4GA_24@O3 | LGN | LGN_1@H19 | 146 | 2.9 | ||
SGS | 4GA_25@O2 | LGN | LGN_1@H35 | 119 | 2.4 | ||
SGS | 4GA_23@O2 | LGN | LGN_1@O18 | 59 | 1.2 | ||
LPJ/SGS group | Heating | LPJ | LPJ_1@O3 | SGS | 4GA_11@H3O | 457 | 9.1 |
LPJ | LPJ_1@O6 | SGS | 4GA_11@H2O | 451 | 9.0 | ||
SGS | 4GA_11@O3 | LPJ | LPJ_1@H15 | 451 | 9.0 | ||
LPJ | LPJ_1@O7 | SGS | 4GA_4@H2O | 438 | 8.8 | ||
LPJ | LPJ_1@O17 | SGS | 4GA_5@H6O | 406 | 8.1 | ||
Cooling | SGS | 4GA_12@O2 | LPJ | LPJ_1@H5 | 4402 | 88.0 | |
LPJ | LPJ_1@O3 | SGS | 4GA_18@H2O | 3253 | 65.1 | ||
LPJ | LPJ_1@O18 | SGS | 4GA_18@H3O | 2465 | 49.3 | ||
SGS | 4GA_32@O2 | LPJ | LPJ_1@H16 | 2174 | 43.5 | ||
LPJ | LPJ_1@O17 | SGS | 4GA_5@H6O | 1860 | 37.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, N.; Gao, H.-X.; He, Q.; Zeng, W.-C. Wheat Starch Modified with Ligustrum robustum (Rxob.) Blume Extract and Its Action Mechanism. Foods 2022, 11, 3187. https://doi.org/10.3390/foods11203187
Chen N, Gao H-X, He Q, Zeng W-C. Wheat Starch Modified with Ligustrum robustum (Rxob.) Blume Extract and Its Action Mechanism. Foods. 2022; 11(20):3187. https://doi.org/10.3390/foods11203187
Chicago/Turabian StyleChen, Nan, Hao-Xiang Gao, Qiang He, and Wei-Cai Zeng. 2022. "Wheat Starch Modified with Ligustrum robustum (Rxob.) Blume Extract and Its Action Mechanism" Foods 11, no. 20: 3187. https://doi.org/10.3390/foods11203187
APA StyleChen, N., Gao, H.-X., He, Q., & Zeng, W.-C. (2022). Wheat Starch Modified with Ligustrum robustum (Rxob.) Blume Extract and Its Action Mechanism. Foods, 11(20), 3187. https://doi.org/10.3390/foods11203187